首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Proteins frequently fold via folding intermediates that correspond to local minima on the conformational energy landscape. Probing the structure of the partially unfolded forms in equilibrium under native conditions can provide insight into the properties of folding intermediates. To elucidate the structures of folding intermediates of Escherichia coli dihydrofolate reductase (DHFR), we investigated transient partial unfolding of DHFR under native conditions. We probed the structure of a high‐energy conformation susceptible to proteolysis (cleavable form) using native‐state proteolysis. The free energy for unfolding to the cleavable form is clearly less than that for global unfolding. The dependence of the free energy on urea concentration (m‐value) also confirmed that the cleavable form is a partially unfolded form. By assessing the effect of mutations on the stability of the partially unfolded form, we found that native contacts in a hydrophobic cluster formed by the F‐G and Met‐20 loops on one face of the central β‐sheet are mostly lost in the partially unfolded form. Also, the folded region of the partially unfolded form is likely to have some degree of structural heterogeneity. The structure of the partially unfolded form is fully consistent with spectroscopic properties of the near‐native kinetic intermediate observed in previous folding studies of DHFR. The findings suggest that the last step of the folding of DHFR involves organization in the structure of two large loops, the F‐G and Met‐20 loops, which is coupled with compaction of the rest of the protein.  相似文献   

2.
Chu R  Pei W  Takei J  Bai Y 《Biochemistry》2002,41(25):7998-8003
The hydrogen exchange behavior of a four-helix bundle protein in low concentrations of denaturant reveals some partially unfolded forms that are significantly more stable than the fully unfolded state. Kinetic folding of the protein, however, is apparently two-state in the absence of the accumulation of early folding intermediates. The partially unfolded forms are either as folded as or more folded than the rate-limiting transition state and appear to represent the major intermediates in a folding and unfolding reaction. These results are consistent with the suggestion that partially unfolded intermediates may form after the rate-limiting step for small proteins with apparent two-state folding kinetics.  相似文献   

3.
4.
Our understanding of the structural organization of ribosome assembly intermediates, in particular those intermediates that result from misfolding leading to their eventual degradation within the cell, is limited because of the lack of methods available to characterize assembly intermediate structures. Because conventional structural approaches, such as NMR, X‐ray crystallography, and cryo‐EM, are not ideally suited to characterize the structural organization of these flexible and sometimes heterogeneous assembly intermediates, we have set out to develop an approach combining limited proteolysis with matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) that might be applicable to ribonucleoprotein complexes as large as the ribosome. This study focuses on the limited proteolysis behavior of appropriately assembled ribosome subunits. Isolated subunits were analyzed using limited proteolysis and MALDI‐MS and the results were compared with previous data obtained from 70S ribosomes. Generally, ribosomal proteins were found to be more stable in 70S ribosomes than in their isolated subunits, consistent with a reduction in conformational flexibility on subunit assembly. This approach demonstrates that limited proteolysis combined with MALDI‐MS can reveal structural changes to ribosomes on subunit assembly or disassembly, and provides the appropriate benchmark data from 30S, 50S, and 70S proteins to enable studies of ribosome assembly intermediates. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 410–422, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

5.
Riboswitch regulation of gene expression requires ligand‐mediated RNA folding. From the fluorescence lifetime distribution of bound 2‐aminopurine ligand, we resolve three RNA conformers (Co, Ci, Cc) of the liganded G‐ and A‐sensing riboswitches from Bacillus subtilis. The ligand binding affinities, and sensitivity to Mg2+, together with results from mutagenesis, suggest that Co and Ci are partially unfolded species compromised in key loop‐loop interactions present in the fully folded Cc. These data verify that the ligand‐bound riboswitches may dynamically fold and unfold in solution, and reveal differences in the distribution of folded states between two structurally homologous purine riboswitches: Ligand‐mediated folding of the G‐sensing riboswitch is more effective, less dependent on Mg2+, and less debilitated by mutation, than the A‐sensing riboswitch, which remains more unfolded in its liganded state. We propose that these sequence‐dependent RNA dynamics, which adjust the balance of ligand‐mediated folding and unfolding, enable different degrees of kinetic discrimination in ligand binding, and fine‐tuning of gene regulatory mechanisms. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 953–965, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
Thiol proteinase inhibitors are crucial to proper functioning of all living tissues consequent to their cathepsin regulatory and myriad important biologic properties. Equilibrium denaturation of dimeric goat pancreas thiol proteinase inhibitor (PTPI), a cystatin superfamily variant has been studied by monitoring changes in the protein's spectroscopic and functional characteristics. Denaturation of PTPI in guanidine hydrochloride and urea resulted in altered intrinsic fluorescence emission spectrum, diminished negative circular dichroism, and loss of its papain inhibitory potential. Native like spectroscopic properties and inhibitory activity are only partially restored when denaturant is diluted from guanidine hydrochloride unfolded samples demonstrating that process is partially reversible. Coincidence of transition curves and dependence of transition midpoint (3.2M) on protein concentration in guanidine hydrochloride‐induced denaturation are consistent with a two‐state model involving a native like dimer and denatured monomer. On the contrary, urea‐induced unfolding of PTPI is a multiphasic process with indiscernible intermediates. The studies demonstrate that functional conformation and stability are governed by both ionic and hydrophobic interactions. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 708–717, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

7.
Ellen V. Hackl 《Biopolymers》2014,101(6):591-602
Natively unfolded (intrinsically disordered (ID) proteins) have been attracting an increasing attention due to their involvement in many regulatory processes. Natively unfolded proteins can fold upon binding to their metabolic partners. Coupled folding and binding events usually involve only relatively short motifs (binding motifs). These binding motifs which are able to fold should have an increased propensity to form a secondary structure. The aim of the present work was to probe the conformation of the intrinsically disordered protein 4E‐BP1 in the native and partly folded states by limited proteolysis and to reveal regions with a high propensity to form an ordered structure. Trifuoroethanol (TFE) in low concentrations (up to 15 vol%) was applied to increase the helical population of protein regions with a high intrinsic propensity to fold. When forming helical structures, these regions lose mobility and become more protected from proteases than random/unfolded protein regions. Limited proteolysis followed by mass spectrometry analysis allows identification of the regions with decreased mobility in TFE solutions. Trypsin and V8 proteases were used to perform limited proteolysis of the 4E‐BP1 protein in buffer and in solutions with low TFE concentrations at 37°C and at elevated temperatures (42 and 50°C). Comparison of the results obtained with the previously established 4E‐BP1 structure and the binding motif illustrates the ability of limited proteolysis in the presence of a folding assistant (TFE) to map the regions with high and low propensities to form a secondary structure revealing potential binding motifs inside the intrinsically disordered protein. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 591–602, 2014.  相似文献   

8.
Vu ND  Feng H  Bai Y 《Biochemistry》2004,43(12):3346-3356
The nature of the rate-limiting transition state at zero denaturant (TS(1)) and whether there are hidden intermediates are the two major unsolved problems in defining the folding pathway of barnase. In earlier studies, it was shown that TS(1) has small phi values throughout the structure of the protein, suggesting that the transition state has either a defined partially folded secondary structure with all side chains significantly exposed or numerous different partially unfolded structures with similar stability. To distinguish the two possibilities, we studied the effect of Gly mutations on the folding rate of barnase to investigate the secondary structure formation in the transition state. Two mutations in the same region of a beta-strand decreased the folding rate by 20- and 50-fold, respectively, suggesting that the secondary structures in this region are dominantly formed in the rate-limiting transition state. We also performed native-state hydrogen exchange experiments on barnase at pD 5.0 and 25 degrees C and identified a partially unfolded state. The structure of the intermediate was investigated using protein engineering and NMR. The results suggest that the intermediate has an omega loop unfolded. This intermediate is more folded than the rate-limiting transition state previously characterized at high denaturant concentrations (TS(2)). Therefore, it exists after TS(2) in folding. Consistent with this conclusion, the intermediate folds with the same rate and denaturant dependence as the wild-type protein, but unfolds faster with less dependence on the denaturant concentration. These and other results in the literature suggest that barnase folds through partially unfolded intermediates that exist after the rate-limiting step. Such folding behavior is similar to those of cytochrome c and Rd-apocyt b(562). Together, we suggest that other small apparently two-state proteins may also fold through hidden intermediates.  相似文献   

9.
Astringency is one of the major organoleptic properties of food and beverages that are made from plants, such as tea, chocolate, beer, or red wine. This sensation is thought to be due to interactions between tannins and salivary proline‐rich proteins, which are natively unfolded proteins. A human salivary proline‐rich protein, namely IB‐5, was produced by the recombinant method. Its interactions with a model tannin, epigallocatechin gallate (EGCG), the major flavan‐3‐ol in green tea, were studied here. Circular dichroism experiments showed that IB‐5 presents residual structures (PPII helices) when the ionic strength is close to that in saliva. In the presence of these residual structures, IB‐5 undergoes an increase in structural content upon binding to EGCG. NMR data corroborated the presence of preformed structural elements within the protein prior to binding and a partial assignment was proposed, showing partial structuration. TOCSY experiments showed that amino acids that are involved in PPII helices are more likely to interact with EGCG than those in random coil regions, as if they were anchorage points for the ligand. The signal from IB‐5 in the DOSY NMR spectrum revealed an increase in polydispersity upon addition of EGCG while the mean hydrodynamic radius remained unchanged. This strongly suggests the formation of IB‐5/EGCG aggregates. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 745–756, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
To understand the mechanism of ionic detergent‐induced protein denaturation, this study examines the action of sodium dodecyl sulfate on ferrocytochrome c conformation under neutral and strongly alkaline conditions. Equilibrium and stopped‐flow kinetic results consistently suggest that tertiary structure unfolding in the submicellar and chain expansion in the micellar range of SDS concentrations are the two major and discrete events in the perturbation of protein structure. The nature of interaction between the detergent and the protein is predominantly hydrophobic in the submicellar and exclusively hydrophobic at micellar levels of SDS concentration. The observation that SDS also interacts with a highly denatured and negatively charged form of ferrocytochrome c suggests that the interaction is independent of structure, conformation, and ionization state of the protein. The expansion of the protein chain at micellar concentration of SDS is driven by coulombic repulsion between the protein‐bound micelles, and the micelles and anionic amino acid side chains. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 186–199, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

11.
Jun Gao  Zhijun Li 《Biopolymers》2010,93(4):340-347
It is widely accepted that a protein's sequence determines its structure. The surprising finding that proteins of distant sequence can adopt similar 3D structures has raised interesting questions regarding underlying conserved properties that are essential for protein folding and stability. Uncovering the conserved properties may shed light on the folding mechanism of proteins and help with the development of computational tools for protein structure prediction. We compiled and analyzed a structure pair dataset of 66 high‐resolution and low sequence identity (16–38%) soluble proteins. Structure deviation for each pair was confirmed by calculating its Cα SiMax value and comparing its potential energy per residue. Analysis of favorable inter‐residue interactions for each structure pair indicated that the average number of inter‐residue interactions within each structure represents a conserved feature of homologous structures of distant sequence. Detailed comparison of individual types of interactions showed that the average number of either hydrophobic or hydrogen bonding interactions remains unchanged for each structure pair. These findings should be of help to improving the quality of homology models based on templates of low sequence identity, thus broadening the application of homology modeling techniques for protein studies. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 340–347, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

12.
Late expression factor 4 (LEF4) is one of the four subunits of Autographa californica nuclear polyhedrosis virus (AcNPV) RNA polymerase. LEF4 was overexpressed in Escherichia coli and recombinant protein was subjected to structural characterization. Chemical induced unfolding of LEF4 was investigated using intrinsic fluorescence, hydrophobic dye binding, fluorescence quenching, and circular dichroism (CD) techniques. The unfolding of LEF4 was found to be a non‐two state, biphasic transition. Intermediate states of LEF4 at 2M GnHCl and 4M urea shared some common structural features and hence may lie on the same pathway of protein folding. Steady‐state fluorescence and far‐UV CD showed that while there was considerable shift in the wavelength of emission maximum (λmax), the secondary structure of LEF4 intermediates at 2M GnHCl and 4M urea remained intact. Further, temperature induced denaturation of LEF4 was monitored using far‐UV CD. This study points to the structural stability of LEF4 under the influence of denaturants like urea and temperature. Although LEF4 is an interesting model protein to study protein folding intermediates, in terms of functional significance the robust nature of this protein might reflect one of the several strategies adapted by the virus to survive under very adverse environmental and physiological conditions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 574–582, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
Jun Gao  Zhijun Li 《Biopolymers》2009,91(7):547-556
Studying inter‐residue interactions provides insight into the folding and stability of both soluble and membrane proteins and is essential for developing computational tools for protein structure prediction. As the first step, various approaches for elucidating such interactions within protein structures have been proposed and proven useful. Since different approaches may grasp different aspects of protein structural folds, it is of interest to systematically compare them. In this work, we applied four approaches for determining inter‐residue interactions to the analysis of three distinct structure datasets of helical membrane proteins and compared their correlation to the three individual quality measures of structures in these datasets. These datasets included one of 35 structures of rhodopsin receptors and bacterial rhodopsins determined at various resolutions, one derived from the HOMEP benchmark dataset previously reported, and one comprising of 139 homology models. It was found that the correlation between the average number of inter‐residue interactions obtained by applying the four approaches and the available structure quality measures varied quite significantly among them. The best correlation was achieved by the approach focusing exclusively on favorable inter‐residue interactions. These results provide interesting insight for the development of objective quality measure for the structure prediction of helical membrane proteins. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 547–556, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
P E Wright  H J Dyson  R A Lerner 《Biochemistry》1988,27(19):7167-7175
Applications of sensitive new technologies, in particular, two-dimensional NMR spectroscopy, have allowed detection of folded structures in short peptide fragments of proteins in aqueous solution under conditions where native proteins fold. These structures are in rapid dynamic exchange with unfolded states. These observations provide evidence in support of models for protein folding which postulate localized regions of folded structure as initiation sites for the folding process. Since these initiation processes are expected to be rapid, such models are consistent with kinetic evidence that the rate-determining steps of protein folding occur late in the process and probably involve rearrangement of incorrectly folded intermediates.  相似文献   

15.
When proteins fold in vivo, the intermediates that exist transiently on their folding pathways are exposed to the potential interactions with a plethora of metabolites within the cell. However, these potential interactions are commonly ignored. Here, we report a case in which a ubiquitous metabolite interacts selectively with a nonnative conformation of a protein and facilitates protein folding and unfolding process. From our previous proteomics study, we have discovered that Escherichia coli glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is not known to bind ATP under native conditions, is apparently destabilized in the presence of a physiological concentration of ATP. To decipher the origin of this surprising effect, we investigated the thermodynamics and kinetics of folding and unfolding of GAPDH in the presence of ATP. Equilibrium unfolding of the protein in urea showed that a partially unfolded equilibrium intermediate accumulates in the presence of ATP. This intermediate has a quaternary structure distinct from the native protein. Also, ATP significantly accelerates the unfolding of GAPDH by selectively stabilizing a transition state that is distinct from the native state of the protein. Moreover, ATP also significantly accelerates the folding of GAPDH. These results demonstrate that ATP interacts specifically with a partially unfolded form of GAPDH and affects the kinetics of folding and unfolding of this protein. This unusual effect of ATP on the folding of GAPDH implies that endogenous metabolites may facilitate protein folding in vivo by interacting with partially unfolded intermediates.  相似文献   

16.
The unfolded state of a protein is an ensemble of a large number of conformations ranging from fully extended to compact structures. To investigate the effects of the difference in the unfolded-state ensemble on protein folding, we have studied the structure, stability, and folding of "circular" dihydrofolate reductase (DHFR) from Escherichia coli in which the N and C-terminal regions are cross-linked by a disulfide bond, and compared the results with those of disulfide-reduced "linear" DHFR. Equilibrium studies by circular dichroism, difference absorption spectra, solution X-ray scattering, and size-exclusion chromatography show that whereas the native structures of both proteins are essentially the same, the unfolded state of circular DHFR adopts more compact conformations than the unfolded state of the linear form, even with the absence of secondary structure. Circular DHFR is more stable than linear DHFR, which may be due to the decrease in the conformational entropy of the unfolded state as a result of circularization. Kinetic refolding measurements by stopped-flow circular dichroism and fluorescence show that under the native conditions both proteins accumulate a burst-phase intermediate having the same structures and both fold by the same complex folding mechanism with the same folding rates. Thus, the effects of the difference in the unfolded state of circular and linear DHFRs on the refolding reaction are not observed after the formation of the intermediate. This suggests that for the proteins with close termini in the native structure, early compaction of a protein molecule to form a specific folding intermediate with the N and C-terminal regions in close proximity is a crucial event in folding. If there is an enhancement in the folding reflecting the reduction in the breadth of the unfolded-state ensemble for circular DHFR, this acceleration must occur in the sub-millisecond time-range.  相似文献   

17.
Solving the protein folding problem is one of the most challenging tasks in the post genomic era. Identification of folding-initiation sites is very important in order to understand the protein folding mechanism. Detection of residual structure in unfolded proteins can yield important clues to the initiation sites in protein folding. A substantial number of studied proteins possess residual structure in hydrophobic regions clustered together in the protein core. These stable structures can work as seeds in the folding process. In addition, local preferences for secondary structure in the form of turns for beta-sheet initiation and helical turns for alpha-helix formation can guide the folding reaction. In this respect the unfolded states, studied at increasing structural resolution, can be the Rosetta Stone of the protein folding problem.  相似文献   

18.
We have analysed the folding energy landscape of the 72 amino acid protein MerP by monitoring native state hydrogen exchange as a function of temperature in the range of 7-55 degrees C. The temperature dependence of the hydrogen exchange has allowed us to determine DeltaG, DeltaH and DeltaC(p) values for the conformational processes that permit hydrogen exchange. When studied with the traditional probes, fluorescence and CD, MerP appears to behave as a typical two-state protein, but the results from the hydrogen exchange analysis reveal a much more complex energy landscape. Analysis at the individual amino acid level show that exchange is allowed from an ensemble of partially unfolded structures (i.e. intermediates) in which the stabilities at the amino acid level form a broad distribution throughout the protein. The formation of partially unfolded structures might contribute to the unusually slow folding of MerP.  相似文献   

19.
Poly‐L ‐proline has been used as a model system for various purposes over a period of more than 60 years. Its relevance among the protein/peptide community stems from its use as a reference system for determining the conformational distributions of unfolded peptides and proteins, its use as a molecular ruler, and from the pivotal role of proline residues in conformational transitions and protein–protein interactions. While several studies indicate that polyproline can aggregate and precipitate in aqueous solution, a systematic study of the aggregation process is still outstanding. We found, by means of UV‐circular dichroism and IR measurements, that polyproline is predominately monomeric at room temperature at millimolar concentrations. Upon heating, the polypeptide stays in its monomeric state until the temperature reaches a threshold of ca. 60°C. At higher temperatures, the peptide aggregates as a film on the inside surface of the employed cuvette. The process proceeds on a time scale of 103 s and can best be described by a bi‐exponential relaxation function. The respective CD and IR spectra are qualitatively different from the canonical spectra of polyproline in aqueous solution, and are indicative of a highly packed state. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 451–457, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
Anna Alemany  Felix Ritort 《Biopolymers》2014,101(12):1193-1199
The characterization of elastic properties of biopolymers is crucial to understand many molecular reactions determined by conformational bending fluctuations of the polymer. Direct measurement of such elastic properties using single‐molecule methods is usually hindered by the intrinsic tendency of such biopolymers to form high‐order molecular structures. For example, single‐stranded deoxyribonucleic acids (ssDNA) tend to form secondary structures such as local double helices that prevent the direct measurement of the ideal elastic response of the ssDNA. In this work, we show how to extract the ideal elastic response in the entropic regime of short ssDNA molecules by mechanically pulling two‐state DNA hairpins of different contour lengths. This is achieved by measuring the force dependence of the molecular extension and stiffness on mechanically folding and unfolding the DNA hairpin. Both quantities are fit to the worm‐like chain elastic model giving values for the persistence length and the interphosphate distance. This method can be used to unravel the elastic properties of short ssDNA and RNA sequences and, more generally, any biopolymer that can exhibit a cooperative two‐state transition between mechanically folded and unfolded states (such as proteins). © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1193–1199, 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号