首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Common marmosets (Callithrix jacchus) and cotton-top tamarins (Saguinus oedipus) (Callitrichidae, Primates) share a broadly similar diet of fruits, insects, and tree exudates. Common marmosets, however, differ from tamarins by actively gouging trees with their anterior teeth to elicit tree exudate flow. During tree gouging, marmosets produce relatively large jaw gapes, but do not necessarily produce relatively large bite forces at the anterior teeth. We compared the fiber architecture of the masseter muscle in tree-gouging Callithrix jacchus (n = 10) to nongouging Saguinus oedipus (n = 8) to determine whether the marmoset masseter facilitates producing these large gapes during tree gouging. We predict that the marmoset masseter has relatively longer fibers and, hence, greater potential muscle excursion (i.e., a greater range of motion through increased muscle stretch). Conversely, because of the expected trade-off between excursion and force production in muscle architecture, we predict that the cotton-top tamarin masseter has more pinnate fibers and increased physiological cross-sectional area (PCSA) as compared to common marmosets. Likewise, the S. oedipus masseter is predicted to have a greater proportion of tendon relative to muscle fiber as compared to the common marmoset masseter. Common marmosets have absolutely and relatively longer masseter fibers than cotton-top tamarins. Given that fiber length is directly proportional to muscle excursion and by extension contraction velocity, this result suggests that marmosets have masseters designed for relatively greater stretching and, hence, larger gapes. Conversely, the cotton-top tamarin masseter has a greater angle of pinnation (but not significantly so), larger PCSA, and higher proportion of tendon. The significantly larger PCSA in the tamarin masseter suggests that their masseter has relatively greater force production capabilities as compared to marmosets. Collectively, these results suggest that the fiber architecture of the common marmoset masseter is part of a suite of features of the masticatory apparatus that facilitates the production of relatively large gapes during tree gouging.  相似文献   

2.
Although all genera of Callitrichinae feed on tree exudates, marmosets (Callithrix and Cebuella) use specialized anterior teeth to gouge holes in trees and actively stimulate exudate flow. Behavioral studies demonstrate that marmosets use large jaw gapes but do not appear to generate large bite forces (relative to maximal ability) during gouging. Nonetheless, the anterior teeth of marmosets likely experience different loads during gouging compared to nongouging platyrrhines. We use histological data from sectioned teeth, μCTs of jaws and teeth, and in vitro tests of symphyseal strength to compare the anterior masticatory apparatus in Callithrix to nongouging tamarins (Saguinus) and other cebids. We test the hypotheses that (1) marmoset anterior teeth are adapted to accommodate relatively high stresses linked to dissipating gouging forces and (2) the mandibular symphysis does not provide increased load resistance ability compared with closely related nongouging platyrrhines. Differences in decussation between Callithrix and Saguinus are greatest in the anterior teeth, suggesting an increased load resistance ability specifically in incisor and canine enamel of Callithrix. Callithrix lower incisor crowns are labiolingually thicker suggesting increased bending resistance in this plane and improved wedging ability compared with Saguinus. Anterior tooth roots are larger relative to symphyseal bone volume in Callithrix. Anterior tooth root surface areas also are larger in marmosets for their symphyseal volume, but it remains unclear whether this relative increase is an adaptation for dissipating dental stresses versus a growth‐related byproduct of relatively elongated incisors. Finally, simulated jaw loading suggests a reduced ability to withstand external forces in the Callithrix symphysis. The contrast between increased load resistance ability in the anterior dentition versus relatively reduced symphyseal strength (1) suggests a complex loading environment during gouging, (2) highlights the possibility of distinct loading patterns in the anterior teeth versus the symphysis, and (3) points to a potential mosaic pattern of dentofacial adaptations to tree gouging. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

3.
The involvement of parents and siblings in infant care in similarly composed groups of common marmosets (Callithrix jacchus) and cotton-top tamarins (Saguinus oedipus) was compared during the infants' first 8 weeks of life. The results indicate an earlier infant independence in C. jacchus than in S. oedipus due primarily to a more frequent rejection of carried infants in C. jacchus. There was no species difference in extent of maternal involvment in carrying infants. However, S. oedipus fathers carried infants significantly more often during weeks 5–8 than did C. jacchus fathers. Siblings were generally more involved in infant care at an earlier infant age in C. jacchus than in S. oedipus.  相似文献   

4.
Compared with the deer mouse, Peromyscus maniculatus, the grasshopper mouse, Onychomys leucogaster, exhibits modifications in its jaw‐muscle architecture that promote wide gapes and large bite forces at wide gapes to prey upon large vertebrate prey. In this study, we determine whether jaw‐muscle anatomy predicts gape and biting performance in O. leucogaster, and we also assess the influence of gape on bite force in the two species. Although O. leucogaster has an absolutely longer jaw, which facilitates larger gapes, maximum passive gape is similar in both species, averaging ~12.5 mm. Thus, when scaled to jaw length, O. leucogaster has a smaller maximum passive gape. These results suggest that predatory behaviors of O. leucogaster may not require remarkably large gapes. On the other hand, both absolute and relative bite forces exerted by O. leucogaster are significantly larger than those of P. maniculatus. The largest bite forces in both species occur at 5.0 mm of gape at the incisors, or 40% of maximum gape. Although bite force in both species decreases at larger gapes, O. leucogaster does maintain a larger percentage of maximum bite force at gapes larger than 40% of maximum passive gape. Therefore, although structural modifications in the masticatory apparatus of O. leucogaster may constrain gape, they may help to maintain bite force at large gapes. These results suggest that increases in gape differentially influence the length‐tension properties of the jaw muscles in the two species. Finally, these results highlight the importance of considering the effect of muscle stretch on force production in comparative studies of bite force. As a first approximation, it appears that gapes of 40–50% of maximum gape in rodents optimizes bite force production at the incisors. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
The jaw‐closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross‐sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw‐muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small‐ and large‐bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New‐ (Cebus) and Old‐World (Macaca) monkeys. Variation in hominoid jaw‐muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large‐bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller‐bodied apes and monkeys. Compared with extant apes, modern humans exhibit a reduction in masseter PCSA relative to condyle‐M1 length but retain relatively long fibers, suggesting humans may have sacrificed relative masseter muscle force during chewing without appreciably altering muscle excursion/contraction velocity. Lastly, craniometric estimates of PCSAs underestimate hominoid masseter and temporalis PCSAs by more than 50% in gorillas, and overestimate masseter PCSA by as much as 30% in humans. These findings underscore the difficulty of accurately estimating jaw‐muscle fiber architecture from craniometric measures and suggest models of fossil hominin and hominoid bite forces will be improved by incorporating architectural data in estimating jaw‐muscle forces. Am J Phys Anthropol 151:120–134, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
The relationship between mandibular form and biomechanical function is a topic of significant interest to morphologists and paleontologists alike. Several previous studies have examined the morphology of the mandible in gouging and nongouging primates as a means of understanding the anatomical correlates of this feeding behavior. The goal of the current study was to quantify the trabecular bone structure of the mandibular condyle of gouging and nongouging primates to assess the functional morphology of the jaw in these animals. High‐resolution computed tomography scan data were collected from the mandibles of five adult common marmosets (Callithrix jacchus), saddle‐back tamarins (Saguinus fuscicollis), and squirrel monkeys (Saimiri sciureus), respectively, and various three‐dimensional morphometric parameters were measured from the condylar trabecular bone. No significant differences were found among the taxa for most trabecular bone structural features. Importantly, no mechanically significant parameters, such as bone volume fraction and degree of anisotropy, were found to vary significantly between gouging and nongouging primates. The lack of significant differences in mechanically relevant structural parameters among these three platyrrhine taxa may suggest that gouging as a habitual dietary behavior does not involve significantly higher loads on the mandibular condyle than other masticatory behaviors. Alternatively, the similarities in trabecular architecture across these three taxa may indicate that trabecular bone is relatively unimportant mechanically in the condyle of these primates and therefore is functionally uninformative. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Although many members of the Callitrichidae, a monophyletic family of small, New World monkeys, have been observed to feed on plant exudates, available field data support the generalization that pygmy and common marmosets (Cebuella pygmaea and Callithrix jacchus) feed on gums to a greater extent than most other callitrichids. Because microbial fermentation is required for vertebrates to digest gums, gum-feeding primates may react differently to dietary gum from their relatives that eat little gum. To test this hypothesis, digestion trials were conducted on animals from the two marmoset species, two tamarin species (Saguinus fuscicollis and S. oedipus), and a species of lion tamarin (Leontopithecus rosalia). These species span the range of body sizes within the Callitrichidae. All animals were fed two variations of a homogeneous diet, which differed only in that gum arabic was added to one. Transit time of digesta (TFA) and digestive efficiency (as measured by the coefficients of apparent digestibility of dry matter and energy [ADDM and ADE, respectively]) were compared between diets for each individual. As predicted, the digestive responses of marmosets differed from the responses of the other study species. In marmosets, TFA tended to be longer when gum was added to the diet, while TFA did not change in the other three species. Digestive efficiency decreased in tamarins and lion tamarins with the addition of gum to the diet; marmoset digestive efficiency was unaffected by diet. The results of this research are consistent with the hypothesis that marmosets have digestive adaptations that aid in the digestion of gum that other callitrichids lack. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Tufted capuchins (sensu lato) are renowned for their dietary flexibility and capacity to exploit hard and tough objects. Cebus apella differs from other capuchins in displaying a suite of craniodental features that have been functionally and adaptively linked to their feeding behavior, particularly the generation and dissipation of relatively large jaw forces. We compared fiber architecture of the masseter and temporalis muscles between C. apella (n = 12) and two “untufted” capuchins (C. capucinus, n = 3; C. albifrons, n = 5). These three species share broadly similar diets, but tufted capuchins occasionally exploit mechanically challenging tissues. We tested the hypothesis that tufted capuchins exhibit architectural properties of their jaw muscles that facilitate relatively large forces including relatively greater physiologic cross-sectional areas (PCSA), more pinnate fibers, and lower ratios of mass to tetanic tension (Mass/P0). Results show some evidence supporting these predictions, as C. apella has relatively greater superficial masseter and temporalis PCSAs, significantly so only for the temporalis following Bonferroni adjustment. Capuchins did not differ in pinnation angle or Mass/P0. As an architectural trade-off between maximizing muscle force and muscle excursion/contraction velocity, we also tested the hypothesis that C. apella exhibits relatively shorter muscle fibers. Contrary to our prediction, there are no significant differences in relative fiber lengths between tufted and untufted capuchins. Therefore, we attribute the relatively greater PCSAs in tufted capuchins primarily to their larger muscle masses. These findings suggest that relatively large jaw-muscle PCSAs can be added to the suite of masticatory features that have been functionally linked to the exploitation of a more resistant diet by C. apella. By enlarging jaw-muscle mass to increase PCSA, rather than reducing fiber lengths and increasing pinnation, tufted capuchins appear to have increased jaw-muscle and bite forces without markedly compromising muscle excursion and contraction velocity. One performance advantage of this morphology is that it promotes relatively large bite forces at wide jaw gapes, which may be useful for processing large food items along the posterior dentition. We further hypothesize that this morphological pattern may have the ecological benefit of facilitating the dietary diversity seen in tufted capuchins. Lastly, the observed feeding on large objects, coupled with a jaw-muscle architecture that facilitates this behavior, raises concerns about utilizing C. apella as an extant behavioral model for hominins that might have specialized on small objects in their diets.  相似文献   

9.
The use of floor-covering has been shown to substantially alter the behavior of captive terrestrial primates. Experiments with two large family groups of common marmosets (Callithrix jacchus) and two of cotton-top tamarins (Saguinus oedipus) have shown that the type of floor-covering also beneficially alters the behavior of arboreal monkeys, increasing use of the floor and decreasing inactivity. These effects increased over 2.5 mo, and appeared to be due to the reduced aversiveness of the floor. Hanging screens also produced beneficial effects.  相似文献   

10.
Tamarins and marmosets are small-bodied social callitrichines. Wild callitrichines feed on exudates, such as sap and gum; particularly, marmosets are mainly gummivores, while tamarins consume gums only occasionally and opportunistically. Zoo marmosets and tamarins are usually provided with gum arabic as an alternative to the exudates normally found in the wild. The aim of this study was to evaluate the effects of a gum feeder on the behavior and well-being of four zoo-managed callitrichines. We studied four cotton-top tamarins (Saguinus oedipus), four red-handed tamarins (S. midas), two pygmy marmosets (Cebuella pygmaea), and three Geoffroy's marmosets (Callithrix geoffroyi) housed at Parco Natura Viva (Italy). We conducted the study over two different periods, a baseline (control, without the gum feeder) and then a gum feeder (when the gum feeder was provided) period. We used continuous focal animal sampling to collect behavioral data, including durations of social and individual behaviors. We collected 240 min of observations per period per study subject, with a total of 3,120 min for all the subjects in the same period and of 6,240 min in both periods. We analyzed data by using nonparametric statistical tests. First, we found that the gum feeder promoted species-specific behaviors, such as exploration, and diminished self-directed behaviors, suggesting an enriching effect on tamarin and marmoset behavior. Moreover, in red-handed tamarins, the provision of the gum feeder reduced the performance of self-directed and abnormal behavior, specifically coprophagy. These results confirm that gum feeders are effective foraging enrichment tools for zoo marmosets and tamarins.  相似文献   

11.
We tested whether gouging by Callithrix jacchus affects tree survival. The proportion of dead gouged trees was higher than the proportion of dead non-gouged trees, with larger effects on smaller trees. The number of holes did not affect tree survival. Tree-gouging by marmosets may enhance forest turnover.  相似文献   

12.
Many primates habitually feed on tree exudates such as gums and saps. Among these exudate feeders, Cebuella pygmaea, Callithrix spp., Phaner furcifer, and most likely Euoticus elegantulus elicit exudate flow by biting into trees with their anterior dentition. We define this behavior as gouging. Beyond the recent publication by Dumont ([1997] Am J Phys Anthropol 102:187-202), there have been few attempts to address whether any aspect of skull form in gouging primates relates to this specialized feeding behavior. However, many researchers have proposed that tree gouging results in larger bite force, larger internal skull loads, and larger jaw gapes in comparison to other chewing and biting behaviors. If true, then we might expect primate gougers to exhibit skull modifications that provide increased abilities to produce bite forces at the incisors, withstand loads in the skull, and/or generate large gapes for gouging.We develop 13 morphological predictions based on the expectation that gouging involves relatively large jaw forces and/or jaw gapes. We compare skull shapes for P. furcifer to five cheirogaleid taxa, E. elegantulus to six galagid species, and C. jacchus to two tamarin species, so as to assess whether gouging primates exhibit these predicted morphological shapes. Our results show little morphological evidence for increased force-production or load-resistance abilities in the skulls of these gouging primates. Conversely, these gougers tend to have skull shapes that are advantageous for creating large gapes. For example, all three gouging species have significantly lower condylar heights relative to the toothrow at a given mandibular length in comparison with closely related, nongouging taxa. Lowering the height of the condyle relative to the mandibular toothrow should reduce the stretching of the masseters and medial pterygoids during jaw opening, as well as position the mandibular incisors more anteriorly at wide jaw gapes. In other words, the lower incisors will follow a more vertical trajectory during both jaw opening and closing.We predict, based on these findings, that tree-gouging primates do not generate unusually large forces, but that they do use relatively large gapes during gouging. Of course, in vivo data on jaw forces and jaw gapes are required to reliably assess skull functions during gouging.  相似文献   

13.
To assess the important aspects of a large area for environmental enrichment, the behavior of families of common marmosets Callithrix jacchus and cotton-top tamarins Saguinus oedipus when in laboratory cages and when in much larger outside areas was compared. All animals avoided areas with little cover. The two tamarin families preferred an indoor cage to a large open area with little cover and consequently only showed a limited range of behavior when outside. When dense cover was provided to the marmoset family, they used this area extensively, showing a wider range of behavior than when in cages and shifting to less active behavior patterns. By feeding marmosets in a central area, it was possible to allow unlimited access to the outside while effectively containing them.  相似文献   

14.
Estimates of the chronological age for animals of unknown age provide useful information for medical, demographic, and evolutionary studies. Skeletal development, as indicated by epiphyseal closure, can be used to estimate an animal's chronological age or specify its stage of development. Many studies of Primate skeletal development have used animals of unknown age, with the order of epiphyseal closure providing a relative age for each animal. This study examines the age of epiphyseal closure at 22 epiphyseal sites using animals of known age at death in three calitrichid species (Saguinus fuscicollis, Saguinus oedipus, and Callithrix jacchus). The observed average age of epiphyseal closure is similar in these tamarins and marmosets. There is a significant difference in rate of development between the species. Regression equations can predict the age of unknown animals to within 4.8 months for S. fuscicollis, 8.6 months for S. oedipus, and 7.6 months for C. jacchus (twice the standard error of the estimate). These age estimates allow us to determine if an animal is relatively mature or immature, but are largely unacceptable for studies in which precise age estimates are necessary. The order of epiphyseal closure is similar across 11 monkey species (using additional data from published literature) and supports the suggestion of a general pattern in Primate skeletal development. Am. J. Primatol. 41:129–139, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Recent morphometric analyses have led to dissimilar conclusions about whether the jaws of tree-gouging primates are designed to resist the purportedly large forces generated during this biting behavior. We further address this question by comparing the cross-sectional geometry of the mandibular corpus and symphysis in tree-gouging common marmosets (Callithrix jacchus) to nongouging saddleback tamarins (Saguinus fuscicollis) and squirrel monkeys (Saimiri sciureus). As might be expected, based on size, squirrel monkeys tend to have absolutely larger cross-sectional areas at each tooth location sampled, while saddleback tamarins are intermediate, followed by the smaller common marmosets. Similarly, the amount and distribution of cortical bone in squirrel monkey jaws provides them with increased ability to resist sagittal bending (I xx ) and torsion (K) in the corpus as well as coronal bending (I xx ) and shearing in the symphysis. However, when the biomechanical parameters are scaled to respective load arm estimates, there are few significant differences in relative resistance abilities among the 3 species. A power analysis indicates that we cannot statistically rule out subtle changes in marmoset jaw form linked to resisting loads during gouging. Nevertheless, our results correspond to studies in vivo of jaw loading, field data, and other comparative analyses suggesting that common marmosets do not generate relatively large bite forces during tree gouging. The 3 species are like most other anthropoids in having thinner bone on the lingual than on the buccal side of the mandibular corpus at M1. The similarity in corporal shape across anthropoids supports a hypothesized stereotypical pattern of jaw loading during chewing and may indicate a conserved pattern of mandibular growth for the suborder. Despite the overall similarity, platyrrhines may differ slightly from catarrhines in the details of their cortical bone distribution.
Christopher J. VinyardEmail:
  相似文献   

16.
Abstract: Twenty-six gastrointestinal tumors were observed in twenty-three nonhuman primates during routine necropsies at the German Primate Center, Göttingen. The majority (15 cases) were colorectal mucoid adenocarcinomas in cotton-top tamarins (Saguinus oedipus), which in two animals were associated with gastric adenomas. Three cases of small intestinal mucoid adenocarcinomas occurred in common marmosets (Callithrix jacchus). One colonic leiomyoma was observed in a dwarf galago (Galagoides demidovii) and another one in a cotton top tamarin. Singular findings were a tubular adeno-carcinoma of the ileo-caecal valve in a saddle-backed tamarin (Saguinus fuscicollis) and a lymphosarcoma of jejunum, ileum, and colon in another saddle-backed tamarin. Multiple tubular adeno-carcinomas of the colonic diverticles occurred in an aged rhesus monkey (Macaca mulatta). The findings are discussed in comparison to the situation in man.  相似文献   

17.
Marmosets have reduced second molars of which size and shape are varied in different species. Mesiodistal and buccolingual diameter of the first and second upper molars in 16 species were measured, and molar area (molar rectangle) and M2 reduction index were calculated by the equation,R=(M2 area/M1 area) × 100. This index ranged from 36.1 inSaguinus oedipus geoffroyi to 70.6 which was the largest found inCebuella pygmaea. Species ofSaguinus showed relatively wide variation as well as a consistantly smaller index. The index forCallithrix registered around 60 andLeontopithecus rosalia was positioned within this genus. There was no relationship between this index and body size of each form. The sizes of the first molar and second molar may not significantly correlate either with body size across species, becauseLeontopithecus rosalia had exceptionally large molars for its body size and contrarily genusSaguinus had relatively small molars. When the shape of the mandible was expressed as length/width ratio, the reduction index significantly correlate with this ratio in genusSaguinus andCallithrix, indicating that longer jaw in shape had relatively large M2. The reduction indices of two possible subspecies,S. oedipus geoffroyi andS. o. oedipus, were 36.1 and 47.3, respectively. This difference suggested that there was a difference in diet or function of jaw apparatus beyond subspecies level.  相似文献   

18.
Sequences of dental development and eruption radiographically determined for 160 immature callitrichids were combined with nonontogenetic criteria in an investigation of callitrichid affinities. Marmosets (Callithrix andCebuella) are distinct from tamarins (Leontopithecus andSaguinus) in both sequences of dental ontogeny and nonontogenetic characters.Callimico presents a tamarin-like pattern in its dental ontogeny and overall appearance. A new callitrichid classification which separates marmosets and tamarins into different subfamilies (Callitrichinae, Leontopithecinae and Callimiconinae) is proposed. Dental ontogenetic data suggest that callitrichids are derived platyrrhine taxa.  相似文献   

19.
Summary Movements of the maxilla and mandible were recorded during drinking in the head-fixed pigeon and correlated with electromyographic activity in representative jaw muscle groups. During drinking, each jaw exhibits opening and closing movements along both the dorso-ventral and rostro-caudal axes which may be linked with or independent of each other. All subjects showed small but systematic increases in cycle duration over the course of individual drinking bouts. Cyclic jaw movements during drinking were correlated with nearly synchronous activity in the protractor (levator) of the upper jaw and in several jaw closer muscles, as well as with alternating activity in tongue protractor and retractor muscles. No EMG activity was ever recorded in the lower jaw opener muscle, suggesting that lower jaw opening in this preparation is produced, indirectly, by the contraction of other muscles. The results clarify the contribution of the individual jaws to the generation of gape variations during drinking in this species.Abbreviations AMEM adductor mandibulae externus muscle - DM depressor mandibulae muscle - EMG electromyographic - GENIO geniohyoideus muscle - LB lower beak - LED light-emitting diode - PQP protractor quadrati et pterygoidei muscle - PVL pterygoideus ventralis muscle, pars lateralis - SeH/StH serpihyoideus or stylohyoideus muscle - UB upper beak  相似文献   

20.
Resource distribution shapes many aspects of primate behavioral ecology. Though the spatial patterning of fruits, leaves, and insects has been explored among primate foods, comparatively less is known about exudate distributions. Tree exudates are a renewable resource, provide long-term evidence of exploitation, and may be selectively exploited to manipulate spatial distribution. We assessed the spatial patterning of trees gouged by common marmosets (Callithrix jacchus) to determine if they exhibit a uniform, random, or clumped distribution. We also asked whether marmosets selectively gouge trees in home range centers, which may afford them exclusive access to exudates. We explored whether spatial or physical characteristics of trees predict how intensely gouged trees were exploited. The mean nearest neighbor distance of gouged trees was significantly closer than expected for a random distribution and Ripley’s K-function showed that gouged trees were clumped across all spatial scales in our study area. Clumping may enable marmosets to reduce day and home ranges and facilitate repeated gouging of trees. Gouged trees were not closer to marmosets’ home range centers than peripheries, nor were centrally located trees more intensely gouged. Increased gouging intensity was associated with larger tree circumferences, although this effect was primarily driven by interspecific differences in circumference. Although marmosets may benefit from exploiting clumped exudates, they do not concentrate gouging in areas where they are more likely to gain exclusive access. Species-specific tree characteristics such as exudate quality and/or bark properties may play a larger role in determining gouging patterns than intergroup feeding competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号