首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of hybridoma and recombinant DNA technologies has made it possible to use antibodies against cancer, autoimmune disorders, and infectious diseases in humans. These advances in therapy, as well as immunoprophylaxis, could also make it possible to use these technologies in agricultural species of economic importance such as pigs. Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus causing very important economic losses to the industry. Passive transfer of antibodies obtained by biotechnology could be used in the future to complement or replace vaccination against this and other pig pathogens. To this end, we constructed and studied the properties of chimeric mouse × pig anti‐PRRSV antibodies. We cloned the constant regions of gamma‐1 and gamma‐2 heavy chains and the lambda light chain of pig antibodies in frame with the variable regions of heavy and light chains of mouse monoclonal antibody ISU25C1, which has neutralizing activity against PRRSV. The coding regions for chimeric IgG1 and IgG2 were expressed in a baculovirus expression system. Both chimeric antibodies recognized PRRSV in ELISA as well as in a Western‐blot format and, more importantly, were able to neutralize PRRSV in the same fashion as the parent mouse monoclonal antibody ISU25C1. In addition, we show that both pig IgG1 and IgG2 antibodies could bind complement component C1q, with IgG2 being more efficient than IgG1 in binding C1q. Expressing chimeric pig antibodies with protective capabilities offers a new alternative strategy for infectious disease control in domestic pigs. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

2.
A hybridoma line, C5TN, produced human monoclonal antibody of which light chain had N-linked carbohydrate chain within the variable region. Some molecular-weight variants of light chain of the antibody were produced by C5TN variants resistant to cytotoxic effect of concanavalin A. The variant antibodies significantly altered the original cross-reactivity with antigens or lost the ability of antigen binding. The variants variously trimmed their carbohydrate chains by glycosidases, showed the changed reactivity or acquired the ability to bind for antigens. The carbohydrate-deficient antibodies from tunicamycin-treated C5TN and the variant clones behaved in a similar manner on antigen-binding reactivity. Furthermore, comparison of antibodies of which light chains have carbohydrate chains sensitive and resistant to some glycosidases showed that carbohydrate chain in variable region of light chain can influence their reactivity with antigen.  相似文献   

3.
Aims: To determine inactivation profiles of three human norovirus (NoV) surrogate viruses and coliphage MS2 by ultraviolet (UV) irradiation and the protective effect of cell association on UV inactivation. Methods and Results: The inactivation rate for cell‐free virus or intracellular echovirus 12 was determined by exposure to 254‐nm UV light at fluence up to 100 mJ cm?2. The infectivity of murine norovirus (MNV), feline calicivirus (FCV) and echovirus 12 was determined by cell culture infectivity in susceptible host cell lines, and MS2 infectivity was plaque assayed on Escherichia coli host cells. The UV fluencies to achieve 4‐log10 inactivation were 25, 29, 30 and 70 (mJ cm?2) for cell‐free FCV, MNV, echovirus 12 and MS2, respectively. However, a UV fluence of 85 mJ cm?2 was needed to inactivate intracellular echovirus 12 by 4 log10. Conclusions: Murine norovirus and echoviruses 12 are more conservative surrogates than FCV to predict the UV inactivation response of human NoV. Intracellular echovirus 12 was 2·8‐fold more resistant to UV irradiation than cell‐free one. Significance and Impact of the Study: Variation in UV susceptibilities among NoV surrogate viruses and a likely protective effect of cell association on virus susceptibility to UV irradiation should be considered for effective control of human NoV in water.  相似文献   

4.
Monoclonal antibodies specific for herpes simplex virus type 1 (HSV-1) glycoproteins were used to demonstrate that HSV undergoes mutagen-induced and spontaneous antigenic variation. Hybridomas were produced by polyethylene glycol-mediated fusion of P3-X63-Ag8.653 myeloma cells with spleen cells from BALB/c mice infected with HSV-1 (strain KOS). Hybrid clones were screened for production of HSV-specific neutralizing antibody. The glycoprotein specificities of the antibodies were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoprecipitates of radiolabeled infected-cell extracts. Seven hybridomas producing antibodies specific for gC, one for gB, and one for gD were characterized. All antibodies neutralized HSV-1 but not HSV-2. Two antibodies, one specific for gB and one specific for gC, were used to select viral variants resistant to neutralization by monoclonal antibody plus complement. Selections were made from untreated and bromodeoxyuridine- and nitrosoguanidine-mutagenized stocks of a plaque-purified isolate of strain KOS. After neutralization with monoclonal antibody plus complement, surviving virus was plaque purified by plating at limiting dilution and tested for resistance to neutralization with the selecting antibody. The frequency of neutralization-resistant antigenic variants selected with monoclonal antibody ranged from 4 X 10(-4) in nonmutagenized stocks to 1 X 10(-2) in mutagenized stocks. Four gC and four gB antigenic variants were isolated. Two variants resistant to neutralization by gC-specific antibodies failed to express gC, accounting for their resistant phenotype. The two other gC antigenic variants and the four gB variants expressed antigenically altered glycoproteins and were designated monoclonal-antibody-resistant, mar, mutants. The two mar C mutants were tested for resistance to neutralization with a panel of seven gC-specific monoclonal antibodies. The resulting patterns of resistance provided evidence for at least two antigenic sites on glycoprotein gC.  相似文献   

5.
Monoclonal antibodies can be effective therapeutics against a variety of human diseases, but currently marketed antibody‐based drugs are very expensive compared to other therapeutic options. Here, we show that the eukaryotic green algae Chlamydomonas reinhardtii is capable of synthesizing and assembling a full‐length IgG1 human monoclonal antibody (mAb) in transgenic chloroplasts. This antibody, 83K7C, is derived from a human IgG1 directed against anthrax protective antigen 83 (PA83), and has been shown to block the effects of anthrax toxin in animal models. Here we show that 83K7C heavy and light chain proteins expressed in the chloroplast accumulate as soluble proteins that assemble into complexes containing two heavy and two light chain proteins. The algal‐expressed 83K7C binds PA83 in vitro with similar affinity to the mammalian‐expressed 83K7C antibody. In addition, a second human IgG1 and a mouse IgG1 were also expressed and shown to properly assemble in algal chloroplast. These results show that chloroplasts have the ability to fold and assemble full‐length human mAbs, and suggest the potential of algae as a platform for the cost effective production of complex human therapeutic proteins. Biotechnol. Bioeng. 2009; 104: 663–673 © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Antibodies against hexon, the major coat protein of adenovirus (Ad), are an important component of the neutralizing activity in serum from naturally infected humans and experimentally infected animals. The mechanisms by which antihexon antibodies neutralize the virus have not been defined. As a model system, murine monoclonal antibodies raised against Ad type 5 (Ad5) were screened for antihexon binding and neutralization activity; one monoclonal antibody, designated 9C12, was selected for further characterization. The minimum ratio of 9C12 to Ad5 required for neutralization was 240 antibody molecules per virus particle, or 1 antibody per hexon trimer. Analysis of antibody-virus complexes by dynamic light scattering and negative-stain electron microscopy (EM) showed that the virus particles were coated with electron-dense material but not aggregated at neutralizing ratios. Cryo-EM image reconstruction of the antibody-virus complex showed that the surface of the virus particle was covered by a meshwork of 9C12 antibody density, consistent with bivalent binding at multiple sites. Confocal analysis revealed that viral attachment, cell entry, and intracellular transport to the nuclear periphery still occur in the presence of neutralizing levels of 9C12. A model is presented for neutralization of Ad by an antihexon antibody in which the hexon capsid is cross-linked by antibodies, thus preventing virus uncoating and nuclear entry of viral DNA.  相似文献   

7.
Nine isolates of infectious hematopoietic necrosis virus (IHNV) from three different species of Alaskan salmonids were examined for in vitro growth characteristics, the molecular weight of virion polypeptides, and serologic response to four different monoclonal antibodies developed against IHNV. The results of this study suggest that, although serologically similar, three antigenic variants of IHNV may be present in Alaska. All nine viruses were neutralized by the monoclonal antibody RB/B5. However, the viruses could be divided into three sub-groups based on the ability or inability to react with the monoclonal antibodies 193–110/B4 and NR-2. The growth characteristics of all nine viruses were similar enough to suggest there was no significant difference in phenotypes among these viruses. The molecular weights of the viral polypeptides were similar in that all had a glycoprotein (G) of 66 kd, a nucleocapsid (N) protein of 42 kd, ana a polymerase (L) of 180 kd molecular weight.  相似文献   

8.
We have constructed a humanized antibody with specificity for the pre-S2 surface antigen of hepatitis B virus (HBV) by grafting the complementarity determining regions (CDRs) of parental murine monoclonal antibody (mAb) into human anti-Sm antibody framework regions. The humanized antibody has a substitution at position 94 in a framework region of the heavy chain variable region, and exhibits the same antigen binding affinity as the parental murine monoclonal and chimeric antibodies. In order to assess the stability of these antibodies, thermal inactivation of the parental, chimeric and humanized antibodies was analyzed. Fifty percent inactivation of the chimeric and humanized antibodies was observed at 63.7 degrees C and 68.7 degrees C, respectively, compared to 55.0 degrees C for murine antibody. The humanized antibody also exhibited increased stability against denaturant. Guanidine-induced unfolding monitored by the changes in fluorescence intensity at 360 nm showed that midpoints of the transition of the chimeric and humanized antibodies were 2.47 M and 2.56 M, respectively, whereas that of the murine antibody was 1.36 M.  相似文献   

9.
The existence of multiple variants with differences in either charge, molecular weight or other properties is a common feature of monoclonal antibodies. These charge variants are generally referred to as acidic or basic compared with the main species. The chemical nature of the main species is usually well-understood, but understanding the chemical nature of acidic and basic species, and the differences between all three species, is critical for process development and formulation design. Complete understanding of acidic and basic species, however, is challenging because both species are known to contain multiple modifications, and it is likely that more modifications may be discovered. This review focuses on the current understanding of the modifications that can result in the generation of acidic and basic species and their affect on antibody structure, stability and biological functions. Chromatography elution profiles and several critical aspects regarding fraction collection and sample preparations necessary for detailed characterization are also discussed.  相似文献   

10.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ x cm-2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4',6'-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ x cm-2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ x cm-2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ x cm-2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

11.
《MABS-AUSTIN》2013,5(5):578-585
The existence of multiple variants with differences in either charge, molecular weight or other properties is a common feature of monoclonal antibodies. These charge variants are generally referred to as acidic or basic compared with the main species. The chemical nature of the main species is usually well-understood, but understanding the chemical nature of acidic and basic species, and the differences between all three species, is critical for process development and formulation design. Complete understanding of acidic and basic species, however, is challenging because both species are known to contain multiple modifications, and it is likely that more modifications may be discovered. This review focuses on the current understanding of the modifications that can result in the generation of acidic and basic species and their affect on antibody structure, stability and biological functions. Chromatography elution profiles and several critical aspects regarding fraction collection and sample preparations necessary for detailed characterization are also discussed.  相似文献   

12.
During a small‐scale cell culture process producing a monoclonal antibody, a larger than expected difference was observed in the charge variants profile of the harvested cell culture fluid (HCCF) between the 2 L and larger scales (e.g., 400 L and 12 kL). Small‐scale studies performed at the 2 L scale consistently showed an increase in acidic species when compared with the material made at larger scale. Since the 2 L bioreactors were made of clear transparent glass while the larger scale reactors are made of stainless steel, the effect of ambient laboratory light on cell culture process in 2 L bioreactors as well as handling the HCCF was carefully evaluated. Photoreactions in the 2 L glass bioreactors including light mediated increase in acidic variants in HCCF and formulation buffers were identified and carefully analyzed. While the acidic variants comprised of a mixture of sialylated, reduced disulfide, crosslinked (nonreducible), glycated, and deamidated forms, an increase in the nonreducible forms, deamidation and Met oxidation was predominantly observed under light stress. The monoclonal antibody produced in glass bioreactors that were protected from light behaved similar to the one produced in the larger scale. Our data clearly indicate that care should be taken when glass bioreactors are used in cell culture studies during monoclonal antibody production. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:562–570, 2014  相似文献   

13.
Four hybridoma cell lines producing monoclonal antibodies against intact polyoma virions were produced and characterized. These antibodies were selected for their ability to react with polyoma virions in an enzyme-linked immunosorbent assay. The antibodies immunoprecipitated polyoma virions and specifically recognized the major capsid protein VP1 on an immunoblot. Distinct VP1 isoelectric species were immunoprecipitated from dissociated virion capsomere preparations. Two-dimensional gel electrophoresis demonstrated antibody reactivity with specific VP1 species. Monoclonal antibodies E7 and G9 recognized capsomeres containing VP1 species D, E, and F, while monoclonal antibodies C10 and D3 recognized capsomeres containing species B and C. Two of the monoclonal antibodies, E7 and G9, were capable of neutralizing viral infection and inhibiting hemagglutination. The biological activity of the monoclonal antibodies correlated well with the biological function of the species with which they reacted.  相似文献   

14.
Phage display method was used to clone anti‐carbofuran (CBF) single chain Fv (scFv) gene. The heavy chain and light chain variable region genes were amplified by the polymerase chain reaction from the CBF‐specific hybridoma cell lines 5D3 and assembled as a scFv DNA fragment with linker peptide (Gly4Ser)3. The scFv DNA fragment was cloned into M13 phagemid vector pCANTAB5E and the anti‐CBF antibody libraries were then constructed. After one round of panning with CBF‐ovalbumin (CBF‐OVA) as a conjugate, antigen‐binding positive recombinant phage clones were successfully selected by enzyme‐linked immunosorbent assay (ELISA). The positive phages were used to infect Escherichia coli HB2151 cells and the expression of the soluble scFv antibodies was then induced by IPTG. The scFv antibody was about 31 kDa by SDS‐PAGE and showed HRP‐anti‐E‐tag antibody‐recognized activity by Western blotting. The indirect competitive ELISA (icELISA) showed that the recombinant scFv antibody could competitively combine with CBF, with the IC50 value of 1.07 ng/mL. The cross reactivity studies showed that the anti‐CBF scFv antibody, similar to the parent monoclonal antibody, poses high specificity to CBF and has little reactivity to the analogs. Taken together, these findings suggest that the recombinant scFv antibody can be used for further developing immunoassay method for CBF. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

15.
IgG2 subclass antibodies have unique properties that include low effector function and a rigid hinge region. Although some IgG2 subclasses have been clinically tested and approved for therapeutic use, they have a higher propensity than IgG1 for aggregation, which can curtail or abolish their biological activity and enhance their immunogenicity. In this regard, acid‐induced aggregation of monoclonal antibodies during purification and virus inactivation must be prevented. In the present study, we replaced the constant domain of IgG2 with that of IgG1, using anti‐2,4‐dinitrophenol (DNP) IgG2 as a model antibody, and investigated whether that would confer greater stability. While the anti‐DNP IgG2 antibody showed significant aggregation at low pH, this was reduced for the IgG2 antibody containing the IgG1 CH2 domain. Substituting three amino acids within the CH2 domain—namely, F300Y, V309L, and T339A (IgG2_YLA)—reduced aggregation at low pH and increased CH2 transition temperature, as determined by differential scanning calorimetric analysis. IgG2_YLA exhibited similar antigen‐binding capacity to IgG2, low affinity for FcγRIIIa, and low binding ability to C1q. The same YLA substitution also reduced the aggregation of panitumumab, another IgG2 antibody, at low pH. Our engineered human IgG2 antibody showed reduced aggregation during bioprocessing and provides a basis for designing improved IgG2 antibodies for therapeutic applications.  相似文献   

16.

Aims

An extra‐long‐range quantitative PCR (LR‐qPCR) method was developed for estimating genome damage to adenovirus 2 caused by UV irradiation. The objective was to use LR‐qPCR as a rapid method to determine adenovirus UV inactivation.

Methods

The LR‐qPCR consisted of two steps: a long‐range PCR (up to 10 kb fragment) and a real‐time, quantitative (q) PCR for quantifying the products of the first PCR. We evaluated LR‐qPCR with adenovirus irradiated with medium‐pressure (MP, polychromatic emission) and low‐pressure (LP, 254 nm) mercury vapour lamps and compared results with cell culture infectivity.

Results

Using LR‐qPCR, a fragment of 6 kb estimated DNA damage in a linear relationship to doses between 0 and 20 mJ cm?2, and a 1‐kb fragment related linearly to doses between 20 and 100 mJ cm?2. The LR‐qPCR results for the 6‐kb fragment were similar to infectivity assays results for adenovirus exposed to MP UV. For adenovirus irradiated with LP lamps, LR‐qPCR results for the shorter fragment size (1 kb) were similar to reduction in viral infectivity. No difference was observed between 10 and 6 kb LR‐qPCR results.

Conclusion

The LR‐qPCR can be used as a tool for estimating DNA damage caused by UV in adenovirus. The LR‐qPCR results were related to reduction in viral infectivity.

Significance and Impact of the Study

The use of LR‐qPCR to determine DNA damage and estimate inactivation of adenovirus 2 from UV disinfection allows for same‐day results compared with >7 days required for cell culture. This accelerates adenovirus inactivation results for the water industry where adenovirus is used as a representative virus for crediting UV systems. This PCR approach provides a framework that can be used for other viral viability assays using the inhibition of amplification of viral nucleic acid after pretreatments, such as propidium monoazide, and for cellular biology studies of DNA damage.  相似文献   

17.
There is an urgent need for effective therapeutic interventions against SARS-CoV-2, including new variants that continue to arise. Neutralizing monoclonal antibodies have shown promise in clinical studies. We investigated the therapeutic efficacy of a combination of two potent monoclonal antibodies, C135-LS and C144-LS that carry half-life extension mutations, in the rhesus macaque model of COVID-19. Twelve young adult macaques (three groups of four animals) were inoculated intranasally and intra-tracheally with a high dose of SARS-CoV-2 and 24 hours later, treated intravenously with a high (40 mg/kg) or low (12 mg/kg) dose of the C135-LS and C144-LS antibody combination, or a control monoclonal antibody. Animals were monitored for 7 days. Compared to the control animals, animals treated with either dose of the anti-SARS-CoV-2 antibodies showed similarly improved clinical scores, lower levels of virus replication in upper and lower respiratory tract, and significantly reduced interstitial pneumonia, as measured by comprehensive lung histology. In conclusion, this study provides proof-of-concept in support of further clinical development of these monoclonal antibodies against COVID-19 during early infection.  相似文献   

18.
The binding of programmed death ligand 1 protein (PD‐L1) to its receptor programmed death protein 1 (PD‐1) mediates immunoevasion in cancer and chronic viral infections, presenting an important target for therapeutic intervention. Several monoclonal antibodies targeting the PD‐L1/PD‐1 signaling axis are undergoing clinical trials; however, the epitopes of these antibodies have not been described. We have combined orthogonal approaches to localize and characterize the epitope of a monoclonal antibody directed against PD‐L1 at good resolution and with high confidence. Limited proteolysis and mass spectrometry were applied to reveal that the epitope resides in the first immunoglobulin domain of PD‐L1. Hydrogen–deuterium exchange mass spectrometry (HDX‐MS) was used to identify a conformational epitope comprised of discontinuous strands that fold to form a beta sheet in the native structure. This beta sheet presents an epitope surface that significantly overlaps with the PD‐1 binding interface, consistent with a desired PD‐1 competitive mechanism of action for the antibody. Surface plasmon resonance screening of mutant PD‐L1 variants confirmed that the region identified by HDX‐MS is critical for the antibody interaction and further defined specific residues contributing to the binding energy. Taken together, the results are consistent with the observed inhibitory activity of the antibody on PD‐L1‐mediated immune evasion. This is the first report of an epitope for any antibody targeting PD‐L1 and demonstrates the power of combining orthogonal epitope mapping techniques. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Hatching success was examined under exposure to solar ultraviolet radiation (UVR) using filters to give three different light conditions [C1: UV‐B, UV‐A and photosynthetically active radiation (PAR), C2: UV‐A and PAR, C3: PAR] in red Pagrus major and black Acanthopagrus schlegeli sea bream. Hatching rate of both species was reduced by an exposure over a 2 day period to UVR and was not significantly different between two species under the three light conditions.  相似文献   

20.
The SARS-CoV-2 pandemic highlights the need for a detailed molecular understanding of protective antibody responses. This is underscored by the emergence and spread of SARS-CoV-2 variants, including Alpha (B.1.1.7) and Delta (B.1.617.2), some of which appear to be less effectively targeted by current monoclonal antibodies and vaccines. Here we report a high resolution and comprehensive map of antibody recognition of the SARS-CoV-2 spike receptor binding domain (RBD), which is the target of most neutralizing antibodies, using computational structural analysis. With a dataset of nonredundant experimentally determined antibody-RBD structures, we classified antibodies by RBD residue binding determinants using unsupervised clustering. We also identified the energetic and conservation features of epitope residues and assessed the capacity of viral variant mutations to disrupt antibody recognition, revealing sets of antibodies predicted to effectively target recently described viral variants. This detailed structure-based reference of antibody RBD recognition signatures can inform therapeutic and vaccine design strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号