首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electric field strength values calculated by wave propagation modeling were applied as an exposure metric in a case–control study conducted in Germany to investigate a possible association between radio frequency electromagnetic fields (RF‐EMF) emitted from television and radio broadcast transmitters and the risk of childhood leukemia. To validate this approach it was examined at 850 measurement sites whether calculated RF‐EMF are an improvement to an exposure proxy based on distance from the place of residence to a transmitter. Further, the agreement between measured and calculated RF‐EMF was explored. For dichotomization at the 90% quantiles of the exposure distributions it was found that distance agreed less with measured RF‐EMF (Kappa coefficient: 0.55) than did calculated RF‐EMF (Kappa coefficient: 0.74). Distance was a good exposure proxy for a single transmitter only which uses the frequency bands of amplitude modulated radio, whereas it appeared to be of limited informative value in studies involving several transmitters, particularly if these are operating in different frequency bands. The analysis of the agreement between calculated RF‐EMF and measured RF‐EMF showed a sensitivity of 76.6% and a specificity of 97.4%, leading to an exposure misclassification that still allows one to detect a true odds ratio as low as 1.4 with a statistical power of >80% at a two‐sided significance level of 5% in a study with 2,000 cases and 6,000 controls. Thus, calculated RF‐EMF is confirmed to be an appropriate exposure metric in large‐scale epidemiological studies on broadcast transmitters. Bioelectromagnetics 30:81–91, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
Previous investigations of exposure to electric, magnetic, or electromagnetic fields (EMF) in households were either about electricity supply EMFs or radio frequency EMFs (RF‐EMFs). We report results from spot measurements at the bedside that comprise electrostatic fields, extremely low‐frequency electric fields (ELF‐EFs), extremely low‐frequency magnetic fields (ELF‐MFs), and RF‐EMFs. Measurements were taken in 226 households throughout Lower Austria. In addition, effects of simple reduction measures (e.g., removal of clock radios or increasing their distance from the bed, turning off Digital Enhanced Cordless Telecommunication (DECT) telephone base stations) were assessed. All measurements were well below International Commission on Non‐Ionizing Radiation Protection (ICNIRP) guideline levels. Average night‐time ELF‐MFs (long‐term measurement from 10 pm to 6 am, geometric mean over households) above 100 nT were obtained in 2.3%, and RF‐EMFs above 1000 µW/m2 in 7.1% of households. Highest ELF‐EFs were primarily due to lamps beside the bed (max = 166 V/m), and highest ELF‐MFs because of transformers of devices (max = 1030 nT) or high current of power lines (max = 380 nT). The highest values of RF‐EMFs were caused by DECT telephone base stations (max = 28979 µW/m2) and mobile phone base stations (max = 4872 µW/m2). Simple reduction measures resulted in an average decrease of 23 nT for ELF‐MFs, 23 V/m for ELF‐EFs, and 246 µW/m2 for RF‐EMFs. A small but statistically significant correlation between ELF‐MF exposure and overall RF‐EMF levels of R = 0.16 (P = 0.008) was computed that was independent of type (flat, single family) and location (urban, rural) of houses. Bioelectromagnetics 31:200–208, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
From 2013 to 2018, in‐situ measurements of radiofrequency (RF) electromagnetic fields (EMF) and extremely low‐frequency (ELF) electric and magnetic fields in 317 existing and under‐construction children's playground facilities, in 16 municipalities all over Greece, were carried out by the Greek Atomic Energy Commission (EEAE). These measurements were conducted following legislative framework established in 2009, which requires that compliance with the established exposure limits for EMFs should be verified in playground areas. The results are presented by the value of the electric field (E) and exposure ratio (Λ) for the RF EMF, as well as the value of the electric field (E) and magnetic flux density (B) for the ELF electric and magnetic fields. Statistical analysis tools were applied on measurement data and conclusions have been made, taking into consideration: (i) environment type (urban/suburban), and (ii) vicinity to any transmitting installations. Measurement results correspond to the typical EMF background levels for each environment type. Concerning the environment type, RF EMF, and ELF electric/magnetic field measurements reveal no differentiation between urban and suburban environments. Bioelectromagnetics. 2019;40:602–605. © 2019 Bioelectromagnetics Society.  相似文献   

4.
The electromagnetic fields (EMF) are ubiquitous. The base transceiver station (BTS) and mobile phones (MPs) contribute to the generation of EMF around their locations and are regarded as important sources of non-ionizing radiations. The use of mobile phone has increased dramatically in recent years so also the skepticism regarding its effects. In this review, we have made an attempt to scan the key research papers those aimed at elucidating the effects of EMF starting from extreme low frequency (ELF) to radio frequency (RF) through low frequency (LF). We have selected papers that dealt with the effects of radiations emanating from the BTS and MPs on human sleep, circadian rhythm, and cognition. Mostly, we have concentrated on papers published in the last 15 years. We came across conflicting reports. The findings reported in many papers suggest that the exposure to EMF has potentiality to compromise parameters related to sleep quality; in contrast, there are several reports those have given a clean sheet to the EMF exposure. The effects of EMF on circadian rhythms also remain inconclusive. The EMF exposure while did not produce any effect on circadian rhythm of heart rate and blood chemistry, it modulated the rhythms in cortisol and melatonin characterized by a decline in their 24-h circulating levels. The effects of exposure to EMF on cognitive parameters, like performance and memory, are also equivocal. The existing contradictory findings could be attributed to inter-individual variability in tolerance, gender-, and age-dependent differences in response, latitudinal differences in efficacy, variability among employed methodologies and differences in specific absorption rate, frequency of the mobile phone usage, and interaction of EMF with other physiological and environmental factors, among others. The future research should be carried out with added focus on elucidating the modulatory effects of these factors to put an end to the existing controversies on the biological effects of low/RF EMF radiations.  相似文献   

5.
The present study investigated the possible effects of the electromagnetic field (EMF) emitted by an ordinary GSM mobile phone (902.4 MHz pulsed at 217 Hz) on brainstem auditory processing. Auditory brainstem responses (ABR) were recorded in 17 healthy young adults, without a mobile phone at baseline, and then with a mobile phone on the ear under EMF‐off and EMF‐on conditions. The amplitudes, latencies, and interwave intervals of the main ABR components (waves I, III, V) were compared among the three conditions. ABR waveforms showed no significant differences due to exposure, suggesting that short‐term exposure to mobile phone EMF did not affect the transmission of sensory stimuli from the cochlea up to the midbrain along the auditory nerve and brainstem auditory pathways. Bioelectromagnetics 31:48–55, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Use of the third generation mobile phone system is increasing worldwide. This is the first study to investigate the effects of the third generation system on regional cerebral blood flow (rCBF) in humans. We compared effects of the electromagnetic field (EMF) emitted from the Wideband Code Division Multiple Access (W‐CDMA) cellular system versus sham control exposure on rCBF in humans. Nine healthy male volunteers participated in this study. Positron emission tomography (PET) scans were obtained before, during, and after unilateral 30 min EMF exposure. The subtraction analysis revealed no significant rCBF changes caused by the EMF conditions compared with the sham exposure, suggesting that EMF emitted by a third generation mobile phone does not affect rCBF in humans. Bioelectromagnetics 30:536–544, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Population lives under new electromagnetic conditions: constant round-the-clock compulsory chronic exposure of all groups of population to modulated wide spectrum of EMF RF during the work of base stations of mobile communication; daily and lifelong (from childhood) exposure of the brain to EMF RF of the mobile phone. Effects of exposure to EMF RF of low levels are presented. Results of research into chronic EMF RF exposure are absent. International recommendations and domestic guidelines do not take into account the changing conditions of EMF RF influence on the population: the brain has become a critical body, and children have been included in the risk group. Population actively continues to use mobile communication. In this situation estimation of the risks from mobile communication has become a social and ethical problem.  相似文献   

8.
The debate as to whether low-level electromagnetic fields can affect biological systems and in the long term cause health effects has been going on for a long time. Yet the interaction of weak electromagnetic fields (EMF) with living cells, undoubtedly a most important phenomenon, is still not well understood. The exact mechanisms by which the effects are produced have not been identified. Furthermore, it is not possible to clearly define which aspects of an EMF exposure that constitute the “dose.” One of the groups that contributed to solving this problem is the Bioelectromagnetics group at Catholic University of America (CUA), Washington, D.C. Their work has been devoted to investigating the physical parameters that are needed to obtain an effect of EMF exposure on biological systems, and also how to inhibit the effect. This is a review of their work on bioeffects caused by low-level EMF, their dependence on coherence time, constancy, spatial averaging, and also how the effects can be modified by an applied ELF noise magnetic field. The group has been using early chick embryos, and L929 and Daudi cells as their main experimental systems. The review also covers the work of other groups on low-level effects and the inhibition of the effects with an applied noise field. The group at CUA has shown that biological effects can be found after exposure to low-level ELF and RF electromagnetic fields, and when effects are observed, applying an ELF magnetic noise field inhibits the effects. Also, other research groups have tried to replicate the studies from the CUA group, or to apply EMF noise to suppress EMF-induced effects. Replications of the CUA effects have not always been successful. However, in all cases where the noise field has been applied to prevent an observed effect, it has been successful in eliminating the effect.  相似文献   

9.
Epidemiological studies related to radiofrequency (RF) electromagnetic fields (EMF) have mainly used crude proxies for exposure, such as job titles, distance to, or use of different equipment emitting RF EMF. The Royal Norwegian Navy (RNoN) has measured RF field emitted from high‐frequency antennas and radars on several spots where the crew would most likely be located aboard fast patrol boats (FPB). These boats are small, with short distance between the crew and the equipment emitting RF field. We have described the measured RF exposure aboard FPB and suggested different methods for calculations of total exposure and annual dose. Linear and spatial average in addition to percentage of ICNIRP and squared deviation of ICNIRP has been used. The methods will form the basis of a job exposure matrix where relative differences in exposure between groups of crew members can be used in further epidemiological studies of reproductive health. Bioelectromagnetics 31:350–360, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
In 2004, when WHO organized a workshop on children's sensitivity to electromagnetic fields, very few studies on radiofrequency fields were available. With the recent increase in mobile phone use among children and adolescents, WHO has identified studies on health effects in this age-group as a high priority research area. There are no empirical data supporting the notion that children and adolescents are more susceptible to RF exposure, but the number of studies is still relatively small. There are a few cross-sectional studies on well-being, cognitive effects and behavioral problems, and some cohort studies, mainly of maternal use of mobile phones during pregnancy. Cancer outcomes have been studied in relation to environmental RF exposure, e.g. from transmitters, and only one study on mobile phone use in children and adolescents and brain tumor risk has been published. Several methodological limitations need to be taken into consideration when interpreting the findings of the epidemiological studies. The cross-sectional design does not allow determination of the temporal sequence of exposure and outcome, and for several outcomes there is a large potential for reversed causality, i.e. that the outcome causes an increased RF exposure rather than the opposite. Biases such as recall errors in self-reported mobile phone use, lack of confounding control, e.g. of other aspects of mobile phone use than RF fields, trained behaviors, and pubertal development, makes causal interpretations impossible. Future studies need to include prospectively collected exposure information, incident outcomes, and proper confounding control. Monitoring of brain tumor incidence trends is strongly recommended.  相似文献   

11.
The results of studies on possible effects of radiofrequency electromagnetic fields (RF‐EMFs) on human waking electroencephalography (EEG) have been quite heterogeneous. In the majority of studies, changes in the alpha‐frequency range in subjects who were exposed to different signals of mobile phone‐related EMF sources were observed, whereas other studies did not report any effects. In this review, possible reasons for these inconsistencies are presented and recommendations for future waking EEG studies are made. The physiological basis of underlying brain activity, and the technical requirements and framework conditions for conducting and analyzing the human resting‐state EEG are discussed. Peer‐reviewed articles on possible effects of EMF on waking EEG were evaluated with regard to non‐exposure‐related confounding factors. Recommendations derived from international guidelines on the analysis and reporting of findings are proposed to achieve comparability in future studies. In total, 22 peer‐reviewed studies on possible RF‐EMF effects on human resting‐state EEG were analyzed. EEG power in the alpha frequency range was reported to be increased in 10, decreased in four, and not affected in eight studies. All reviewed studies differ in several ways in terms of the methodologies applied, which might contribute to different results and conclusions about the impact of EMF on human resting‐state EEG. A discussion of various study protocols and different outcome parameters prevents a scientifically sound statement on the impact of RF‐EMF on human brain activity in resting‐state EEG. Further studies which apply comparable, standardized study protocols are recommended. Bioelectromagnetics. 2019;40:291–318. © 2019 The Authors. Bioelectromagnetics Published by Wiley Periodicals, Inc.  相似文献   

12.
13.
Electric, magnetic, and electromagnetic fields are ubiquitous in our society, and concerns have been expressed regarding possible adverse effects of these exposures. Research on Extremely Low-Frequency (ELF) magnetic fields has been performed for more than two decades, and the methodology and quality of studies have improved over time. Studies have consistently shown increased risk for childhood leukemia associated with ELF magnetic fields. There are still inadequate data for other outcomes. More recently, focus has shifted toward Radio Frequencies (RF) exposures from mobile telephony. There are no persuasive data suggesting a health risk, but this research field is still immature with regard to the quantity and quality of available data. This technology is constantly changing and there is a need for continued research on this issue. To investigate whether exposure to high-frequency electromagnetic fields (EMF) could induce adverse health effects, we cultured acute T-lymphoblastoid leukemia cells (CCRF-CEM) in the presence of 900?MHz MW-EMF generated by a transverse electromagnetic (TEM) cell at short and long exposure times. We evaluated the effect of high-frequency EMF on gene expression and we identified functional pathways influenced by 900?MHz MW-EMF exposure.  相似文献   

14.
We estimate that there are about 100,000 workers from different disciplines, such as radiographers, nurses, anesthetists, technicians, engineers, etc., who can be exposed to substantial electromagnetic fields (compared to normal background levels) around magnetic resonance imaging (MRI) scanners. There is a need for well‐designed epidemiological studies of MRI workers but since the exposure from MRI equipment is a very complex mixture of static magnetic fields, switched gradient magnetic fields, and radiofrequency electromagnetic fields (RF EMF), it is necessary to discuss how to assess the exposure in epidemiological studies. As an alternative to the use of job title as a proxy of exposure, we propose an exposure categorization for the different professions working with MRI equipment. Specifically, we propose defining exposure in three categories, depending on whether people are exposed to only the static field, to the static plus switched gradient fields or to the static plus switched gradient plus RF fields, as a basis for exposure assessment in epidemiological studies. Bioelectromagnetics 34:81–84, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Organisms are exposed to electromagnetic fields from the introduction of wireless networks that send information all over the world. In this study we examined the impact of exposure to the fields from mobile phone base stations (GSM 900?MHz) on the reproductive capacity of small, virgin, invertebrates. A field experiment was performed exposing four different invertebrate species at different distances from a radiofrequency electromagnetic fields (RF EMF) transmitter for a 48-h period. The control groups were isolated from EMF exposure by use of Faraday cages. The response variables as measured in the laboratory were fecundity and number of offspring. Results showed that distance was not an adequate proxy to explain dose-response regressions. No significant impact of the exposure matrices, measures of central tendency and temporal variability of EMF, on reproductive endpoints was found. Finding no impact on reproductive capacity does not fully exclude the existence of EMF impact, since mechanistically models hypothesizing non-thermal-induced biological effects from RF exposure are still to be developed. The exposure to RF EMF is ubiquitous and is still increasing rapidly over large areas. We plea for more attention toward the possible impacts of EMF on biodiversity.  相似文献   

16.
Are environmental electromagnetic fields genotoxic?   总被引:3,自引:0,他引:3  
Crumpton MJ  Collins AR 《DNA Repair》2004,3(10):1385-1387
Long-term exposure to extremely-low-frequency electromagnetic fields (ELF EMFs) greater than 0.4 microT has been linked, by epidemiological studies, to a small elevated risk of childhood leukaemia. Laboratory-based experiments have been claimed to show that ELF EMFs induce a variety of biological responses, although these claims are controversial. Recent experiments by Ivancsits et al. [Mutat. Res. 519 (2002) 1; Int. Arch. Occup. Environ. Health 76 (2003) 431; Mech. Age. Dev. 124 (2003) 847; H.W. Rüdiger, S. Ivancsits, E. Diem, O. Jahn, Genotoxic effects of ELF-EMF on human cells in vitro, Bioelectromagnetics Society 25th Annual Meeting, Maui, USA, 2003] suggest that ELF EMFs are genotoxic, on the basis of observations that intermittent exposures induce single-strand breaks (SSB) and double-strand DNA breaks (DSB) in the DNA of cultured human fibroblasts. The implications of these findings are discussed.  相似文献   

17.
A large number of epidemiologic studies examining the potential effect of residential exposure to extremely-low frequency (ELF) magnetic fields and childhood leukemia have been published. Two pooled analyses [Ahlbom A, Day N, Feychting M, Roman E, Skinner J, Dockerty J, Linet M, et al. (2000). A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer. 83(5):692–698; Greenland S, Sheppard AR, Kaune WT, Poole C, Kelsh AM (2000). A pooled analysis of magnetic fields, wire codes, and childhood leukemia. Epidemiology. 11(6):624–634], which included the major epidemiologic studies on ELF magnetic fields and childhood leukemia showed twofold increase in childhood leukemia risk in association with residential ELF exposure above 0.3–0.4 μT. Based on “limited” epidemiologic evidence linking ELF exposure to childhood leukemia and “inadequate evidence” for carcinogenicity of ELF in rodent bioassays, the International Agency for Research on Cancer (IARC) classified ELF magnetic fields as a possible human carcinogen (2B classification) [International Agency for Research on Cancer (IARC) (2002). Non-ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 80. IARC Press: Lyon], confirmed by WHO on the basis of studies published after 2000 [World Health Organization. Extremely low frequency fields. In: 238 Environmental health criteria, Geneva: WHO; 2007]. The analysis of more recent studies of ELF magnetic fields and childhood leukemia had small findings and propose methodological improvements concerning the uncertainties in epidemiological approaches and exposure assessment, bias in selection of controls [Kheifets L, Oksuzyan S (2008). Exposure assessment and other challenges in non-ionizing radiation studies of childhood leukaemia. Radiat Prot Dosimetry. 132(2):139–147]. By the end of 2010, 37 countries had been identified for possible participation in the International study TRANSEXPO. The pilot work has been completed in five countries (Finland, Hungary, Israel, Switzerland and Bulgaria). In 2008, Bulgaria through the National Centre of Public Health Protection joined with pilot study in TRANSEXPO Project. At this first stage of the project our investigation was directed to performing measurements in dwellings with built-in transformer stations, collecting data of population and cancer registry and choosing the epidemiology design feasible for continuing the project. Taking into account the available sources of information in Bulgaria (different registers of the population) needed for epidemiological approach, it was found that the most appropriate epidemiology design would be the nested case-control study. Control group could be collected in accordance with the international requirements for such epidemiological studies. This approach could be modified in the course of the further study in order to ensure achievement of the purposes of the main international requirements of the study.  相似文献   

18.
Buildings with indoor transformer stations may serve as a basis for improved epidemiological studies on the health effects of extremely low-frequency magnetic fields (ELF MFs). Previous studies have shown that ELF MF exposure can be adequately assessed based on the fact that MF levels are high in apartments directly above transformers. In this paper, we describe the creation of a registry of Finnish residential buildings with built-in transformer stations and discuss its usability in epidemiological studies. Information obtained from electric utilities and building blueprints were used to identify 677 buildings in which an apartment was located above or adjacent to a transformer station. All apartments in these buildings were classified into exposure categories based on their location in relation to the transformer. Residential histories of these buildings were obtained from the Population Register Centre. Out of the 287,668 individuals who have resided in the buildings, 9,126 of them have resided in an apartment located directly above a transformer station. All information was collected without contacting residents, thus avoiding selection bias. The registry can be linked with data from high-quality nationwide registries to confirm or challenge the reported associations of ELF MF exposure and diseases such as cancer, miscarriage, and Alzheimer's disease. Bioelectromagnetics. 2020;41:34–40 © 2019 Bioelectromagnetics Society.  相似文献   

19.
The World Health Organization (WHO), the International Commission on Non-Ionizing Radiation Protection (ICNIRP), and the German and Austrian Governments jointly sponsored an international seminar in November of 1996 on the biological effects of low-level radiofrequency (RF) electromagnetic fields. For purposes of this seminar, RF fields having frequencies only in the range of about 10 MHz to 300 GHz were considered. This is one of a series of scientific review seminars held under the International Electromagnetic Field (EMF) Project to identify any health hazards from EMF exposure. The scientific literature was reviewed during the seminar and expert working groups formed to provide a status report on possible health effects from exposure to low-level RF fields and identify gaps in knowledge requiring more research to improve health risk assessments. It was concluded that, although hazards from exposure to high-level (thermal) RF fields were established, no known health hazards were associated with exposure to RF sources emitting fields too low to cause a significant temperature rise in tissue. Biological effects from low-level RF exposure were identified needing replication and further study. These included in vitro studies of cell kinetics and proliferation effects, effects on genes, signal transduction effects and alterations in membrane structure and function, and biophysical and biochemical mechanisms for RF field effects. In vivo studies should focus on the potential for cancer promotion, co-promotion and progression, as well as possible synergistic, genotoxic, immunological, and carcinogenic effects associated with chronic low-level RF exposure. Research is needed to determine whether low-level RF exposure causes DNA damage or influences central nervous system function, melatonin synthesis, permeability of the blood brain barrier (BBB), or reaction to neurotropic drugs. Reported RF-induced changes to eye structure and function should also be investigated. Epidemiological studies should investigate: the use of mobile telephones with hand-held antennae and incidence of various cancers; reports of headache, sleep disturbance, and other subjective effects that may arise from proximity to RF emitters, and laboratory studies should be conducted on people reporting these effects; cohorts with high occupational RF exposure for changes in cancer incidence; adverse pregnancy outcomes in various highly RF exposed occupational groups; and ocular pathologies in mobile telephone users and in highly RF exposed occupational groups. Studies of populations with residential exposure from point sources, such as broadcasting transmitters or mobile telephone base stations have caused widespread health concerns among the public, even though RF exposures are very low. Recent studies that may indicate an increased incidence of cancer in exposed populations should be investigated further. Bioelectromagnetics 19:1–19, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

20.
With the number of cellular phone users rapidly increasing, there is a considerable amount of public concern regarding the effects that electromagnetic fields (EMFs) from cellular phones have on health. People with self‐attributed electromagnetic hypersensitivity (EHS) complain of subjective symptoms such as headaches, insomnia, and memory loss, and attribute these symptoms to radio frequency (RF) radiation from cellular phones and/or base stations. However, EHS is difficult to diagnose because it relies on a person's subjective judgment. Various provocation studies have been conducted on EHS caused by Global System for Mobile Communications (GSM) phones in which heart rate and blood pressure or subjective symptoms were investigated. However, there have been few sham‐controlled provocation studies on EHS with Code Division Multiple Access (CDMA) phones where physiological parameters, subjective symptoms, and perception of RF radiation for EHS and non‐EHS groups were simultaneously investigated. In this study, two volunteer groups of 18 self‐reported EHS and 19 non‐EHS persons were tested for both sham and real RF exposure from CDMA cellular phones with a 300 mW maximum exposure that lasted half an hour. We investigated not only the physiological parameters such as heart rate, respiration rate, and heart rate variability (HRV), but also various subjective symptoms and the perception of EMF. In conclusion, RF exposure did not have any effects on physiological parameters or subjective symptoms in either group. As for EMF perception, there was no evidence that the EHS group better perceived EMF than the non‐EHS group. Bioelectromagnetics 30:641–650, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号