首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lidocaine and galactose loading tests were performed on a bioartificial liver (BAL), an extracorporeal medical device incorporating living hepatocytes in a cartridge without a transport barrier across the membranes. The concentration changes were analyzed using pharmacokinetic equations to evaluate the efficacy and limitation of the proposed method. Lidocaine and galactose were found to be suitable drugs for a quantitative evaluation of the BAL functions, as they did not interact with the plasma proteins or blood vessels, making their concentrations easy to determine. The drug concentration changes after drug loading were easily analyzed using pharmacokinetic equations, and the BAL functions quantitatively expressed by pharmacokinetic parameters, such as the clearance (CL) and galactose elimination capacity (GEC). In addition, these two drugs have already been used in clinical tests to evaluate human liver functions over long periods, and lidocaineCL values andGEC values reported for a normal human liver. Thus, a comparison of theCL andGEC values for theBAL and a natural liver revealed what proportion of normal liver functions could be replaced by the BAL.  相似文献   

2.
3.
The gastrointestinal tract remains the most popular and acceptable route of administration for drugs. It offers the great advantage of convenience and many compounds are well absorbed and thereby provide acceptable plasma concentration-time profiles. Currently there is considerable interest from the pharmaceutical industry in development of cell culture systems that would mimic the intestinal mucosa in order to evaluate strategies for investigating and/or enhancing drug absorption. The intestinal epithelial cells of primary interest, from the standpoint of drug absorption and metabolism, are the villus cells, which are fully differentiated cells. Anin vitro cell culture system consisting of a monolayer of viable, polarized and fully differentiated villus cells, similar to that found in the small intestine, would be a valuable tool in the study of drug and nutrient transport and metabolism.The Caco-2 cell line, which exhibits a well-differentiated brush border on the apical surface and tight junctions, and expresses typical small-intestinal microvillus hydrolases and nutrient transporters, has proven to be the most popularin vitro model (a) to rapidly assess the cellular permeability of potential drug candidates, (b) to elucidate pathways of drug transport (e.g., passive versus carrier mediated), (c) to assess formulation strategies designed to enhance membrane permeability, (d) to determine the optimal physicochemical characteristics for passive diffusion of drugs, and (e) to assess potential toxic effects of drug candidates or formulation components on this biological barrier. Since differentiated Caco-2 cells express various cytochrome P450 isoforms and phase II enzymes such as UDP-glucuronosyltransferases, sulfotransferases and glutathione-S-transferases, this model could also allow the study of presystemic drug metabolism.  相似文献   

4.
Nuclear pore complexes provide channels for molecular transport across the nuclear envelope. Translocation of most proteins and RNAs through the pore complex is mediated by signal- and ATP-dependent mechanisms, while transport of small molecules is accomplished by passive diffusion. We report here that depletion of calcium from the lumen of the endoplasmic reticulum and nuclear envelope with ionophores or the calcium pump inhibitor thapsigargin rapidly and potently inhibits signal mediated transport of proteins into the nucleus. Lumenal calcium depletion also inhibits passive diffusion through the pore complex. Signal-mediated protein import and passive diffusion are rapidly restored when the drugs depleting lumenal calcium are removed and cells are incubated at 37 degrees C in calcium-containing medium. These results indicate that loss of calcium from the lumen of the endoplasmic reticulum and nuclear envelope reversibly affects properties of pore complex components located on the nuclear/cytoplasmic membrane surfaces, and they provide direct functional evidence for conformational flexibility of the pore complex. These methods will be useful for achieving reversible inhibition of nucleocytoplasmic trafficking for in vivo functional studies, and for studying the structure of the passive diffusion channel(s) of the pore complex.  相似文献   

5.
The use of radioisotopes has a long history in biomedical science, and the technique of accelerator mass spectrometry (AMS), an extremely sensitive nuclear physics technique for detection of very low-abundant, stable and long-lived isotopes, has now revolutionized high-sensitivity isotope detection in biomedical research, because it allows the direct determination of the amount of isotope in a sample rather than measuring its decay, and thus the quantitative analysis of the fate of the radiolabeled probes under the given conditions. Since AMS was first used in the early 90's for the analysis of biological samples containing enriched 14C for toxicology and cancer research, the biomedical applications of AMS to date range from in vitro to in vivo studies, including the studies of 1) toxicant and drug metabolism, 2) neuroscience, 3) pharmacokinetics, and 4) nutrition and metabolism of endogenous molecules such as vitamins. In addition, a new drug development concept that relies on the ultrasensitivity of AMS, known as human microdosing, is being used to obtain early human metabolism information of candidate drugs. These various aspects of AMS are reviewed and a perspective on future applications of AMS to biomedical research is provided.  相似文献   

6.
Guest Editorial     
Abstract

It is time that we consider applications of the properties of lipid molecules for other than building grocery bags for carrying therapeutic drugs from the pharmacy to sick cells. Lipids have other functions in the cell besides being components of bilayer-based membranes that separate cellular components. Aside from their role as barriers to diffusion, membranes serve to organize a good deal of cellular chemistry. They also provide lipid molecules that serve to regulate key elements of this chemistry. A great deal of lipid research now focuses on issues related to drug delivery via liposomes. Much of this is published in The Journal of Liposome Research. Is it not time that we “greasers” and this journal point towards lipids as the drugs as well as the drug carriers? The purpose of this brief comment is to review the role of lipids (especially PS) as regulators of cellular chemistry, with special emphasis being placed on the role of PS in regulating blood coagulation.  相似文献   

7.
The combination of passive drug permeability, affinity for uptake and efflux transporters as well as gastrointestinal metabolism defines net drug absorption. Efflux mechanisms are often overlooked when examining the absorption phase of drug bioavailability. Knowing the affinity of antimalarials for efflux transporters such as P-glycoprotein (P-gp) may assist in the determination of drug absorption and pharmacokinetic drug interactions during oral absorption in drug combination therapies. Concurrent administration of P-gp inhibitors and P-gp substrate drugs may also result in alterations in the bioavailability of some antimalarials. In-vitro Caco-2 cell monolayers were used here as a model for potential drug absorption related problems and P-gp mediated transport of drugs. Artemisone had the highest permeability at around 50 x 10−6 cm/sec, followed by amodiaquine around 20 x 10−6 cm/sec; both mefloquine and artesunate were around 10 x 10−6 cm/sec. Methylene blue was between 2 and 6 x 10−6 cm/sec depending on the direction of transport. This 3 fold difference was able to be halved by use of P-gp inhibition. MRP inhibition also assisted the consolidation of the methylene blue transport. Mefloquine was shown to be a P-gp inhibitor affecting our P-gp substrate, Rhodamine 123, although none of the other drugs impacted upon rhodamine123 transport rates. In conclusion, mefloquine is a P-gp inhibitor and methylene blue is a partial substrate; methylene blue may have increased absorption if co-administered with such P-gp inhibitors. An upregulation of P-gp was observed when artemisone and dihydroartemisinin were co-incubated with mefloquine and amodiaquine.  相似文献   

8.
Pharmacokinetic studies play an important role in all stages of drug discovery and development. Recent advancements in the tools for discovery and optimization of therapeutic proteins have created an abundance of candidates that may fulfill target product profile criteria. Implementing a set of in silico, small scale in vitro and in vivo tools can help to identify a clinical lead molecule with promising properties at the early stages of drug discovery, thus reducing the labor and cost in advancing multiple candidates toward clinical development. In this review, we describe tools that should be considered during drug discovery, and discuss approaches that could be included in the pharmacokinetic screening part of the lead candidate generation process to de-risk unexpected pharmacokinetic behaviors of Fc-based therapeutic proteins, with an emphasis on monoclonal antibodies.  相似文献   

9.
The liver is the largest internal organ in mammals and is involved in metabolism, detoxification, synthesis of proteins and lipids, secretion of cytokines and growth factors and immune/inflammatory responses. Hepatitis, alcoholic or non-alcoholic liver disease, hepatocellular carcinoma, hepatic veno-occlusive disease, and liver fibrosis and cirrhosis are the most common liver diseases. Safe and efficient delivery of therapeutic molecules (drugs, genes or proteins) into the liver is very important to increase the clinical efficacy of these molecules and to reduce their side effects in other organs. Several liver cell-targeted delivery systems have been developed and tested in vivo or ex vivo/in vitro. In this review, we discuss the literature concerning liver cell-targeted delivery systems, with a particular emphasis on the results of in vivo studies.  相似文献   

10.
According to the model for passive transport across the membranes, the total flow of permeant molecules is related to the product of the water-membrane partition coefficient and the diffusion coefficient, and to the water-membrane interfacial barrier. The effect of membrane surface charge on the permeability and interaction of analgesic peptide ligands with model membranes was investigated. A mixture of zwitterionic phospholipids with cholesterol was used as a model membrane. The lipid membrane charge density was controlled by the addition of anionic 1-palmitoyl-2-oleoylphosphatidylserine. Two classes of highly potent analgesic peptides were studied, c[D-Pen2,D-Pen5]enkephalin (DPDPE) and biphalin, a dimeric analog of enkephalin. The effect of increased surface charge on the permeability of the zwitterionic DPDPE is a relatively modest decrease, that appears to be due to a diminished partition coefficient. On the other hand the binding of the dicationic biphalin ligands to membranes increases proportionally with increased negative surface charge. This effect translates into a significant reduction of biphalin permeability by reducing the diffusion of the peptide across the bilayer. These experiments show the importance of electrostatic effects on the peptide-membrane interactions and suggest that the negative charge naturally present in cell membranes may hamper the membrane transport of some peptide drugs, especially cationic ones, unless there are cationic transporters present.  相似文献   

11.
The main oral drug absorption barriers are fluid cell membranes and generally drugs are absorbed by a passive diffusion mechanism. Biopartitioning micellar chromatography (BMC) is a mode of micellar liquid chromatography that uses micellar mobile phases of Brij35 under adequate experimental conditions and can be useful to mimic the drug partitioning process in biological systems. In this paper the usefulness of BMC for predicting oral drug absorption in humans is demonstrated. A hyperbolic model has been obtained using the retention data of a heterogeneous set of 74 compounds, which shows predictive ability for drugs absorbed by passive diffusion. The model obtained in BMC is compared with those obtained using the well-known systems (Caco-2 and TC-7) that use intestinal epithelium cell lines. The use of BMC is simple, reproducible and can provide key information about the transport properties of new compounds during the drug discovery process.  相似文献   

12.
1. The cytochrome P450 enzyme family is one of the major drug metabolizing systems in man.2. Factors such as age, gender, race, environment, and drug treatment may have considerable influence on the activity of these enzymes.3. There are now well-established in vitro techniques for assessing the role of specific cytochrome P450 enzymes in the metabolism of drugs, as well as the inhibitory or inducing effects of drugs on enzyme activity. In vitro data have been utilized to predict clinical outcomes (i.e., pharmacokinetic interactions), with close correlations between in vitro and in vivo data.4. This information can be of considerable practical assistance to clinicians, to help with rational prescribing or to prevent or minimize the potential for drug interactions.  相似文献   

13.
Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.  相似文献   

14.
This paper describes the formation of giant proteoliposomes containing P-glycoprotein (P-gp) from a solution of small proteoliposomes that had been deposited and partially dried on a film of agarose. This preparation method generated a significant fraction of giant proteoliposomes that were free of internalized vesicles, making it possible to determine the accessible liposome volume. Measuring the intensity of the fluorescent substrate rhodamine 123 (Rho123) inside and outside these giant proteoliposomes determined the concentration of transported substrates of P-gp. Fitting a kinetic model to the fluorescence data revealed the rate of passive diffusion as well as active transport by reconstituted P-gp in the membrane. This approach determined estimates for the membrane permeability coefficient (Ps) of passive diffusion and rate constants of active transport (kT) by P-gp as a result of different experimental conditions. The Ps value for Rho123 was larger in membranes containing P-gp under all assay conditions than in membranes without P-gp indicating increased leakiness in the presence of reconstituted transmembrane proteins. For P-gp liposomes, the kT value was significantly higher in the presence of ATP than in its absence or in the presence of ATP and the competitive inhibitor verapamil. This difference in kT values verified that P-gp was functionally active after reconstitution and quantified the rate of active transport. Lastly, patch clamp experiments on giant proteoliposomes showed ion channel activity consistent with a chloride ion channel protein that co-purified with P-gp. Together, these results demonstrate several advantages of using giant rather than small proteoliposomes to characterize transport properties of transport proteins and ion channels.  相似文献   

15.
Mackenzie SM  Howells AJ  Cox GB  Ewart GD 《Genetica》2000,108(3):239-252
The white, scarlet, and browngenes of Drosophila melanogasterencode ABC transporters involved with the uptake and storage of metabolic precursors to the red and brown eye colour pigments. It has generally been assumed that these proteins are localised in the plasma membrane and transport precursor molecules from the heamolymph into the eye pigment cells. However, the immuno-electron microscopy experiments in this study reveal that the White and Scarlet proteins are located in the membranes of pigment granules within pigment cells and retinula cells of the compound eye. No evidence of their presence in the plasma membrane was observed. This result suggests that, rather than tranporting tryptophan into the cell across the plasma membrane, the White/Scarlet complex transports a metabolic intermediate (such as 3-hydroxy kynurenine) from the cytoplasm into the pigment granules. Other functional implications of this new finding are discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Excipients in the pharmaceutical formulation of oral drugs are notably employed to improve drug stability. However, they can affect drug absorption and bioavailability. Passive transport through intestinal cell walls is the main absorption mechanism of drugs and, thus, involves an interaction with the membrane lipids. Therefore in this work, the effect of the excipient NaHCO3 on the interaction of the anticholesterolemic drug fluvastatin sodium (FS) with membrane phospholipids was investigated by 1H NMR and FTIR spectroscopy. Sodium bicarbonate is often combined with fluvastatin for oral delivery to prevent its degradation. We have used model DMPC/DMPS membranes to mimic the phospholipid content of gut cell membranes. The results presented in this work show a 100% affinity of FS for the membrane phospholipids that is not modified by the presence of the excipient. However, NaHCO3 is shown to change the interaction mechanism of the drug. According to our data, FS enters the DMPC/DMPS bilayer interface by interacting with the lipids’ polar headgroups and burying its aromatic moieties into the apolar core. Moreover, lipid segregation takes place between the anionic and zwitterionic lipids in the membranes due to a preferential interaction of FS with phosphatidylserines. The excipient counteracts this favored interaction without affecting the drug affinity and location in the bilayer. This work illustrates that preferential interactions with lipids can be involved in passive drug permeation mechanisms and gives evidence of a possible nonpassive role of certain excipients in the interaction of drugs with membrane lipids.  相似文献   

17.
Drug-induced taste disturbance is a common adverse drug reaction often triggered by drug secretion into saliva. Very little is known regarding the molecular mechanisms underlying salivary gland transport of xenobiotics, and most drugs are assumed to enter saliva by passive diffusion. In this study, we demonstrate that salivary glands selectively and highly express OCT3 (organic cation transporter-3), a polyspecific drug transporter in the solute carrier 22 family. OCT3 protein is localized at both basolateral (blood-facing) and apical (saliva-facing) membranes of salivary gland acinar cells, suggesting a dual role of this transporter in mediating both epithelial uptake and efflux of organic cations in the secretory cells of salivary glands. Metformin, a widely used anti-diabetic drug known to induce taste disturbance, is transported by OCT3/Oct3 in vitro. In vivo, metformin was actively transported with a high level of accumulation in the salivary glands of wild-type mice. In contrast, active uptake and accumulation of metformin in salivary glands were abolished in Oct3−/− mice. Oct3−/− mice also showed altered metformin pharmacokinetics and reduced drug exposure in the heart. These results demonstrate that OCT3 is responsible for metformin accumulation and secretion in salivary glands. Our study uncovered a novel carrier-mediated pathway for drug entry into saliva and sheds new light on the molecular mechanisms underlying drug-induced taste disorders.  相似文献   

18.
Organizing principles of the axoglial apparatus   总被引:5,自引:0,他引:5  
Pedraza L  Huang JK  Colman DR 《Neuron》2001,30(2):335-344
On axonal surfaces that flank the node of Ranvier and in overlying glial paranodal loops, proteins are arranged within circumscribed microdomains that defy explanation by conventional biosynthetic mechanisms. We postulate that the constraint of proteins to these loci is accomplished in part by discriminative membrane-embedded molecular sieves and diffusion barriers, which serve to organize and redistribute proteins after delivery by vesicular transport to neural cell plasma membranes. One sieve likely comprises a moveable, macromolecular scaffold of axonal and glial cell-derived transmembrane adhesion molecules and their associated cytoplasmic binding partners, located at the ends of each elongating myelin internode; this sieve contributes to restricting the sodium channel complexes to the node. We also anticipate the existence of a passive paranodal diffusion barrier at the myelin/noncompact membrane border, which prohibits protein diffusion out of contiguous paranodal membranes.  相似文献   

19.
In eukaryotic cells the nucleus and its contents are separated from the cytoplasm by the nuclear envelope. Macromolecules, as well as smaller molecules and ions, can cross the nuclear envelope through the nuclear pore complex. Molecules greater than approx. 60 kDa and containing a nuclear localization signal are actively transported across the nuclear membranes, but there has been little evidence for regulatory mechanisms for smaller molecules and ions. Recently, diffusion across the nuclear envelope has been observed to be regulated by nuclear cisternal Ca2+ concentrations. Following depletion of Ca2+ from the nuclear store by inositol 1,4,5-trisphosphate or Ca2+ chelators, a fluorescent 10 kDa marker molecule was no longer able to enter the nucleus. Distinct conformational states of the nuclear pore complexes depended on the Ca2+ filling state of the nuclear envelope, supporting the assumption that a switch in the conformation of the nuclear pore complex may control the transport of intermediate-sized molecules across the nuclear envelope. Thus nuclear Ca2+ stores may regulate the conformational state of the nuclear pore complex, and thereby passive diffusion of molecules between the cytosol and the nucleoplasm. The physiological significance of this finding is currently unknown.  相似文献   

20.
Abstract

Efficient cellular uptake is crucial for the success of any drug directed towards targets inside cells. Peptide nucleic acid (PNA), a DNA analog with a promising potential as a gene-directed drug, has been shown to display slow membrane penetration in cell cultures. We here used liposomes as an in vitro model of cell membranes to investigate the effect on penetration of a PNA molecule colvalently modified with a lipophilic group, an adamantyl moiety. The adamantyl attachment was found to increase the membrane-penetration rate of PNA three-fold, as compared to corresponding unmodified PNA. From the penetration behaviour of a number of small and large molecules we could conclude that passive diffusion is the mechanism for liposome-membrane passage. Flow linear dichroism (LD) of the modified PNA in presence of rod-shaped micelles, together with octanol-water distribution experiments, showed that the adamantyl-modified PNA is amphiphilic; the driving force behind the observed increased membrane-penetration rate appears to be an accumulation of the PNA in the lipid double layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号