首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
月季切花衰老过程中多胺与膜脂过氧化的关系   总被引:7,自引:0,他引:7  
以月季切花为材料,研究了月季切花瓶插过程中多胺含量的变化,外源多胺处理对月季药花体内多胺含量的影响以及多胺与膜脂过氧化的关系。结果表明,月季切花瓶插衰老过程中腐胺在前2d略有增加,亚精胺和精胺均呈下降趋势;外源亚精胺和精胺处理均能增加切花体内多胺含量,并能延缓切花衰老和改善切花品质;且亚精胺和精胺处理降低了MDA含量的积累和膜相对透性的上升趋势。  相似文献   

2.
Although vitamin C is considered to act both as pro-oxidant and antioxidant, the mechanisms underlying these actions are still unclear. Using the oxygen-sensitive system of a strict anaerobe, Prevotella melaninogenica, we investigated both the pro-oxidant and antioxidant mechanisms of vitamin C. In the presence of vitamin C, the 8-hydroxydeoxyguanosine (8OHdG) formation induced by oxygen exposure was enhanced, probably due to the action of vitamin C on hydrogen peroxide generated during oxygen exposure: while catalase almost completely suppressed the enhancing effect of vitamin C, 8OHdG formation induced by hydrogen peroxide was enhanced by vitamin C. By contrast, the presence of vitamin C inhibited bacterial cell death, membrane damage, and lipid peroxidation induced by oxygen exposure. Sodium azide showed similar effects to vitamin C, thus the antioxidant action of vitamin C may be due to its quenching of the singlet oxygen generated in this system. Both the pro-oxidant and antioxidant effects of vitamin C were observed only in acidic conditions.  相似文献   

3.
在-5℃低温胁迫下,夏威夷椰子(Pritchardia gaudichaudii H.Wendl.)幼苗叶片的丙二醛(MDA)含量逐渐增加,表明膜脂过氧化作用逐渐增强;含水量不断下降;细胞保护酶中的超氧化物歧化酶(SOD)、过氧化物酶(POD) 过氧化氢酶(CAT)酶活性均先升高,然后下降。冷锻炼处理可以减缓夏威夷椰子膜脂过氧化作用的增强,促进SOD酶活性的提高,同时抑制POD和CAT酶活性的变化,因而使夏威夷椰子幼苗的抗寒性得以提高,在-5℃低温胁迫下的半致死时间从1.6d延长到2.2d。  相似文献   

4.
Free radicals derived from oxygen, nitrogen and sulphur molecules in the biological system are highly active to react with other molecules due to their unpaired electrons. These radicals are important part of groups of molecules called reactive oxygen/nitrogen species (ROS/RNS), which are produced during cellular metabolism and functional activities and have important roles in cell signalling, apoptosis, gene expression and ion transportation. However, excessive ROS attack bases in nucleic acids, amino acid side chains in proteins and double bonds in unsaturated fatty acids, and cause oxidative stress, which can damage DNA, RNA, proteins and lipids resulting in an increased risk for cardiovascular disease, cancer, autism and other diseases. Intracellular antioxidant enzymes and intake of dietary antioxidants may help to maintain an adequate antioxidant status in the body. In the past decades, new molecular techniques, cell cultures and animal models have been established to study the effects and mechanisms of antioxidants on ROS. The chemical and molecular approaches have been used to study the mechanism and kinetics of antioxidants and to identify new potent antioxidants. Antioxidants can decrease the oxidative damage directly via reacting with free radicals or indirectly by inhibiting the activity or expression of free radical generating enzymes or enhancing the activity or expression of intracellular antioxidant enzymes. The new chemical and cell-free biological system has been applied in dissecting the molecular action of antioxidants. This review focuses on the research approaches that have been used to study oxidative stress and antioxidants in lipid peroxidation, DNA damage, protein modification as well as enzyme activity, with emphasis on the chemical and cell-free biological system.  相似文献   

5.
Among the structural phospholipids that form the bulk of eukaryotic cell membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the common precursor for low‐abundance regulatory lipids, collectively referred to as polyphosphoinositides (PPIn). The metabolic turnover of PPIn species has received immense attention because of the essential functions of these lipids as universal regulators of membrane biology and their dysregulation in numerous human pathologies. The diverse functions of PPIn lipids occur, in part, by orchestrating the spatial organization and conformational dynamics of peripheral or integral membrane proteins within defined subcellular compartments. The emerging role of stable contact sites between adjacent membranes as specialized platforms for the coordinate control of ion exchange, cytoskeletal dynamics, and lipid transport has also revealed important new roles for PPIn species. In this review, we highlight the importance of membrane contact sites formed between the endoplasmic reticulum (ER) and plasma membrane (PM) for the integrated regulation of PPIn metabolism within the PM. Special emphasis will be placed on non‐vesicular lipid transport during control of the PtdIns biosynthetic cycle as well as toward balancing the turnover of the signaling PPIn species that define PM identity.  相似文献   

6.
Oxidative damage to DNA in human tissues can be determined by measuring multiple products of oxidative damage to the purine and pyrimidine bases using gas chromatography-mass spectrometry (GC-MS). Oxidative damage to lipids (lipid peroxidation) can be quantitated by the mass spectrometry-based determination of F2-isoprostanes, specific end-products of the peroxidation of arachidonic acid residues in lipids. For both DNA base damage products and 8-epi prostaglandin F (PGF), there is a wide variation in levels between different healthy human subjects. We measured multiple products of oxidative damage to DNA bases in white cells, and 8-epi PGF in plasma, from blood samples obtained from healthy human subjects in the UK and in Portugal. No correlation of 8-epi PGF levels with levels of any modified DNA base (including 8-hydroxyguanine) was observed. We conclude that no single parameter can be measured as an index of “oxidative stress” or “oxidative damage” in vivo.  相似文献   

7.
Sugar accumulation and membrane lipid parameters associated with membrane permeability in chilling injury and senescence were followed in the early stages of low‐temperature sweetening in Solanum tuberosum tubers to monitor their dynamics. Norchip, a low‐temperature sweetening‐susceptible potato cultivar, and North Dakota 860‐2, a low‐temperature sweetening‐tolerant selection, were stored for 55 days at 4 and 12°C. Sugar accumulations were not linear and were characterized by fluctuations or cycles over storage time. Sucrose cycling and accumulation were greatest for Norchip tubers stored at 4°C as compared to the other treatments. Increases in membrane permeability were not detected by increases in electrolyte leakage. No significant changes in the phospholipid, galactolipid, free sterol levels or phospholipid to free sterol ratio were observed. The double bond index obtained from the fatty acid profiles of the total lipid fraction decreased significantly (decreased unsaturation) for Norchip tubers at 4°C over time. Free fatty acid and diene conjugation values fluctuated and increased over time for all treatments with greater amplitude of fluctuations observed for Norchip tubers stored at 4°C. These latter effects may be due to the high levels of lipid acyl hydrolase and lipoxygenase found in potato tubers. When free fatty acid and diene conjugation values were plotted with glucose accumulation over time, a possible relationship among the variables was revealed. The observed peroxidation products could relate low‐temperature stress and the resultant low‐temperature sweetening to chilling injury and drought stress. The anti‐oxidative potential of potato tubers should be considered for future cultivar development as a mechanism to lessen the severity or rate of low‐temperature sweetening development.  相似文献   

8.
Robert T. Furbank 《Planta》1988,176(4):433-440
The relationship between the redox state of the primary electron acceptor of photosystem II (QA) and the rate of O2 evolution in isolated mesophyll chloroplasts from Zea mays L. is examined using pulse-modulated chlorophyll a fluorescence techniques. A linear relationship between photochemical quenching of chlorophyll fluorescence (qQ) and the rate of O2 evolution is evident under most conditions with either glycerate 3-phosphate or oxaloacetate as substrates. There appears to be no effect of the transthylakoid pH gradient on the rate of electron transfer from photosystem II into QA in these chloroplasts. However, the proportion of electron transport occurring through cyclic-pseudocyclic pathways relative to the non-cyclic pathway appears to be regulated by metabolic demand for ATP. The majority of non-photochemical quenching in these chloroplasts at moderate irradiances appeared to be energy-dependent quenching.Abbreviations and symbols PSII photosystem II - Fm maximum fluorescence obtained on application of a saturating light pulse - Fo basal fluorescence recorded in the absence of actinic light (i.e. all PSII traps are open) - Fv Fm-Fo - qQ photochemical quenching - qNP non-photochemical quenching - qE energy-dependent quenching of chlorophyll fluorescence  相似文献   

9.
枇杷(Eriobotrya japonica)开花结果正值冬季低温期,易受低温影响,因此寒害成为抑制枇杷健康生长、发育的重要因素之一。种子作为产生多种内源激素的中心,其健康程度与枇杷果实正常发育息息相关。该研究以四川省成都市龙泉驿区柏合镇的‘早钟六号’枇杷幼果种子为材料,经不同低温(6、3、0、-3℃)胁迫不同时间(12、24、36、48 h)后,对其相对电导率、丙二醛(MDA)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)的变化进行测定以及细胞解剖结构分析,旨在探究枇杷幼果种子抗寒机制,为提高四川地区枇杷抗寒栽培新技术提供理论和实践依据。结果表明:低温胁迫下,枇杷幼果种子相对电导率及MDA含量随着处理温度的降低整体呈上升趋势;保护酶SOD、CAT活性在低温胁迫前期不同程度升高,至某个低温后呈下降趋势;而POD活性总体呈升-降-升趋势;相对电导率、MDA含量、SOD活性、CAT活性、POD活性的变化临界温度均为6℃,胁迫临界时间分别为12、24、48、36 h,而MDA含量变化临界温度为3℃,胁迫临界时间为36 h;显微结构表明枇杷幼果种子6℃低温开始受冻,最先受冻部位为种皮,其次为种胚真叶原始体或真叶,最后到细胞破裂,说明枇杷幼果种子随着处理温度降低,细胞结构受损越严重。综上,枇杷幼果种子受冻临界温度为6℃,受冻临界时间为12 h。  相似文献   

10.
Cell therapy with bone marrow stem cells (BMSCs) remains a viable option for tissue repair and regeneration. A major challenge for cell therapy is the limited cell survival after implantation. This study was to investigate the effect of oxidized low‐density lipoprotein (ox‐LDL, naturally present in human blood) on BMSC injury and the effect of MG53, a tissue repair protein, for the improvement of stem cell survival. Rat bone marrow multipotent adult progenitor cells (MAPCs) were treated with ox‐LDL, which caused significant cell death as reflected by the increased LDH release to the media. Exposure of MAPCs to ox‐LDL led to entry of fluorescent dye FM1‐43 measured under confocal microscope, suggesting damage to the plasma membrane. Ox‐LDL also generated reactive oxygen species (ROS) as measured with electron paramagnetic resonance spectroscopy. While antioxidant N‐acetylcysteine completely blocked ROS production from ox‐LDL, it failed to prevent ox‐LDL‐induced cell death. When MAPCs were treated with the recombinant human MG53 protein (rhMG53) ox‐LDL induced LDH release and FM1‐43 dye entry were significantly reduced. In the presence of rhMG53, the MAPCs showed enhanced cell survival and proliferation. Our data suggest that membrane damage induced by ox‐LDL contributed to the impaired survival of MAPCs. rhMG53 treatment protected MAPCs against membrane damage and enhanced their survival which might represent a novel means for improving efficacy for stem cell‐based therapy for treatment of diseases, especially in setting of hyperlipidemia.  相似文献   

11.
The possible involvement of the antioxidative system in the tolerance to salt stress was studied in the cultivated tomato Lycopersicon esculentum Mill. cv. M82 (M82) and its wild salt‐tolerant relative L. pennellii (Corn) D'Arcy accession Atico (Lpa). All analyses, except that of monodehydroascorbate reductase (MDHAR), were performed of the youngest fully‐expanded leaf of control and salt (100 m M NaCl) stressed plants, 4, 7, 10, 14, 18 and 22 days after completing the stress treatment. In Lpa, constitutive level of lipid peroxidation and activities of catalase (CAT) and glutathione reductase (GR) were lower while the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were inherently higher than in M82. Relative to M82, lipid peroxidation was much lower and the activities of SOD, CAT and APX were higher in Lpa at 100 m M NaCl. The activity of DHAR decreased more in Lpa than in M82 under salt stress, and the activity of MDHAR, which was lower in Lpa than in M82 under control conditions, increased much more and to a higher level in salt‐treated Lpa plants. GR activity decreased similarly in the two species under salt stress. The results of these analyses suggest that the wild salt‐tolerant Lpa plants are better protected against active oxygen species (AOS), inherently and under salt stress, than the relatively sensitive plants of the cultivated species.  相似文献   

12.
Inflammatory bowel disease is a kind of multi‐aetiological chronic disease that is driven by multidimensional factors. Hypoxia‐inducible factor‐1α (HIF‐1α) plays an important role in anti‐inflammatory and cellular responses to hypoxia. Previous studies have found that B or T‐cell‐specific HIF‐1α knock out mice exhibit severe colonic inflammation. However, we know very little about other functions of HIF‐1α in intestinal epithelial cells (IECs). In our study, HIF‐1αΔIEC mice were used to study the function of HIF‐1α in IECs. HIF‐1α was knocked down in Caco‐2 cells by transfection with a small interfering (si) RNA. Immunohistochemical staining and western blotting were used to detect the expression of zonula occluden‐1 (ZO‐1) and Occludin. The content of colon was harvested for high‐performance liquid chromatography analysis to examine the levels of butyrate in the gut. Our research found that HIF‐1α played a protective role in dextran sulphate sodium‐induced colitis, which was partly due to its regulation of tight junction (TJ) protein expression. Further study revealed that HIF‐1α mediated TJ proteins levels by moderating the content of butyrate. Moreover, we found that butyrate regulated TJ protein expression, which is dependent on HIF‐1α. These results indicated that there is a mutual regulatory mechanism between butyrate and HIF‐1α, which has an important role in the maintenance of barrier function of the gastrointestinal tract.  相似文献   

13.
Integrity of mitochondrial functionality is a key determinant of longevity in several organisms. In particular, reduced mitochondrial ROS (mtROS) production leading to decreased mtDNA damage is believed to be a crucial aspect of longevity. The generation of low mtROS was thought to be due to low mitochondrial oxygen consumption. However, recent studies have shown that higher mitochondrial oxygen consumption could still result in low mtROS and contribute to longevity. This increased mitochondrial efficiency (i.e. low mtROS generated despite high oxygen consumption) was explained as a result of mitochondrial biogenesis, which provides more entry points for the electrons to the electron transport chain (ETC), thereby resulting in low mtROS production. In this study, we provide evidence for the existence of an alternative pathway to explain the observed higher mitochondrial efficiency in the long‐lived mrg19 mutant of Saccharomyces cerevisiae. Although we observe similar amounts of mitochondria in mrg19 and wild‐type (wt) yeast, we find that mrg19 mitochondria have higher expression of ETC components per mitochondria in comparison with the wt. These findings demonstrate that more efficient mitochondria because of increased ETC per mitochondria can also produce less mtROS. Taken together, our findings provide evidence for an alternative explanation for the involvement of higher mitochondrial activity in prolonging lifespan. We anticipate that similar mechanisms might also exist in eukaryotes including human.  相似文献   

14.
The technique of free radical spin trapping has been applied to demonstrate the formation of free radicals produced during the metabolism of halothane by rat liver hepatocytes under hypoxic conditions. The results obtained support previous findings that reported sex differences in the metabolic activation of halothane by rats in vivo. Cell viability under hypoxic conditions, as judged by trypan blue staining and lactate dehydrogenase release, shows a correlation with the extent of metabolism of halothane as measured by electron spin resonance spectroscopy. The extent of lipid peroxidation was measured by diene conjugation, malondialdehyde production and chemiluminescence. The latter technique allowed the demonstration of lipid peroxidation during incubations of hepatocytes under aerobic conditions. The magnitude of the aerobic chemiluminescence showed a similar sex dependency to the extent of free radical formation under hypoxic conditions. Cell viability measurements show that halothane metabolism in both hypoxic and aerobic conditions can lead to cell death. Consequently, oxidative lipid damage could be a cause of cell damage, as judged by cell viability, additional to covalent binding.  相似文献   

15.
Na,K-ATPase activity, membrane lipid peroxidation (TBARM), and membrane leakiness for small molecules were examined in rat cerebromicrovascular endothelial cells (RCEC) following exposure to hydrogen peroxide and xanthine/xanthine oxidase. Whereas short-term (15–30 min) exposure to either oxidant decreased ouabain-sensitive86Rb uptake and increased TBARM in a concentration-dependent fashion, significant release of51Cr (30–40%) from cells was observed only after one hour exposure to the oxidants. By comparison, much longer exposure times (i.e., 4 hours) were needed to induce significant lactate dehydrogenase release from oxidant-treated cells. The oxidant-evoked decrease in Na,K-ATPase activity and increases in TBARM and RCEC permeability were abolished in the presence of the steroid antioxidants U-74500A and U-74389G (5–20 M). Reduced glutathione (4 mM) partially attenuated oxidant-induced changes, whereas ascorbic acid (2 mM) and the disulfide bond-protecting agent, dithiothreitol (1 mM), were ineffective. These results suggest that the oxidant-induced loss of Na,K-ATPase activity in RCEC results primarily from changes in membrane lipids, and implicate both the inhibition of Na,K-ATPase and membrane lipid peroxidation in the mechanism responsible for the delayed free radical-induced increase in RCEC membrane permeability.  相似文献   

16.
The impact of culture conditions and interaction with activated peripheral blood mononuclear cells on the interleukin (IL) gene expression profile and proinflammatory IL‐6 and IL‐8 production by adipose‐derived stromal cells (ASCs) was investigated. A microarray analysis revealed a wide range of IL genes either under standard (20%) or hypoxic (5%) O2 concentrations, some highly up‐regulated at hypoxia. IL‐6 and IL‐8 production was inversely dependent on cell culture density. In early (first–third) passages, IL‐6 and IL‐8 concentration was higher at 20% O2 and in late (8th‐12th) passages under 5% O2. Interaction between ASCs and mononuclear cells in indirect setting was accompanied with a significant decrease of IL‐6 and did not result in the elevation of IL‐8 concentration. Thereby, the production of proinflammatory interleukins (IL‐6 and IL‐8) may be affected by the ASC intrinsic features (density in culture, and duration of expansion), as well as by microenvironmental factors, such as hypoxia and the presence of blood‐borne cells. These data are important for elucidating ASC paracrine activity regulation in vitro. They would also be on demand for optimisation of the cell therapy protocols, based on the application of ASC biologically active substances. Copyright © 2015 John Wiley & Sons, Ltd. SIGNIFICANCE PARAGRAPH Ex vivo expansion is widely used for increasing the number of adipose‐derived stromal cells (ASCs) and improving of their quality. The present study was designed to elucidate the particular factors influencing the interleukin production in ASCs. The presented data specified the parameters (i.e. cell density, duration of cultivation, hypoxia, etc.) that should be taken in mind when ASCs are intended to be used in protocols implying their paracrine activity. These data would be of considerable interest for researchers and clinicians working in the biomedical science.  相似文献   

17.
The effects of chilling under low light (9/7 °C, 100 µmol m?2 s?1) on the photosynthetic and antioxidant capacities and subsequent recovery were examined in two (one tolerant and one sensitive) cucumber genotypes. Chilling resulted in an irreversible inhibition of net CO2 assimilation and growth for the sensitive genotype, which was accompanied by decreases in the maximum velocity of RuBP carboxylation by Rubisco (Vcmax), the capacity for ribulose‐1,5‐bisphosphate regeneration (Jmax), Rubisco content and activity, and the quantum efficiency of photosystem II, in the absence of any stomatal limitation of CO2 supply or inorganic phosphate limitation. In contrast, CO2 assimilation for the tolerant genotype fully recovered after chill. The chill‐induced decrease in the proportion of electron flux for photosynthetic carbon reduction was mostly compensated by an O2‐dependent alternative electron flux driven by the water–water cycle, especially in the sensitive genotype. Compared with the tolerant genotype, the sensitive genotype after chill showed reduced capacity for scavenging reactive oxygen species and increased accumulation of reactive oxygen species. The balance between O2‐dependent alternative electron flux and the capacity for scavenging reactive oxygen species in response to chill plays a major role in determining the tolerance of cucumber leaves to this stress factor. It is concluded that the water–water cycle operates at high rates when CO2 assimilation is restricted in cucumber leaves subjected to chill and low light conditions.  相似文献   

18.
EL4 cells were cultured with exogenous fatty acids under conditions that resulted in their incorporation into membrane phospholipids. The behavior of the fluorescent lipid probes diphenylhexatriene and perylene was monitored in intact EL4 cells and in isolated EL4 plasma membranes. In whole cells substituted with unsaturated fatty acids, there was always a marked decrease in the P value of both probes compared to the P value of the probes in unsubstituted cells. In whole cells substituted with saturated fatty acids, on the other hand, P values for both probes were unchanged compared to unsubstituted cells. In plasma membrane isolated from EL4 cells, no difference in P values for either probe was observed among membranes from unsubstituted, saturated fatty acid substituted or unsaturated fatty acid substituted cells, even when the degree of fatty acid substitution was quite substantial. Most of the fluorescent signal for both probes in whole cells appeared to come from cytoplasmic lipid droplets. The value of techniques such as fluorescent polarization for monitoring physical properties of membranes (such as ‘fluidity’) is discussed.  相似文献   

19.
The effects of ubiquinol and vitamin E on ascorbate- and ADP-Fe3+-induced lipid peroxidation were investigated by measuring oxygen consumption and malondialdehyde formation in beef heart submitochondrial particles. In the native particles, lipid peroxidation showed an initial lag phase, which was prolonged by increasing concentrations of ascorbate. Lipid peroxidation in these particles was almost completely inhibited by conditions leading to a reduction of endogenous ubiquinone, such as the addition of succinate or NADH in the presence of antimycin. Lyophilization of the particles followed by three or four consecutive extractions with pentane resulted in a complete removal of vitamin E and a virtually complete removal of ubiquinone, as revealed by reversed-phase high pressure liquid chromatography. In these particles, lipid peroxidation showed no significant lag phase and was not inhibited by either increasing concentrations of ascorbate or conditions leading to ubiquinone reduction. Treatment of the particles with a pentane solution of vitamin E (alpha-tocopherol) restored the lag phase and its prolongation by increasing ascorbate concentrations. Treatment of the extracted particles with pentane containing ubiquinone-10 resulted in a restoration of the inhibition of lipid peroxidation by succinate or NADH in the presence of antimycin, but not the initial lag phase or its prolongation by increasing concentrations of ascorbate. Malonate and rotenone, which prevent the reduction of ubiquinone by succinate and NADH, respectively, abolished, as expected, the inhibition of the initiation of lipid peroxidation in both native and ubiquinone-10-supplemented particles. Reincorporation of both vitamin E and ubiquinone-10 restored both effects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Boron (B) is essential for plant cell‐wall structure and membrane functions. Compared with its role in cross‐linking the pectic domain rhamnogalacturonan II (RG‐II), little information is known about the biological role of B in membranes. Here, we investigated the involvement of glycosylinositol phosphorylceramides (GIPCs), major components of lipid rafts, in the membrane requirement for B. Using thin‐layer chromatography and mass spectrometry, we first characterized GIPCs from Rosa cell culture. The major GIPC has one hexose residue, one hexuronic acid residue, inositol phosphate, and a ceramide moiety with a C18 trihydroxylated mono‐unsaturated long‐chain base and a C24 monohydroxylated saturated fatty acid. Disrupting B bridging (by B starvation in vivo or by treatment with cold dilute HCl or with excess borate in vitro) enhanced the GIPCs' extractability. As RG‐II is the main B‐binding site in plants, we investigated whether it could form a B‐centred complex with GIPCs. Using high‐voltage paper electrophoresis, we showed that addition of GIPCs decreased the electrophoretic mobility of radiolabelled RG‐II, suggesting formation of a GIPC–B–RG‐II complex. Last, using polyacrylamide gel electrophoresis, we showed that added GIPCs facilitate RG‐II dimerization in vitro. We conclude that B plays a structural role in the plasma membrane. The disruption of membrane components by high borate may account for the phytotoxicity of excess B. Moreover, the in‐vitro formation of a GIPC–B–RG‐II complex gives the first molecular explanation of the wall–membrane attachment sites observed in vivo. Finally, our results suggest a role for GIPCs in the RG‐II dimerization process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号