首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study focused on the antigenic cross‐reactivity between tick‐borne encephalitis virus (TBEV) and Omsk hemorrhagic fever virus (OHFV) to assess the efficacy of the commercial TBE vaccine against OHFV infection. Neutralization tests performed on sera from OHFV‐ and TBEV‐infected mice showed that neutralizing antibodies are cross‐protective. The geometric mean titers of antibodies against TBEV and OHFV from TBEV‐infected mice were similar. However, the titers of anti‐TBEV antibodies in OHFV‐infected mice were significantly lower than those of anti‐OHFV antibodies in the same animals. In mouse vaccination and challenge tests, the TBE vaccine provided 100% protection against OHFV infection. Eighty‐six percent of vaccinees seroconverted against OHFV following complete vaccination, and the geometric mean titers of neutralizing antibodies against OHFV were comparable to those against TBEV. These data suggest that the TBE vaccine can prevent OHFV infection.  相似文献   

2.
Tick-borne encephalitis is an emerging vector-borne zoonotic disease reported in several European and Asiatic countries with complex transmission routes that involve various vertebrate host species other than a tick vector. Understanding and quantifying the contribution of the different hosts involved in the TBE virus cycle is crucial in estimating the threshold conditions for virus emergence and spread. Some hosts, such as rodents, act both as feeding hosts for ticks and reservoirs of the infection. Other species, such as deer, provide important sources of blood for feeding ticks but they do not support TBE virus transmission, acting instead as dead-end (i.e., incompetent) hosts. Here, we introduce an eco-epidemiological model to explore the dynamics of tick populations and TBE virus infection in relation to the density of two key hosts. In particular, our aim is to validate and interpret in a robust theoretical framework the empirical findings regarding the effect of deer density on tick infestation on rodents and thus TBE virus occurrence from selected European foci. Model results show hump-shaped relationships between deer density and both feeding ticks on rodents and the basic reproduction number for TBE virus. This suggests that deer may act as tick amplifiers, but may also divert tick bites from competent hosts, thus diluting pathogen transmission. However, our model shows that the mechanism responsible for the dilution effect is more complex than the simple reduction of tick burden on competent hosts. Indeed, while the number of feeding ticks on rodents may increase with deer density, the proportion of blood meals on competent compared with incompetent hosts may decrease, triggering a decline in infection. As a consequence, using simply the number of ticks per rodent as a predictor of TBE transmission potential could be misleading if competent hosts share habitats with incompetent hosts.  相似文献   

3.
Tick infestations on small mammals were studied from April to November, 2010, in deciduous woodland in southern England in order to determine whether co‐infestations with tick stages occurred on small mammals, a key requirement for endemic transmission of tick‐borne encephalitis virus (TBEV). A total of 217 small mammals was trapped over 1,760 trap nights. Yellow‐necked mice (Apodemus flavicollis) made up the majority (52.5%) of animals, followed by wood mice (A. sylvaticus) 35.5% and bank voles (Myodes glareolus) 12%. A total of 970 ticks was collected from 169 infested animals; 96% of ticks were Ixodes ricinus and 3% I. trianguliceps. Over 98% of ticks were larval stages. Mean infestation intensities of I. ricinus were significantly higher on A. flavicollis (6.53 ± 0.67) than on A. sylvaticus (4.96 ± 0.92) and M. glareolus (3.25 ± 0.53). Infestations with I. ricinus were significantly higher in August than in any other month. Co‐infestations with I. ricinus nymphs and larvae were observed on six (3.6%) infested individuals, and fifteen small mammals (8.9%) supported I. ricinus – I. trianguliceps co‐infestations. This work contributes further to our understanding of European small mammal hosts that maintain tick populations and their associated pathogens, and indicates that co‐infestation of larvae and nymph ticks does occur in lowland UK. The possible implications for transmission of tick‐borne encephalitis virus between UK ticks and small mammals are discussed.  相似文献   

4.
Ticks are ectoparasites that transmit pathogens, such as tick‐borne viruses, to their hosts. Tick‐borne viruses are diverse: they can be categorized into two orders, nine families, and at least 12 genera. Almost 25% of these viruses are infectious to humans and some are a serious threat to public health. The global rise in tick‐borne virus diseases has been linked to climate change which has reduced tick mortality in the winter and extended their active period. The spread of tick‐borne viral diseases to humans has received significant interest due to the increased threat to human life; epidemiological monitoring of tick‐borne viruses using molecular, immunological, and environmental methods is now a priority. Nevertheless, many tick‐borne diseases remain undiagnosed, which poses a challenge to public administration and health care officials. This review discusses three major tick‐borne RNA viruses that cause serious infection in humans: severe fever with thrombocytopenia syndrome (SFTS) virus, tick‐borne encephalitis (TBE), and Crimean–Congo hemorrhagic fever (CCHF) virus. Specifically, we discuss the epidemiological monitoring, vector control measures, molecular diagnostics, vaccines, and environmental determinants related to these viruses. Furthermore, we review the current surveillance of these tick‐borne viruses with a specific focus on diagnostic approaches that employ molecular interventions such as viral nucleic acid isolation, PCR‐based diagnostics, and high‐throughput sequencing technologies.  相似文献   

5.

Background

The Western Tick-borne encephalitis (TBE) virus often causes devastating or lethal disease. In Europe, the number of human TBE cases has increased dramatically over the last decade, risk areas are expanding and new foci are being discovered every year. The early localisation of new TBE foci and the identification of the main risk factors associated with disease emergence represent a priority for the public health community. Although a number of socio-economic parameters have been suggested to explain TBE upsurges in eastern Europe, the principal driving factors in relatively stable western European countries have not been identified.

Methodology/Principal Findings

In this paper, we analyse the correlation between the upsurge of TBE in 17 alpine provinces in northern Italy from 1992 to 2006 with climatic variables, forest structure (as a proxy for small mammal reservoir host abundance), and abundance of the principal large vertebrate tick host (roe deer), using datasets available for the last 40 years. No significant differences between the pattern of changes in climatic variables in provinces where TBE has emerged compared to provinces were no clinical TBE cases have been observed to date. Instead, the best model for explaining the increase in TBE incidence in humans in this area include changes in forest structure, in particular the ratio of coppice to high stand forest, and the density of roe deer.

Conclusion/Significance

Substantial changes in vegetation structure that improve habitat suitability for the main TBE reservoir hosts (small mammals), as well as an increase in roe deer abundance due to changes in land and wildlife management practices, are likely to be among the most crucial factors affecting the circulation potential of Western TBE virus and, consequently, the risk of TBE emergence in humans in western Europe. We believe our approach will be useful in predicting TBE risk on a wider scale.  相似文献   

6.
Tick-borne encephalitis virus (TBEV) causes human epidemics across Eurasia. Clinical manifestations range from inapparent infections and fevers to fatal encephalitis but the factors that determine disease severity are currently undefined. TBEV is characteristically a hemagglutinating (HA) virus; the ability to agglutinate erythrocytes tentatively reflects virion receptor/fusion activity. However, for the past few years many atypical HA-deficient strains have been isolated from patients and also from the natural European host tick, Ixodes persulcatus. By analysing the sequences of HA-deficient strains we have identified 3 unique amino acid substitutions (D67G, E122G or D277A) in the envelope protein, each of which increases the net charge and hydrophobicity of the virion surface. Therefore, we genetically engineered virus mutants each containing one of these 3 substitutions; they all exhibited HA-deficiency. Unexpectedly, each genetically modified non-HA virus demonstrated increased TBEV reproduction in feeding Ixodes ricinus, not the recognised tick host for these strains. Moreover, virus transmission efficiency between infected and uninfected ticks co-feeding on mice was also intensified by each substitution. Retrospectively, the mutation D67G was identified in viruses isolated from patients with encephalitis. We propose that the emergence of atypical Siberian HA-deficient TBEV strains in Europe is linked to their molecular adaptation to local ticks. This process appears to be driven by the selection of single mutations that change the virion surface thus enhancing receptor/fusion function essential for TBEV entry into the unfamiliar tick species. As the consequence of this adaptive mutagenesis, some of these mutations also appear to enhance the ability of TBEV to cross the human blood-brain barrier, a likely explanation for fatal encephalitis. Future research will reveal if these emerging Siberian TBEV strains continue to disperse westwards across Europe by adaptation to the indigenous tick species and if they are associated with severe forms of TBE.  相似文献   

7.
Pugliese A  Rosà R 《Parasitology》2008,135(13):1531-1544
Deer are important blood hosts for feeding Ixodes ricinus ticks but they do not support transmission of many tick-borne pathogens, so acting as dead-end transmission hosts. Mathematical models show their role as tick amplifiers, but also suggest that they dilute pathogen transmission, thus reducing infection prevalence. Empirical evidence for this is conflicting: experimental plots with deer removal (i.e. deer exclosures) show that the effect depends on the size of the exclosure. Here we present simulations of dynamic models that take into account different tick stages, and several host species (e.g. rodents) that may move to and from deer exclosures; models were calibrated with respect to Ixodes ricinus ticks and tick-borne encephalitis (TBE) in Trentino (northern Italy). Results show that in small exclosures, the density of rodent-feeding ticks may be higher inside than outside, whereas in large exclosures, a reduction of such tick density may be reached. Similarly, TBE prevalence in rodents decreases in large exclosures and may be slightly higher in small exclosures than outside them. The density of infected questing nymphs inside small exclosures can be much higher, in our numerical example almost twice as large as that outside, leading to potential TBE infection risk hotspots.  相似文献   

8.
Tick borne encephalitis virus (TBEV) is present in some European countries and it is transmitted by a tick bite. Ixodes ricinus is the main vector of the infection in Italy, where fortunately clinical neurological manifestations, typical of the more serious phase of the disease, are very rarely observed. This behaviour is different from other endemic Euroasiatic areas where numerous cases of encephalitis are described. However TBE transmission has not been widely investigated in Italy and available epidemiological data have been obtained only by studies performed in Central and Northern Regions of the country. In addition seroepidemiological researches were made prevalently on subjects at high risk of tick bite, such as hunters or forest guards from Trentin and Central Italy. No precise information about TBE virus diffusion was available in the Piedmont before our investigations. We found that hunters and wild boar breeders seem to be particularly exposed to the risk of TBE virus infection in Turin Province and in particular in the Susa valley, although no neurological involvement was observed in our population. In particular a seroprevalence of about 5% was detected by the use of purified antigens ELISA test, amongst the subjects at high risk of tick bite. Moreover low risk individuals showed a seroprevalence of below 2%. In addition a parallel seroepidemiological study was performed in Turin Province for Borrelia burgdorferi, the aetiological agent of Lyme disease, also transmitted by tick bite (e.g. Ixodes ricinus), for Dengue and Toscana (TOS) arboviruses, respectively transmitted by Aedes mosquitoes and phlebotomes. Data reported here demonstrate only a sporadic presence in our population of antibodies against Borrelia and Dengue infection. Moreover using an ELISA test performed with viral purified nucleoprotein, we reported a total percentage of about 3% of subjects positive for TOSV.  相似文献   

9.
Tick-borne encephalitis (TBE) is a virus infection which sometimes causes human disease. The TBE virus is found in ticks and certain vertebrate tick hosts in restricted endemic localities termed TBE foci. The formation of natural foci is a combination of several factors: the vectors, a suitable and numerous enough number of hosts and in a habitat with suitable vegetation and climate. The present study investigated the influence of deer on the incidence of tick-borne encephalitis. We were able to obtain data from deer culls. Using this data, the abundance of deer was estimated and temporal and spatial analysis was performed. The abundance of deer has increased in the past decades, as well as the incidence of tick-borne encephalitis. Temporal analysis confirmed a correlation between red deer abundance and tick-borne encephalitis occurrence. Additionally, spatial analysis established, that in areas with high incidence of tick-borne encephalitis red deer density is higher, compared to areas with no or few human cases of tick-borne encephalitis. However, such correlation could not be confirmed between roe deer density and the incidence of tick-borne encephalitis. This is presumably due to roe deer density being above a certain threshold so that availability of tick reproduction hosts has no apparent effect on ticks'' host finding and consequently may not be possible to correlate with incidence of human TBE.  相似文献   

10.
Invasive species may impact pathogen transmission by altering the distributions and interactions among native vertebrate reservoir hosts and arthropod vectors. Here, we examined the direct and indirect effects of the red imported fire ant (Solenopsis invicta) on the native tick, small mammal and pathogen community in southeast Texas. Using a replicated large-scale field manipulation study, we show that small mammals were more abundant on treatment plots where S. invicta populations were experimentally reduced. Our analysis of ticks on small mammal hosts demonstrated a threefold increase in the ticks caught per unit effort on treatment relative to control plots, and elevated tick loads (a 27-fold increase) on one common rodent species. We detected only one known human pathogen (Rickettsia parkeri), present in 1.4% of larvae and 6.7% of nymph on-host Amblyomma maculatum samples but with no significant difference between treatment and control plots. Given that host and vector population dynamics are key drivers of pathogen transmission, the reduced small mammal and tick abundance associated with S. invicta may alter pathogen transmission dynamics over broader spatial scales.  相似文献   

11.
Tick borne encephalitis (TBE) is endemic to eastern and central Europe with broad temporal and spatial variation in infection risk. Although many studies have focused on understanding the environmental and socio-economic factors affecting exposure of humans to TBE, comparatively little research has been devoted to assessing the underlying ecological mechanisms of TBE occurrence in enzootic cycles, and therefore TBE hazard. The aim of this study was to evaluate the effect of the main ungulate tick hosts on the pattern of tick infestation in rodents and TBE occurrence in rodents and questing adult ticks. In this empirical study, we considered three areas where endemic human TBE occurs and three control sites having no reported human TBE cases. In these six sites located in Italy and Slovakia, we assessed deer density using the pellet group count-plot sampling technique, collected questing ticks, live-trapped rodents (primarily Apodemus flavicollis and Myodes glareolus) and counted ticks feeding on rodents. Both rodents and questing ticks were screened for TBE infection. TBE infection in ticks and rodents was positively associated with the number of co-feeding ticks on rodents and negatively correlated with deer density. We hypothesise that the negative relationship between deer density and TBE occurrence on a local scale (defined by the minimum overlapping area of host species) could be attributed to deer (incompetent hosts) diverting questing ticks from rodents (competent hosts), know as the 'dilution effect hypothesis'. We observed that, after an initial increase, the number of ticks feeding on rodents reached a peak for an intermediate value of estimated deer density and then decreased. Therefore, while at a regional scale, tick host availability has already been shown to be directly correlated with TBE distribution, our results suggest that the interactions between deer, rodents and ticks are much more complex on a local scale, supporting the possibility of a dilution effect for TBE.  相似文献   

12.
Using a novel approach, we have analyzed 30 parameters characterizing detailed spectrum and fractional content of LPs in plasma of patients with tick‐borne encephalitis (TBE). The blood plasma of all TBE patients (30 patients), as compared with that of healthy individuals (120 patients), is characterized by decreased concentrations of many LP subfractions and of the total concentration of all plasma LPs (hypolipoproteinemia). The observed difference in some parameters was statistically significant. Using computer‐assisted factor analysis, we have shown that according to these 30 parameters TBE patients are similar to patients with multiple sclerosis and systemic lupus erythematosus. The results provide grounds for using data on blood plasma LPs as additional criteria for diagnosis of TBE.  相似文献   

13.
Tick-borne encephalitis virus (TBEV) is one of the most prevalent and medically important tick-borne arboviruses in Eurasia. There are overlapping foci of two flaviviruses: TBEV and Omsk hemorrhagic fever virus (OHFV) in Russia. Inactivated vaccines exist only against TBE. There are no antiviral drugs for treatment of both diseases. Optimal animal models are necessary to study efficacy of novel vaccines and treatment preparations against TBE and relative flaviviruses. The models for TBE and OHF using subcutaneous inoculation were tested in Cercopithecus aethiops and Macaca fascicularis monkeys with or without prior immunization with inactivated TBE vaccine. No visible clinical signs or severe pathomorphological lesions were observed in any monkey infected with TBEV or OHFV. C. aethiops challenged with OHFV showed massive hemolytic syndrome and thrombocytopenia. Infectious virus or viral RNA was revealed in visceral organs and CNS of C. aethiops infected with both viruses; however, viremia was low. Inactivated TBE vaccines induced high antibody titers against both viruses and expressed booster after challenge. The protective efficacy against TBE was shown by the absence of virus in spleen, lymph nodes and CNS of immunized animals after challenge. Despite the absence of expressed hemolytic syndrome in immunized C. aethiops TBE vaccine did not prevent the reproduction of OHFV in CNS and visceral organs. Subcutaneous inoculation of M. fascicularis with two TBEV strains led to a febrile disease with well expressed viremia, fever, and virus reproduction in spleen, lymph nodes and CNS. The optimal terms for estimation of the viral titers in CNS were defined as 8–16 days post infection. We characterized two animal models similar to humans in their susceptibility to tick-borne flaviviruses and found the most optimal scheme for evaluation of efficacy of preventive and therapeutic preparations. We also identified M. fascicularis to be more susceptible to TBEV than C. aethiops.  相似文献   

14.
Tick-borne encephalitis (TBE) is a zoonotic disease causing meningitis, encephalitis, and meningoencephalitis. Tick-borne encephalitis virus (TBEV) is an etiological agent of TBE. From an analysis of five distinct sequences of Japanese TBEV, it has been proposed that Japanese TBEV was transmitted from Russia to Japan on just a single occasion 260-430 years ago. Here thirteen distinct nucleotide sequences encoding the entire region of the envelope protein for Japanese TBEV were analyzed. It is shown, from the phylogenetic analysis, that Japanese TBEV belongs to the Far Eastern subtype, which is known to be highly pathogenic. Japanese TBEV was divided into three groups, and TBEV was inferred to have been transmitted between Japan and Russia at least three times, which were estimated to have occurred several hundred years ago. These results indicate that TBEV has not only been endemic but also transmitted multiple times to Japan.  相似文献   

15.
Because of its wide host‐range and capacity for transmission of multiple pathogens, Ixodes icinus poses a constant threat of human infection. Borrelia burgdorferi is the most prevalent tick‐borne pathogen affecting humans (Lyme Borreliosis), tick‐borne‐encephalitis (TBE) the most important viral tick‐borne disease in Europe. In natural foci the pathogens circulate between infected small mammals and ticks. Knowing the lifecycle of I.ricinus, their multistrategies for host finding, attachment and blood ingestion, we may understand, what makes the tick such an excellent vector. Instructions for individual behaviour in tick areas to avoid tick contact are given. Since transmission is closely related to the feeding period it is helpful to remove an attached tick as soon as possible. Protection against tick‐borne encephalitis by vaccination is possible.  相似文献   

16.
Tick vector systems are comprised of complex climate‐tick‐host‐landscape interactions that are difficult to identify and estimate from empirical observations alone. We developed a spatially‐explicit, individual‐based model, parameterized to represent ecological conditions typical of the south‐central United States, to examine effects of shifts in the seasonal occurrence of fluctuations of host densities on tick densities. Simulated shifts in the seasonal occurrence of periods of high and low host densities affected both the magnitude of unfed tick densities and the seasonality of tick development. When shifting the seasonal densities of all size classes of hosts (small, medium, and large) synchronously, densities of nymphs were affected more by smaller shifts away from the baseline host seasonality than were densities of larval and adult life stages. When shifting the seasonal densities of only a single size‐class of hosts while holding other size classes at their baseline levels, densities of larval, nymph, and adult life stages responded differently. Shifting seasonal densities of any single host‐class earlier resulted in a greater increase in adult tick density than when seasonal densities of all host classes were shifted earlier simultaneously. The mean densities of tick life stages associated with shifts in host densities resulted from system‐level interactions of host availability with tick phenology. For example, shifting the seasonality of all hosts ten weeks earlier resulted in an approximately 30% increase in the relative degree of temporal co‐occurrence of actively host‐seeking ticks and hosts compared to baseline, whereas shifting the seasonality of all hosts ten weeks later resulted in an approximately 70% decrease compared to baseline. Differences among scenarios in the overall presence of active host‐seeking ticks in the system were due primarily to the degree of co‐occurrence of periods of high densities of unfed ticks and periods of high densities of hosts.  相似文献   

17.
18.
19.
The tick Ixodes ricinus has been recorded in most Italian regions especially in thermo-mesophilous woods and shrubby habitats where the relative humidity allow the tick to complete its 3 year developmental cycle, as predicted for the European climatic ranges. This tick acts both as vector and reservoir for a series of wildlife zoonotic pathogens, especially the agents of Lyme diseases, Tick borne encephalitis and Human Granulocytic Ehrlichiosis, which are emerging in most of Europe. To assess the spatial distribution of these pathogens and the infection risk for humans and animals within the territory of the Province of Trento, we carried out a long term study using a combination of eco-epidemiological surveys and mathematical modelling. An extensive tick collection with a GIS based habitat suitability analysis allowed us to identify the areas where tick occurs at various density. To identify the areas with higher infection risk, we estimated the values of R0 for Borrelia burgdorferi s.l., TBE virus and Anaplasma phagocytophila under different ecological conditions. We assessed the infection prevalence in the vector and in the wildlife reservoir species that play a central role in the persistence of these infections, ie the small mammals A. flavicollis and C. glareolus. We also considered the double effect of roe deer (Capreolus capreolus) which act as reservoir for A. phagocytophila but is an incompetent host for B. burgdorferi and TBE virus, thus reducing the infection prevalence in ticks of these last two pathogens. Infection prevalence with B. burgdorferi and A. phagocytophila in the vector was assessed by PCR screening 1212 I. ricinus nymphs collected by dragging in six main study areas during 2002. The mean infection prevalence recorded was 1.32% for B. burgdorferi s.l. and 9.84% for A. phagocytophila. Infection prevalence in nymphs with TBE virus, as assessed in a previous study was 0.03%. Infection prevalence in rodents was assessed by screening (with ELISA and PCR) tissues and blood samples collected from 367 rodent individuals trapped extensively during 2002 within 6 main study areas. A. flavicollis (N=238) was found to be infected with all three pathogens investigated, with infection prevalence ranging from 3.3% for TBE virus to 11.7% for A. phagocytophila, and 16.6% with B. burgdorferi s.l. C. glareolus (N=108) showed an infection prevalence of 6.5% with A. phagocytophila and 12.7% with B. burgdorferi s.l., while no individuals were infected with TBE virus. We also screened 98 spleen samples collected from roe deer with PCR, resulting in a mean prevalence of infection with A. phagocytophila of 19.8%. Using a deterministic model we explored the condition for diseases persistence under different rodent and roe deer densities. R0 values resulted largely above 1 for B. burgdorferi s.l. in the vast majority of the areas classified as suitable for I. ricinus occurrence in Trentino, while the condition for TBE persistence appeared to be more restricted by a combination of climatic condition and host densities.  相似文献   

20.
With global warming and lush forest change, vector-borne infections are expected to increase in the number and diversity of agents. Since the first report of severe fever with thrombocytopenia syndrome (SFTS) in 2013, the number of reported cases has increased annually in South Korea. However, although tick-borne encephalitis virus (TBEV) was detected from ticks and wild rodents, there is no human TBE case report in South Korea. This study aimed to determine the seroprevalence of TBEV and SFTS virus (SFTSV) among forest and field workers in South Korea. From January 2017 to August 2018, a total 583 sera were obtained from the forest and field workers in South Korea. IgG enzyme-linked immunosorbent assay (ELISA) and neutralization assay were conducted for TBEV, and indirect immunofluorescence assay (IFA) and neutralization assay were performed for SFTSV. Seroprevalence of TBEV was 0.9% (5/583) by IgG ELISA, and 0.3% (2/583) by neutralization assay. Neutralizing antibody against TBEV was detected in a forest worker in Jeju (1:113) and Hongcheon (1:10). Only 1 (0.2%) forest worker in Yeongju was seropositive for SFTSV by IFA (1:2,048) and neutralizing antibody was detected also. In conclusion, this study shows that it is necessary to raise the awareness of physicians about TBEV infection and to make efforts to survey and diagnose vector-borne diseases in South Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号