首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study quantifies the proximal articular surface shape of metatarsal (MT) 4 and MT 5 using three-dimensional morphometrics. Humans and apes are compared to test whether they have significantly different shapes that are skeletal correlates to comparative lateral foot function. In addition, shod and unshod humans are compared to test for significant differences in surface shape. The MT 4 fossils OH 8, Stw 628, and AL 333-160, and the MT 5 fossils AL 333-13, AL 333-78, OH 8, and Stw 114/115 are compared with humans and apes to assess whether they bear greater similarities to humans, which would imply a relatively stable lateral foot, or to apes, which would imply a flexible foot with a midfoot break. Apes have a convex curved MT 4 surface, and humans have a flat surface. The MT 4 fossils show greater similarity to unshod humans, suggesting a stable lateral foot. Unshod humans have a relatively flatter MT 4 surface compared with shod humans. There is much overlap in MT 5 shape between humans and apes, with more similarity between humans and Gorilla. The fossil MT 5 surfaces are generally flat, most similar to humans and Gorilla. Because of the high degree of shape overlap between humans and apes, one must use caution in interpreting lateral foot function from the proximal MT 5 surface alone.  相似文献   

2.
The functional anatomy of the hominin foot has played a crucial role in studies of locomotor evolution in human ancestors and extinct relatives. However, foot fossils are rare, often isolated, and fragmentary. Here, we describe a complete hominin second metatarsal (StW 89) from the 2.0-2.6 million year old deposits of Member 4, Sterkfontein Cave, South Africa. Like many other fossil foot bones, it displays a mosaic of derived human-like features and primitive ape-like features. StW 89 possesses a domed metatarsal head with a prominent sulcus, indicating dorsiflexion at the metatarsophalangeal joint during bipedal walking. However, while the range of motion at the metatarsophalangeal joint is human-like in dorsiflexion, it is ape-like in plantarflexion. Furthermore, StW 89 possesses internal torsion of the head, an anatomy decidedly unlike that found in humans today. Unlike other hominin second metatarsals, StW 89 has a dorsoplantarly gracile base, perhaps suggesting more midfoot laxity. In these latter two anatomies, the StW 89 second metatarsal is quite similar to the recently described second metatarsal of the partial foot from Burtele, Ethiopia. We interpret this combination of anatomies as evidence for a low medial longitudinal arch in a foot engaged in both bipedal locomotion, but also some degree of pedal, and perhaps even hallucal, grasping. Additional fossil evidence will be required to determine if differences between this bone and other second metatarsals from Sterkfontein reflect normal variation in an evolving lineage, or taxonomic diversity.  相似文献   

3.
Z. Lu  D.J. Meldrum  Y. Huang  J. He  E.E. Sarmiento 《HOMO》2011,62(6):389-401
Bipedalism has long been recognized as the seminal adaptation of the hominin radiation and thus used to distinguish hominins from great ape fossils. Notwithstanding preconceptions and varied interpretations, the distinctive features of the modern human foot and accompanying striding gait, appear to be recent innovations that are largely absent in the earliest facultative bipeds. These distinctive features are mainly components of fixed longitudinal and transverse pedal arches, and of a uniquely derived hallucal metatarsophalangeal joint. They enhance ankle joint plantar flexor function and accommodate localized peak plantar pressures at the medial ball during terminal stance. To date, the paleontological record has yielded very little of the hominin foot, especially of the Middle Pleistocene hominins. New specimens from this time interval should help provide insights into the timing and pattern of what appears to be a mosaic pattern of evolution of the modern human foot features. Here we describe the fossil hominin foot skeleton recovered from the Jinniushan site, Liaoning Province, People's Republic of China. It affords a singular glimpse of the pedal morphology of a late Middle Pleistocene hominin (c.f. Homo heidlebergensis). Dated to 200 ka or older, this foot offers the earliest evidence for increased stability of the medial longitudinal arch, while retaining a number of primitive features apparently characteristic of robust premodern hominins, including lower arches and a less stable hallucal metatarsophalangeal joint (medial ball) than in modern humans. These features reflect different foot capabilities and suggest the bipedal stride of the Jinniushan hominin differed subtlety from that of modern humans.  相似文献   

4.
Olduvai Hominid 8 (OH 8), an articulating set of fossil hominin tarsal and metatarsal bones, is critical to interpretations of the evolution of hominin pedal morphology and bipedal locomotion. It has been suggested that OH 8 may represent the foot of a subadult and may be associated with the OH 7 mandible, the type specimen of Homo habilis. This assertion is based on the presence of what may be unfused distal metatarsal epiphyses. Accurately assessing the skeletal maturity of the OH 8 foot is important for interpretations of the functional morphology and locomotor behavior of Plio-Pleistocene hominins. In this study, we compare metatarsal fusion patterns and internal bone morphology of the lateral metatarsals among subadult hominines (85 modern humans, 48 Pan, and 25 Gorilla) to assess the likelihood that OH 8 belonged to either an adult or subadult hominin. Our results suggest that if OH 8 is indeed from a subadult, then it displays a metatarsal developmental pattern that is unobserved in our comparative sample. In OH 8, the fully fused base of the first metatarsal and the presence of trabecular bone at the distal ends of the second and third metatarsal shafts make it highly improbable that it belonged to a subadult, let alone a subadult that matches the developmental age of the OH 7 mandible. In total, the results of this study suggest that the OH 8 foot most likely belonged to an adult hominin.  相似文献   

5.

Objectives

To advance our understanding of the evolution of the hominin foot by quantifying integration and responses to selection in the foot of modern humans.

Materials and Methods

The sample includes 247 female and male adult individuals from Euro-American, Afro-American, European, and Amerindian populations. We collected 190 linear measurements from the 26 skeletal elements that constitute the modern human foot. With these data, we calculated the magnitudes of integration and the ability of the foot to respond to selection demands.

Results

The results revealed that distal phalanges are less integrated, more evolvable, and more flexible than proximal elements (i.e., proximal phalanges and metatarsals). Also, bones from the medial ray (e.g., hallux) show stronger integration and weaker evolvability than their counterparts from the lateral column (e.g., fifth ray), following this trend from medial to lateral positions. Among the tarsals, the talus and calcaneus are the most integrated, least evolvable, and flexible elements from that module.

Discussion

These results suggest that selection for bipedalism would have reorganized the variance/covariance matrix of the foot. The hallux might have been under strong functional selection pressures for bipedal requirements, resulting in a strong integration and low evolvability. Also, differences in the developmental process of each bone seem to have played an essential role in the degree of evolvability, showing those elements that develop earlier have less ability to respond to selection demands.  相似文献   

6.
Fossil evidence for longitudinal arches in the foot is frequently used to constrain the origins of terrestrial bipedality in human ancestors. This approach rests on the prevailing concept that human feet are unique in functioning with a relatively stiff lateral mid-foot, lacking the significant flexion and high plantar pressures present in non-human apes. This paradigm has stood for more than 70 years but has yet to be tested objectively with quantitative data. Herein, we show that plantar pressure records with elevated lateral mid-foot pressures occur frequently in healthy, habitually shod humans, with magnitudes in some individuals approaching absolute maxima across the foot. Furthermore, the same astonishing pressure range is present in bonobos and the orangutan (the most arboreal great ape), yielding overlap with human pressures. Thus, while the mean tendency of habitual mechanics of the mid-foot in healthy humans is indeed consistent with the traditional concept of the lateral mid-foot as a relatively rigid or stabilized structure, it is clear that lateral arch stabilization in humans is not obligate and is often transient. These findings suggest a level of detachment between foot stiffness during gait and osteological structure, hence fossilized bone morphology by itself may only provide a crude indication of mid-foot function in extinct hominins. Evidence for thick plantar tissues in Ardipithecus ramidus suggests that a human-like combination of active and passive modulation of foot compliance by soft tissues extends back into an arboreal context, supporting an arboreal origin of hominin bipedalism in compressive orthogrady. We propose that the musculoskeletal conformation of the modern human mid-foot evolved under selection for a functionally tuneable, rather than obligatory stiff structure.  相似文献   

7.
刘武  吴秀杰 《人类学学报》2022,41(4):563-575
近年对许家窑、许昌、华龙洞、澎湖、夏河、哈尔滨等人类化石开展的系统研究,引发了学界对中更新世晚期人类演化及分类的不同认识。基于对相关中国人类化石形态特征的分析,作者提出这一时期中国人类化石形态特征表现为四种类型:1)以中更新世晚期人类共有特征为主;2)以原始特征为主;3)以现代特征为主;4)独特形态组合。多数化石形态特征表现为前三种类型,而许昌和许家窑这种以硕大的头骨和巨大颅容量构成的独特形态组合在其他同时期化石还没有发现。化石形态的多样性提示,不同类型的中更新世晚期中国古人类对现代人的形成贡献不同。作者认为在该时期的人类化石形态多样性规律还未阐明的情况下,将具有混合或镶嵌特征的相关人类化石归入分类地位不确定的人群较为合适。  相似文献   

8.
In the 1930s subadult hominin remains and Mousterian artifacts were discovered in the Teshik‐Tash cave in South Uzbekistan. Since then, the majority of the scientific community has interpreted Teshik‐Tash as a Neanderthal. However, some have considered aspects of the morphology of the Teshik‐Tash skull to be more similar to fossil modern humans such as those represented at Skhūl and Qafzeh, or to subadult Upper Paleolithic modern humans. Here we present a 3D geometric morphometric analysis of the Teshik‐Tash frontal bone in the context of developmental shape changes in recent modern humans, Neanderthals, and early modern humans. We assess the phenetic affinities of Teshik‐Tash to other subadult fossils, and use developmental simulations to predict possible adult shapes. We find that the morphology of the frontal bone places the Teshik‐Tash child close to other Neanderthal children and that the simulated adult shapes are closest to Neanderthal adults. Taken together with genetic data showing that Teshik‐Tash carried mtDNA of the Neanderthal type, as well as its occipital bun, and its shovel‐shaped upper incisors, these independent lines of evidence firmly place Teshik‐Tash among Neanderthals. Am J Phys Anthropol, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
The formation of lateral enamel in Neandertal anterior teeth has been the subject of recent studies. When compared to the anterior teeth of modern humans from diverse regions (Point Hope, Alaska; Newcastle upon Tyne, England; southern Africa), Neandertal anterior teeth appear to fall within the modern human range of variation for lateral enamel formation time. However, the lateral enamel growth curves of Neandertals are more linear than those of these modern human samples. Other researchers have found that the lateral enamel growth curves of Neandertals are more linear than those of Upper Paleolithic and Mesolithic modern humans as well. The statistical significance of this apparent difference between Neandertal and modern human lateral enamel growth curves is analyzed here. The more linear Neandertal enamel growth curves result from the smaller percentage of total perikymata located in the cervical halves of their teeth. The percentage of total perikymata in the cervical halves of teeth is therefore compared between the Neandertal sample (n=56 teeth) and each modern human population sample: Inuit (n=65 teeth), southern African (n=114 teeth), and northern European (n=115 teeth). There are 18 such comparisons (6 tooth types, Neandertals vs. each of the three modern human populations). Eighteen additional comparisons are made among the modern human population samples. Statistically significant differences are found for 16 of the 18 Neandertal vs. modern human comparisons but for only two of the 18 modern human comparisons. Statistical analyses repeated for subsamples of less worn teeth show a similar pattern. Because surface curvature is thought to affect perikymata spacing, we also conducted measurements to assess surface curvature in thirty teeth. Our analysis shows that surface curvature is not a factor in this lateral enamel growth difference between Neandertals and modern humans.  相似文献   

10.
A recently recognized hominin hallucal metatarsal, SK 1813, from Swartkrans bears a suite of primitive and derived traits. Comparisons with extant apes, modern humans, SKX 5017, and Stw 562 reveals similar morphology in all three fossils and that these early hominins, while bipedal, possessed a unique toe-off mechanism. The implications of this are that both primitive and derived traits must be used to establish the total biomechanical pattern.  相似文献   

11.
Bones of the lower extremity have been recovered for up to nine different individuals of Homo floresiensis - LB1, LB4, LB6, LB8, LB9, LB10, LB11, LB13, and LB14. LB1 is represented by a bony pelvis (damaged but now repaired), femora, tibiae, fibulae, patellae, and numerous foot bones. LB4/2 is an immature right tibia lacking epiphyses. LB6 includes a fragmentary metatarsal and two pedal phalanges. LB8 is a nearly complete right tibia (shorter than that of LB1). LB9 is a fragment of a hominin femoral diaphysis. LB10 is a proximal hallucal phalanx. LB11 includes pelvic fragments and a fragmentary metatarsal. LB13 is a patellar fragment, and LB14 is a fragment of an acetabulum. All skeletal remains recovered from Liang Bua were extremely fragile, and some were badly damaged when they were removed temporarily from Jakarta. At present, virtually all fossil materials have been returned, stabilized, and hardened. These skeletal remains are described and illustrated photographically. The lower limb skeleton exhibits a uniquely mosaic pattern, with many primitive-like morphologies; we have been unable to find this combination of ancient and derived (more human-like) features in either healthy or pathological modern humans, regardless of body size. Bilateral asymmetries are slight in the postcranium, and muscle markings are clearly delineated on all bones. The long bones are robust, and the thickness of their cortices is well within the ranges seen in healthy modern humans. LB1 is most probably a female based on the shape of her greater sciatic notch, and the marked degree of lateral iliac flaring recalls that seen in australopithecines such as “Lucy” (AL 288-1). The metatarsus has a human-like robusticity formula, but the proximal pedal phalanges are relatively long and robust (and slightly curved). The hallux is fully adducted, but we suspect that a medial longitudinal arch was absent.  相似文献   

12.
Tibial condyle shape is alleged to vary among fossil tibiae attributed to Australopithecus, and has been argued to reflect functional differences of the knee. Convex anteroposterior curvature of the lateral tibial condyle in A. africanus has been interpreted to indicate a more chimpanzee-like locomotor repertoire than the flatter lateral tibial condyles of A. afarensis (Berger and Tobias, 1996, J. Hum. Evol. 30, 343). Alternatively, Latimer, Ohman, and Lovejoy (1987, Am. J. Phys. Anthropol. 74, 155) have suggested that in response to increased transarticular loads accompanied by larger body mass, joints should become flatter as size increases, both within and among species, so that the variation observed among hominin fossils reflects size alone rather than functional differences. In this study, three-dimensional surface areas of the lateral tibial condyle of humans, chimpanzees, and gorillas were computed using a Digibot II (Digibotics) laser scanner and the DataSculpt v.4.6 engineering software package to evaluate joint surface contours, and compared to two-dimensional surface area and arc and chord length measurements of the anteroposterior and mediolateral axes. Extant species measurements were then compared to those of A. afarensis (A.L. 129-1b, A.L. 288-1aq, A.L. 333x-26, A.L. 333-42) and A. africanus (Stw 514a). Results do not support the hypothesis that A. afarensis and A. africanus differ in condylar topology. They also do not support the hypothesis that joint surfaces become flatter with increased transarticular load accompanying increased body size, as curvature of the lateral tibial condyle in anteroposterior and mediolateral planes is not negatively allometric. However, femoral condylar shape is not included in this study, which may better reflect joint surface responses to increased body size. Finally, there is no basis from this study to reconstruct differences in locomotor behavior among fossil hominin taxa based on lateral tibial condyle morphology.  相似文献   

13.
The brain of modern humans is an evolutionary and developmental outlier: At birth, it has the size of an adult chimpanzee brain and expands by a factor of 2 during the first postnatal year. Large neonatal brain size and rapid initial growth contrast with slow maturation, which extends well into adolescence. When, how, and why this peculiar pattern of brain ontogeny evolved and how it is correlated with structural changes in the brain are key questions of paleoanthropology. Because brains and their ontogenies do not fossilize, indirect evidence from fossil hominin endocasts needs to be combined with evidence from modern humans and our closest living relatives, the great apes. New fossil finds permit a denser sampling of hominin endocranial morphologies along ontogenetic and evolutionary time lines. New brain imaging methods provide the basis for quantifying endocast‐brain relationships and tracking endocranial and brain growth and development noninvasively. Combining this evidence with ever‐more detailed knowledge about actual and fossil “brain genes,” we are now beginning to understand how brain ontogeny and structure were modified during human evolution and what the adaptive significance of these modifications may have been.  相似文献   

14.
Despite the fact that the shoulder is one of the most extensively studied regions in comparative primate and human anatomy, two recent fossil hominin discoveries have revealed quite unexpected morphology. The first is a humerus of the diminutive fossil hominin from the island of Flores, Homo floresiensis (LB1/50), which displays a very low degree of humeral torsion 1 , 2 (Fig. 1; see Box 1). Modern humans have a high degree of torsion and, since this is commonly viewed as a derived feature shared with hominoids, 3 - 6 one would expect all fossil hominins to display high humeral torsion. The second is the recently discovered Australopithecus afarensis juvenile scapula DIK‐1‐1 from Dikika, Ethiopia, which seems to most closely resemble those of gorillas. 7 This specimen is the first nearly complete scapula known for an early hominin and, given the close phylogenetic relationship between humans and chimpanzees suggested by molecular studies, 8 - 13 one would have expected more similarity to chimpanzees among extant hominoids.  相似文献   

15.
A “long‐backed” scenario of hominin vertebral evolution posits that early hominins possessed six lumbar vertebrae coupled with a high frequency of four sacral vertebrae (7:12‐13:6:4), a configuration acquired from a hominin‐panin last common ancestor (PLCA) having a vertebral formula of 7:13:6‐7:4. One founding line of evidence for this hypothesis is the recent assertion that the “Lucy” sacrum (A.L. 288‐1an, Australopithecus afarensis) consists of four sacral vertebrae and a partially‐fused first coccygeal vertebra (Co1), rather than five sacral vertebrae as in modern humans. This study reassesses the number of sacral vertebrae in Lucy by reexamining the distal end of A.L.288‐1an in the context of a comparative sample of modern human sacra and Co1 vertebrae, and the sacrum of A. sediba (MH2). Results demonstrate that, similar to S5 in modern humans and A. sediba, the last vertebra in A.L. 288‐1an exhibits inferiorly‐projecting (right side) cornua and a kidney‐shaped inferior body articular surface. This morphology is inconsistent with that of fused or isolated Co1 vertebrae in humans, which either lack cornua or possess only superiorly‐projecting cornua, and have more circularly‐shaped inferior body articular surfaces. The level at which the hiatus' apex is located is also more compatible with typical five‐element modern human sacra and A. sediba than if only four sacral vertebrae are present. Our observations suggest that A.L. 288‐1 possessed five sacral vertebrae as in modern humans; thus, sacral number in “Lucy” does not indicate a directional change in vertebral count that can provide information on the PLCA ancestral condition. Am J Phys Anthropol 156:295–303, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

16.

Background

In the Plio-Pleistocene, the hominin foot evolved from a grasping appendage to a stiff, propulsive lever. Central to this transition was the development of the longitudinal arch, a structure that helps store elastic energy and stiffen the foot during bipedal locomotion. Direct evidence for arch evolution, however, has been somewhat elusive given the failure of soft-tissue to fossilize. Paleoanthropologists have relied on footprints and bony correlates of arch development, though little consensus has emerged as to when the arch evolved.

Methodology/Principal Findings

Here, we present evidence from radiographs of modern humans (n = 261) that the set of the distal tibia in the sagittal plane, henceforth referred to as the tibial arch angle, is related to rearfoot arching. Non-human primates have a posteriorly directed tibial arch angle, while most humans have an anteriorly directed tibial arch angle. Those humans with a posteriorly directed tibial arch angle (8%) have significantly lower talocalcaneal and talar declination angles, both measures of an asymptomatic flatfoot. Application of these results to the hominin fossil record reveals that a well developed rearfoot arch had evolved in Australopithecus afarensis. However, as in humans today, Australopithecus populations exhibited individual variation in foot morphology and arch development, and “Lucy” (A.L. 288-1), a 3.18 Myr-old female Australopithecus, likely possessed asymptomatic flat feet. Additional distal tibiae from the Plio-Pleistocene show variation in tibial arch angles, including two early Homo tibiae that also have slightly posteriorly directed tibial arch angles.

Conclusions/Significance

This study finds that the rearfoot arch was present in the genus Australopithecus. However, the female Australopithecus afarensis “Lucy” has an ankle morphology consistent with non-pathological flat-footedness. This study suggests that, as in humans today, there was variation in arch development in Plio-Pleistocene hominins.  相似文献   

17.
Most researchers believe that anatomically modern humans (AMH) first appeared in Africa 160-190 ka ago, and would not have reached eastern Asia until ∼50 ka ago. However, the credibility of these scenarios might have been compromised by a largely inaccurate and compressed chronological framework previously established for hominin fossils found in China. Recently there has been a growing body of evidence indicating the possible presence of AMH in eastern Asia ca. 100 ka ago or even earlier. Here we report high-precision mass spectrometric U-series dating of intercalated flowstone samples from Huanglong Cave, a recently discovered Late Pleistocene hominin site in northern Hubei Province, central China. Systematic excavations there have led to the in situ discovery of seven hominin teeth and dozens of stone and bone artifacts. The U-series dates on localized thin flowstone formations bracket the hominin specimens between 81 and 101 ka, currently the most narrow time span for all AMH beyond 45 ka in China, if the assignment of the hominin teeth to modern Homo sapiens holds. Alternatively this study provides further evidence for the early presence of an AMH morphology in China, through either independent evolution of local archaic populations or their assimilation with incoming AMH. Along with recent dating results for hominin samples from Homo erectus to AMH, a new extended and continuous timeline for Chinese hominin fossils is taking shape, which warrants a reconstruction of human evolution, especially the origins of modern humans in eastern Asia.  相似文献   

18.
The Nariokotome Homo erectus has an apparent disjunction of inferred age as judged by dental maturity, by epiphyseal closure and by stature, when compared to modern human norms. On this basis, it has been suggested that this fossil hominin differed in its pattern of growth and development from modern humans. In particular, the characteristic human adolescent growth spurt may not yet have been present, and in this sense H. erectus growth would be more ape-like than human-like. This study tests this conclusion by examining the variation in age as inferred from the maturity indicators in a modern human skeletal population of known age. The results show that all of the maturity indicators used in this analysis underage the test skeletons. Furthermore, there is also no consistency between the indicators; they do not agree in their inferred chronological ages. The disjunction between the maturity indicators in the test skeletons is similar in pattern to the disjunction observed in the Nariokotome Homo erectus. This is particularly true of the relationship between dental age and the other two indicators. These results suggest that the pattern observed in Nariokotome is within the normal range of variation found in modern humans. It does not necessarily indicate a different pattern of growth and development.  相似文献   

19.
What morphological and functional factors allow for the unique and characteristic upright striding walk of the hominin lineage? Predictive models of locomotion that arise from considering mechanisms of energy loss indicate that collision-like losses at the transition between stance limbs are important determinants of bipedal gait. Theoretical predictions argue that these collisional losses can be reduced by having “functional extra legs” which are physically the heel and the toe part of a single anatomical foot. The ideal spacing for these “functional legs” are up to a quarter of a stride length, depending on the model employed. We evaluate the foot in the context of the dynamics of a bipedal system and compare predictions of optimal foot size against empirical data from modern humans, the Laetoli footprint trackways, and chimpanzees walking bipedally. The dynamics-based modeling approach provides substantial insight into how, and why, walking works as it does, even though current models are too simple to make predictions at a level adequate to anticipate specific morphology except at the most general level.  相似文献   

20.
In March 1999, E. Daynes, a sculptor specializing in fossil hominid reconstruction, asked C. Berge to take over the scientific supervision of the reconstruction of two australopithecine post-crania. The heads had been modeled from two skulls found in Hadar (AL 444-2, AL 417). The sculptures were to be represented in a walking stance. The female proportions (AL 417) are estimated from the skeleton of 'Lucy' (AL 288), and the male proportions (AL 444-2) extrapolated from the female ones. Biomechanical and anatomical data (comparison with great apes and humans) are used to reconstruct both dynamic equilibrium and muscular systems. The reconstruction suggests that the fossils moved the pelvis and shoulders extensively when they walked. The hindlimb muscles (such as adductors, gluteal muscles and calf) are fleshy and not or very little tendinous. As indicated by the Laetoli step prints (belonging to a close and contemporaneous species), the foot is adducted during the walk and the support is internal just before take off. In spite of inevitable approximations, such a reconstruction appears to be particularly helpful to bring out morphological and functional traits of the first hominids which are both close to and different from modern humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号