首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Luminescence》2003,18(4):218-223
Studies were performed to compare green ?uorescent protein (GFP)‐transfected and ?re?y luciferase (Luc)‐transfected MCF‐7 human breast tumour cells both in vitro and in vivo. For in vitro studies, cells were serially diluted in 96‐well microplates and analysed using a NightOwl LB 981 Molecular Light Imager and a Victor multilabel reader. For in vivo studies, nude mice were injected either intraperitoneally, intravenously or subcutaneously with transfected cells and then imaged using the NightOwl Imager after intraperitoneal injection of d ‐luciferin for Luc tumours, or excitation at 470 nm for GFP tumours. In vitro imaging studies revealed that both GFP and Luc transfectants were quanti?able. However, the Luc‐transfected cells were detectable at a signi?cantly lower concentration compared to GFP transfectants. In vivo studies demonstrated that GFP‐transfected tumours were detectable as subcutaneous and intraperitoneal tumours but not as deep tissue lesions, whereas Luc‐transfected tumours were detectable as subcutaneous and intraperitoneal tumours and as deep tissue lesions resulting from intraperitoneal or intravenous inoculation. These ?ndings demonstrate that GFP‐transfected cells may be useful for imaging studies of super?cial tumours where both excitation and emission wavelengths are able to penetrate tissues, whereas luciferase‐transfected cells appear superior for imaging studies of primary and metastatic tumours in distant sites and deep tissues. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Thein vivo pattern of firefly luciferase expression in transgenic plants   总被引:5,自引:0,他引:5  
Expression of the firefly luciferase gene in transgenic plants produces light emission patterns when the plants are supplied with luciferin. We explored whether inin vivo pattern of light emission truly reveals the pattern of luciferase gene expression or whether it reflects other parameters such as the availability of the substrate, luciferin, or the tissue-specific distribution of organelles in which luciferase was localized. The tissue-specific distribution of luciferase activity and thein vivo pattern of light were examined when the luciferase gene was driven by different promoters and when luciferase was redirected from the peroxisome, where it is normally targeted, to the chloroplast compartment. It was found that the distribution of luciferase activity closely correlated with the tissue-specific pattern of luciferase mRNA. However, thein vivo light pattern appeared to reflect not only tissue-specific distribution of luciferase activity, but also the pattern of luciferin uptake.  相似文献   

3.
《Luminescence》2002,17(1):43-74
Luciferases are enzymes that emit light in the presence of oxygen and a substrate (luciferin) and which have been used for real‐time, low‐light imaging of gene expression in cell cultures, individual cells, whole organisms, and transgenic organisms. Such luciferin–luciferase systems include, among others, the bacterial lux genes of terrestrial Photorhabdus luminescens and marine Vibrio harveyi bacteria, as well as eukaryotic luciferase luc and ruc genes from firefly species (Photinus) and the sea panzy (Renilla reniformis), respectively. In various vectors and in fusion constructs with other gene products such as green fluorescence protein (GFP; from the jellyfish Aequorea), luciferases have served as reporters in a number of promoter search and targeted gene expression experiments over the last two decades. Luciferase imaging has also been used to trace bacterial and viral infection in vivo and to visualize the proliferation of tumour cells in animal models. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Expression of surface NKG2D ligands on tumour cells, which activates nature killer (NK) cells and CD8+ T cells, is crucial in antitumour immunity. Some types of tumours have evolved mechanisms to suppress NKG2D‐mediated immune cell activation, such as tumour‐derived soluble NKG2D ligands or sustained NKG2D ligands produced by tumours down‐regulate the expression of NKG2D on NK cells and CD8+ T cells. Here, we report that surface NKG2D ligand RAE1ε on tumour cells induces CD11b+Gr‐1+ myeloid‐derived suppressor cell (MDSC) via NKG2D in vitro and in vivo. MDSCs induced by RAE1ε display a robust induction of IL‐10 and arginase, and these MDSCs show greater suppressive activity by inhibiting antigen‐non‐specific CD8+ T‐cell proliferation. Consistently, upon adoptive transfer, MDSCs induced by RAE1ε significantly promote CT26 tumour growth in IL‐10‐ and arginase‐dependent manners. RAE1ε moves cytokine balance towards Th2 but not Th1 in vivo. Furthermore, RAE1ε enhances inhibitory function of CT26‐derived MDSCs and promotes IL‐4 rather than IFN‐γ production from CT26‐derived MDSCs through NKG2D in vitro. Our study has demonstrated a novel mechanism for NKG2D ligand+ tumour cells escaping from immunosurveillance by facilitating the proliferation and the inhibitory function of MDSCs.  相似文献   

6.
Circadian disturbance of clock gene expression is a risk factor for diseases such as obesity, cancer, and sleep disorders. To study these diseases, it is necessary to monitor and analyze the expression rhythm of clock genes in the whole body for a long duration. The bioluminescent reporter enzyme firefly luciferase and its substrate d ‐luciferin have been used to generate optical signals from tissues in vivo with high sensitivity. However, little information is known about the stability of d ‐luciferin to detect gene expression in living animals for a long duration. In the present study, we examined the stability of a luciferin solution over 21 days. l ‐Luciferin, which is synthesized using racemization of d ‐luciferin, was at high concentrations after 21 days. In addition, we showed that bioluminescence of Period1 (Per1) expression in the liver was significantly decreased compared with the day 1 solution, although locomotor activity rhythm was not affected. These results showed that d ‐luciferin should be applied to the mouse within, at most, 7 days to detect bioluminescence of Per1 gene expression rhythm in vivo.  相似文献   

7.
PV1 is an endothelial‐specific protein with structural roles in the formation of diaphragms in endothelial cells of normal vessels. PV1 is also highly expressed on endothelial cells of many solid tumours. On the basis of in vitro data, PV1 is thought to actively participate in angiogenesis. To test whether or not PV1 has a function in tumour angiogenesis and in tumour growth in vivo, we have treated pancreatic tumour‐bearing mice by single‐dose intratumoural delivery of lentiviruses encoding for two different shRNAs targeting murine PV1. We find that PV1 down‐regulation by shRNAs inhibits the growth of established tumours derived from two different human pancreatic adenocarcinoma cell lines (AsPC‐1 and BxPC‐3). The effect observed is because of down‐regulation of PV1 in the tumour endothelial cells of host origin, PV1 being specifically expressed in tumour vascular endothelial cells and not in cancer or other stromal cells. There are no differences in vascular density of tumours treated or not with PV1 shRNA, and gain and loss of function of PV1 in endothelial cells does not modify either their proliferation or migration, suggesting that tumour angiogenesis is not impaired. Together, our data argue that down‐regulation of PV1 in tumour endothelial cells results in the inhibition of tumour growth via a mechanism different from inhibiting angiogenesis.  相似文献   

8.
The epidermal growth factor receptor (EGFR) is frequently activated in a wide range of solid tumours and represents an important therapeutic target. MicroRNAs (miRNAs) have recently been recognized as a rational and potential modality for anti‐EGFR therapies. However, more EGFR‐targeting miRNAs need to be explored. In this study, we identified a novel EGFR‐targeting miRNA, miRNA‐134 (miR‐134), in non‐small‐cell lung cancer (NSCLC) cell lines. Luciferase assays confirmed that EGFR is a direct target of miR‐134. In addition, the overexpression of miR‐134 inhibited EGFR‐related signaling and suppressed NSCLC cells proliferation by inducing cell cycle arrest and/or apoptosis, suggesting that miR‐134 functions as a tumour suppressor in NSCLC. Further mechanistic investigation including RNAi and rescue experiments suggested that the down‐regulation of EGFR by miR‐134 partially contributes to the antiproliferative role of miR‐134. Last, in vivo experiments demonstrated that miR‐134 suppressed tumour growth of A549 xenograft in nude mice. Taken together, our findings suggest that miR‐134 inhibits non‐small cell lung cancer growth by targeting the EGFR.  相似文献   

9.
To characterize the contributions of Dickkopf‐1 (DKK1) towards the induction of vasculogenic mimicry (VM) in non‐small cell lung cancer (NSCLC), we evaluated cohorts of primary tumours, performed in vitro functional studies and generated xenograft mouse models. Vasculogenic mimicry was observed in 28 of 205 NSCLC tumours, while DKK1 was detected in 133 cases. Notably, DKK1 was positively associated with VM. Statistical analysis showed that VM and DKK1 were both related to aggressive clinical course and thus were indicators of a poor prognosis. Moreover, expression of epithelial‐mesenchymal transition (EMT)‐related proteins (vimentin, Slug, and Twist), cancer stem‐like cell (CSC)‐related proteins (nestin and CD44), VM‐related proteins (MMP2, MMP9, and vascular endothelial‐cadherin), and β‐catenin‐nu were all elevated in VM‐positive and DKK1‐positive tumours, whereas the epithelial marker (E‐cadherin) was reduced in the VM‐positive and DKK1‐positive groups. Non‐small cell lung cancer cell lines with overexpressed or silenced DKK1 highlighted its role in the restoration of mesenchymal phenotypes and development of CSC characteristics. Moreover, DKK1 significantly promotes NSCLC tumour cells to migrate, invade and proliferate. In vivo animal studies demonstrated that DKK1 enhances the growth of transplanted human tumours cells, as well as increased VM formation, mesenthymal phenotypes and CSC properties. Our results suggest that DKK1 can promote VM formation via induction of the expression of EMT and CSC‐related proteins. As such, we feel that DKK1 may represent a novel target of NSCLC therapy.  相似文献   

10.
Mesenchymal stem cells (MSCs) are a potential novel delivery system for cell‐based gene therapies. Although tumour necrosis factor (TNF)‐α has been shown to have antitumour activity, its use in therapy is limited by its systemic toxicity. For the present study, we designed lentivirus‐mediated signal peptide TNF‐α‐Tumstatin45–132‐expressing mesenchymal stem cells (SPTT‐MSCs) as a novel anti‐cancer approach. We evaluated the effects of this approach on human prostate cancer cells (PC3 and LNCaP) by co‐culturing them with either SPTT‐MSCs or supernatants from their culture medium in vitro. The antitumour effects and possible mechanisms of action of SPTT‐MSCs were then determined in PC3 cells in vivo. The results showed that efficient TNF‐α‐Tumstatin45–132‐expressing MSCs had been established, and demonstrated that SPTT‐MSCs inhibited the proliferation of and induced apoptosis in prostate cancer cells and xenograft tumours. As would be expected, given the properties of the individual proteins, the TNF‐α‐Tumstatin45–132 fusion exerted potent cytotoxic effects on human prostate cancer cells and tumours via the death receptor‐dependent apoptotic pathway and via antiangiogenic effects. Our findings suggest that SPTT‐MSCs have significant activity against prostate cancer cells, and that they may represent a promising new therapy for prostate cancer.  相似文献   

11.
12.
Our previously published study documented a deregulation of the microRNA miR‐150 in colorectal cancer. Here, we investigated further, in vitro and in vivo, the potential molecular mechanisms underlying the involvement of miR‐150 in colorectal cancer, using the appropriate molecular biological methods. We report that miR‐150 is a key regulator in the tumourigenesis and progression of colorectal cancer, by acting as a tumour suppressor targeting c‐Myb. The current findings suggest that miR‐150 may have important roles in the pathogenesis of colorectal cancer.  相似文献   

13.
Angiogenesis is essential to tumour progression and a precise evaluation of angiogenesis is important for tumour early diagnosis and treatment. The quantitative and dynamic in vivo assessment of tumour angiogenesis can be achieved by molecular magnetic resonance imaging (mMRI). Vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFRs) are the main regulatory systems in angiogenesis and have been used as hot targets for radionuclide‐based molecular imaging. However, little research has been accomplished in targeting VEGF/VEGFRs by mMRI. In our study, we aimed to assess the expression of VEGFR2 in C6 gliomas by using a specific molecular probe with mMRI. The differential uptake of the probe conjugated to anti‐VEGFR2 monoclonal antibody, shown by varied increases in T1 signal intensity during a 2 hr period, demonstrated the heterogeneous expression of VEGFR2 in different tumour regions. Microscopic fluorescence imaging, obtained for the biotin group in the probe with streptavidin‐Cy3, along with staining for cellular VEGFR2 levels, laminin and CD45, confirmed the differential distribution of the probe which targeted VEGFR2 on endothelial cells. The angiogenesis process was also assessed using magnetic resonance angiography, which quantified tumour blood volume and provided a macroscopic view and a dynamic change of the correlation between tumour vasculature and VEGFR2 expression. Together these results suggest mMRI can be very useful in assessing and characterizing the expression of specific angiogenic markers in vivo and help evaluate angiogenesis associated with tumour progression.  相似文献   

14.
Silencing gene expression by small interfering RNAs (siRNAs) has become a powerful tool for the genetic analysis of many animals. However, the rapid degradation of siRNA and the limited duration of its action in vivo have called for an efficient delivery technology. Here, we describe that siRNA complexed with a synthetic collagen poly(Pro‐Hyp‐Gly) (SYCOL) is resistant to nucleases and is efficiently transferred into cells in vitro and in vivo, thereby allowing long‐term gene silencing in vivo. We found that the SYCOL‐mediated local application of siRNA targeting myostatin, coding a negative regulator of skeletal muscle growth, in mouse skeletal muscles, caused a marked increase in the muscle mass within a few weeks after application. Furthermore, in vivo administration of an anti‐luciferase siRNA/SYCOL complex partially reduced luciferase expression in xenografted tumors in vivo. These results indicate a SYCOL‐based non‐viral delivery method could be a reliable simple approach to knockdown gene expression by RNAi in vivo as well as in vitro.  相似文献   

15.
Although unglycosylated HuEpo is fully functional, it has very short serum half‐life. However, the mechanism of in vivo clearance of human Epo (HuEpo) remains largely unknown. In this study, the relative importance of protease‐sensitive sites of recombinant HuEpo (rHuEpo) has been investigated by analysis of structural data coupled with in vivo half‐life measurements. Our results identify α3‐α4 inter‐helical loop region as a target site of lysosomal protease Cathepsin L. Consistent with previously‐reported lysosomal degradation of HuEpo, these results for the first time identify cleavage sites of rHuEpo by specific lysosomal proteases. Furthermore, in agreement with the lowered exposure of the peptide backbone around the cleavage site, remarkably substitutions of residues with bulkier amino acids result in significantly improved in vivo stability. Together, these results have implications for the mechanism of in vivo clearance of the protein in humans. Proteins 2015; 83:1813–1822. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
The present study evaluates the in vitro, in vivo, and ex vivo antithrombotic and anticoagulant effect of two flavonoids: quercetin and quercetin‐3‐O‐β‐d ‐glucoside (isoquercetin). The present results have shown that quercetin and isoquercetin inhibit the enzymatic activity of thrombin and FXa and suppress fibrin clot formation and blood clotting. The prolongation effect of quercetin and isoquercetin against epinephrine and collagen‐induced platelet activation may have been caused by intervention in intracellular signaling pathways including coagulation cascade and aggregation response on platelets and blood. The in vivo and ex vivo anticoagulant efficacy of quercetin and isoquercetin was evaluated in thrombin‐induced acute thromboembolism model and in ICR mice. Our findings showed that in vitro and in vivo inhibitory effects of quercetin were slightly higher than that of quercetin glucoside, whereas in vitro and ex vivo anticoagulant effects of quercetin were weaker than that of quercetin glucoside because of their structural characteristics.  相似文献   

17.
Acquired chemoresistance represents a major obstacle in cancer treatment, the underlying mechanism of which is complex and not well understood. MiR‐425‐5p has been reported to be implicated tumorigenesis in a few cancer types. However, its role in regulating chemoresistance has not been investigated in colorectal cancer (CRC) cells. Microarray analysis was performed in isogenic chemosensitive and chemoresistant HCT116 cell lines to identify differentially expressed miRNAs. miRNA quantitative real‐time PCR was used to detect miR‐425‐5p expression levels between drug resistant and parental cancer cells. MiR‐425‐5p mimic and inhibitor were transfected, followed by CellTiter‐Glo® assay to examine drug sensitivity in these two cell lines. Western Blot and luciferase assay were performed to investigate the direct target of miR‐425‐5p. Xenograft mouse models were used to examine in vivo function of miR‐425‐5p. Our data showed that expression of miR‐425‐5p was significantly up‐regulated in HCT116‐R compared with parental HCT116 cells. Inhibition of miR‐425‐5p reversed chemoresistance in HCT116‐R cells. Programmed cell death 10 (PDCD10) is the direct target of miR‐425‐5p which is required for the regulatory role of miR‐425‐5p in chemoresistance. MiR‐425‐5p inhibitor sensitized HCT116‐R xenografts to chemo drugs in vivo. Our study demonstrated that miR‐425‐5p regulates chemoresistance of CRC cells by modulating PDCD10 expression level both in vitro and in vivo. MiR‐425‐5p may represent a new therapeutic target for the intervention of CRC.  相似文献   

18.
19.
Plants dissipate excess excitation energy as heat by non‐photochemical quenching (NPQ). NPQ has been thought to resemble in vitro aggregation quenching of the major antenna complex, light harvesting complex of photosystem II (LHC‐II). Both processes are widely believed to involve a conformational change that creates a quenching centre of two neighbouring pigments within the complex. Using recombinant LHC‐II lacking the pigments implicated in quenching, we show that they have no particular role. Single crystals of LHC‐II emit strong, orientation‐dependent fluorescence with an emission maximum at 680 nm. The average lifetime of the main 680 nm crystal emission at 100 K is 1.31 ns, but only 0.39 ns for LHC‐II aggregates under identical conditions. The strong emission and comparatively long fluorescence lifetimes of single LHC‐II crystals indicate that the complex is unquenched, and that therefore the crystal structure shows the active, energy‐transmitting state of LHC‐II. We conclude that quenching of excitation energy in the light‐harvesting antenna is due to the molecular interaction with external pigments in vitro or other pigment–protein complexes such as PsbS in vivo, and does not require a conformational change within the complex.  相似文献   

20.
MDR1 is highly expressed in MDR A2780DX5 ovarian cancer cells, MDR SGC7901R gastric cancer cells and recurrent tumours. It pumps cytoplasmic agents out of cells, leading to decreased drug accumulation in cells and making cancer cells susceptible to multidrug resistance. Here, we identified that miR‐495 was predicted to target ABCB1, which encodes protein MDR1. To reduce the drug efflux and reverse MDR in cancer cells, we overexpressed a miR‐495 mimic in SGC7901R and A2780DX cells and in transplanted MDR ovarian tumours in vivo. The results indicated that the expression of MDR1 in the above cells or tumours was suppressed and that subsequently the drug accumulation in the MDR cells was decreased, cell death was increased, and tumour growth was inhibited after treatment with taxol‐doxorubicin, demonstrating increased drug sensitivity. This study suggests that pre‐treatment with miR‐495 before chemotherapy could improve the curative effect on MDR1‐based MDR cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号