首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatocytes are an important physiological model for evaluation of metabolic and biological effects of xenobiotics. They do not proliferate in culture and are extremely sensitive to damage during freezing and thawing, even after the addition of classical cryoprotectants. Thus improved cryopreservation techniques are needed to reduce cell injury and functional impairment. Here, we describe a new and efficient cryopreservation method, which permits long-term storage and recovery of large quantities of healthy cells that maintain high hepatospecific functions. In culture, the morphology of hepatocytes cryopreserved with wheat protein extracts (WPE) was similar to that of fresh cells. Furthermore, hepatospecific functions such as albumin secretion and biotransformation of ammonium to urea were well maintained during 4 days in culture. Inductions of CYP1A1 and CYP2B in hepatocytes cryopreserved with WPEs were similar to those in fresh hepatocytes. These findings clearly show that WPEs are an excellent cryopreservant for primary hepatocytes. The extract was also found to cryopreserve other human and animal cell types such as lung carcinoma, colorectal adenocarcinoma, Chinese hamster ovary transfected with TGF-b1 cDNA, cervical cancer taken from Henrietta Lacks, intestinal epithelium, and T cell leukemia. WPEs have potential as a universal cryopreservant agent of mammalian cells. It is an economic, efficient and non-toxic agent.  相似文献   

2.
Efficient cryopreservation of cells at ultralow temperatures requires the use of substances that help maintain viability and metabolic functions post‐thaw. We are developing new technology where plant proteins are used to substitute the commonly‐used, but relatively toxic chemical dimethyl sulfoxide. Recombinant forms of four structurally diverse wheat proteins, TaIRI‐2 (ice recrystallization inhibition), TaBAS1 (2‐Cys peroxiredoxin), WCS120 (dehydrin), and TaENO (enolase) can efficiently cryopreserve hepatocytes and insulin‐secreting INS832/13 cells. This study shows that TaIRI‐2 and TaENO are internalized during the freeze–thaw process, while TaBAS1 and WCS120 remain at the extracellular level. Possible antifreeze activity of the four proteins was assessed. The “splat cooling” method for quantifying ice recrystallization inhibition activity (a property that characterizes antifreeze proteins) revealed that TaIRI‐2 and TaENO are more potent than TaBAS1 and WCS120. Because of their ability to inhibit ice recrystallization, the wheat recombinant proteins TaIRI‐2 and TaENO are promising candidates and could prove useful to improve cryopreservation protocols for hepatocytes and insulin‐secreting cells, and possibly other cell types. TaENO does not have typical ice‐binding domains, and the TargetFreeze tool did not predict an antifreeze capacity, suggesting the existence of nontypical antifreeze domains. The fact that TaBAS1 is an efficient cryoprotectant but does not show antifreeze activity indicates a different mechanism of action. The cryoprotective properties conferred by WCS120 depend on biochemical properties that remain to be determined. Overall, our results show that the proteins' efficiencies vary between cell types, and confirm that a combination of different protection mechanisms is needed to successfully cryopreserve mammalian cells.  相似文献   

3.
Zonal expression of hepatocytic marker enzymes during liver repopulation   总被引:1,自引:1,他引:0  
Hepatocytes are metabolically specialised cells displaying distinctive gene expression patterns within the liver lobule. Here, we investigate whether pre-cultured adult rat hepatocytes adopt periportal and pericentral enzyme expression following their transplantation into the regenerating rat liver. Isolated primary rat hepatocytes, representing a mixture of both periportal and pericentral origin, lost expression of carbamoyl phosphate synthetase I (CPS I) and cytochrome P450 subtype 2B1 (CYP2B1) in culture as shown by immunofluorescence and Western blot analysis. Accordingly, urea synthesis and CYP2B1 enzyme activity decreased. Hepatocytes from DPPIV (CD26) wild type rats were cultured for 4 and 7 days, and then transplanted into the livers of CD26 deficient rats following prior treatment with retrorsine and partial hepatectomy to drive selective donor cell proliferation. CD26 positive donor cells engrafted in the periportal regions and grew in clusters expanding into the parenchyma as time proceeded. Ten weeks after transplantation, cells derived from donors surrounding the portal veins expressed CPS I, but not CYP2B1. The reverse was true for CD26 positive cells in close proximity to the central veins displaying immunoreactivity to CYP2B1, but no longer to CPS I. Hepatocytes lose their specific marker enzyme expression in culture. After transplantation, donor hepatocytes proliferate in the host parenchyma whilst acquiring the position-specific enzyme expression of the surrounding periportal and pericentral host hepatocytes. These results indicate the high degree of plasticity of gene expression in hepatocytes subjected to a change in microenvironment.  相似文献   

4.
本文对乳猪肝细胞短期培养后冻存法和直接冻存法进行比较。采用改良原位两步胶原酶灌注法分离乳猪肝细胞,将肝细胞接种到含10%DMSO、激素、生长因子和10%NBS的RPM1 1640培养基中,用阶段性冻存法保存肝细胞,分别对直接冻存和培养后冻存10天、20天复苏的肝细胞进行培养,动态观察其活率和功能。研究结果表明各组复苏后的肝细胞均保持较高的活率;短期培养后冻存组肝细胞活率、G-6-Pase活性、白蛋白和葡萄糖合成功能及安定转化能力均较直接冻存组为高;LDH活性低于直接冻存组;冻存时间的长短对其白蛋白、尿素和葡萄糖合成功能有一定影响。因此,短期培养后冻存法较直接冻存法为好。  相似文献   

5.
Due to widespread applications of human embryonic stem (hES) cells, it is essential to establish effective protocols for cryopreservation and subsequent culture of hES cells to improve cell recovery. We have developed a new protocol for cryopreservation of dissociated hES cells and subsequent culture. We examined the effects of new formula of freezing solution containing 7.5% dimethylsulfoxide (DMSO) (v/v %) and 2.5% polyethylene glycol (PEG) (w/v %) on cell survival and recovery of hES cells after cryopreservation, and further investigated the role of the combination of Rho‐associated kinase (ROCK) inhibitor and p53 inhibitor on cell recovery during the subsequent culture. Compared with the conventional slow‐freezing method which uses 10% DMSO as a freezing solution and then cultured in the presence of ROCK inhibitor at the first day of culture, we found out that hES cell recovery was significantly enhanced by around 30 % (P < 0.05) by the new freezing solution. Moreover, at the first day of post‐thaw culture, the presence of 10 μM ROCK inhibitor (Y‐27632) and 1 μM pifithrin‐μ together further significantly improved cell recovery by around 20% (P < 0.05) either for feeder‐dependent or feeder‐independent culture. hES cells remained their undifferentiated status after using this novel protocol for cryopreservation and subsequent culture. Furthermore, this protocol is a scalable cryopreservation method for handling large quantities of hES cells. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

6.
In this investigation, we examined the effects of insulin on gene induction responsiveness in primary rat hepatocytes. Cells were cultured for 72 hours either in the absence or presence of 1 μM insulin and then exposed to increasing concentrations of phenobarbital (PB; 0.01–3.5 mM). Culturing in the absence of insulin produced 1.5–2‐fold increases in the induction magnitude of CYP2B1 and CYP2B2 mRNA expression resulting from PB exposures, without altering the bell‐shaped dose‐response curve characteristic of this agent. However, for the CYP3A1 gene, insulin removal led to a pronounced shift in both the PB‐induction magnitude and dose‐response relationships of the induction response, with higher levels of CYP3A1 expression resulting from exposures to lower concentrations of inducer. Insulin removal also reduced the time required to attain maximal induction of CYP2B1/2 and CYP3A1 gene expression. The insulin effects were not specific for PB induction, as insulin deprivation similarly enhanced both dexamethasone‐ and β‐naphthoflavone‐inducible CYP3A1 and CYP1A1 expression profiles, respectively. In contrast, the level of albumin mRNA expression was reduced considerably in cells deprived of insulin. We conclude that insulin is an important regulator of inducible and liver‐specific gene expression in primary rat hepatocytes. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 1–9, 1999  相似文献   

7.
Primary rat hepatocytes were cryopreserved in hormonally-defined medium (HDM) containing 40% (v/v) fetal bovine serum (FBS) and 10% (v/v) dimethyl sulfoxide (DMSO) in liquid N2 for 6 months. After thawing, the cells were immobilized using 2% (w/v) alginate and 0.5% (w/v) chitosan solutions. The capacities of ammonia removal and urea synthesis of the immobilized-thawed hepatocytes were similar to those of immobilized hepatocytes without cryopreservation. This result shows that immobilized hepatocytes after cryopreservation are useful for the development of a bioartificial liver system.  相似文献   

8.
Successful cryopreservation of freshly isolated hepatocytes would significantly decrease the need for freshly-procured livers for the preparation of hepatocytes for experimentation. Hepatocytes can be prepared, cryopreserved, and used for experimentation as needed at different times after isolation. Cryopreservation is especially important for research with human hepatocytes because of the limited availability of fresh human livers. Based on the cumulative experience of this international expert panel, a consensus was reached on the various aspects of hepatocyte cryopreservation, including cryopreservation and thawingprocedures and applications of the cryopreserved hepatocytes. Key to successful cryopreservation includes slow addition of cryopreservants, controlled-rate freezing with adjustment for the heat of crystallization, storage at -150 degrees C, and rapid thawing. There is a general consensus that cryopreserved hepatocytes are useful for short-term xenobiotic metabolism and cytotoxicity evaluation.  相似文献   

9.
Repeated periods of DNA synthesis activity (each period consisting of two to three cycles) separated by intervals of quiescence in primary rat hepatocytes can be stimulated by sequential addition and removal of 2% dimethyl sulfoxide (DMSO) in the presence of epidermal growth factor (EGF). Hepatocytes can be kept in nonproliferating cultures for 7 days in media supplemented with 2% DMSO and EGF. If DMSO is removed while EGF is maintained, rat and human hepatocytes enter a 3 to 4 day period of DNA synthesis that declines rapidly by days 4 and 5. If DMSO is reintroduced into cultures at that point, kept on for 3 more days and removed again, hepatocytes reenter into proliferation with another self-limited response of 3 to 4 days. Similar phenomena can seen with hepatocytes maintained in the presence of 3 mM phenobarbital. These protocols demonstrate that loss of responsiveness to mitogens in primary hepatocyte cultures is not an irreversible process. They also raise the possibility that signals for termination of DNA synthesis in hepatocytes emanate from hepatocytes themselves. These studies also suggest for the first time the possibility of designing in vitro systems that will allow clonal expansion of differential hepatocytes.  相似文献   

10.
We investigated the behavior of primary rat hepatocytes in biochips using a microfluidic platform (the integrated dynamic cell culture microchip). We studied the effects of cell inoculation densities (0.2–0.5 × 106 cells/biochip) and perfusion flow rates (10, 25, and 40 µL/min) during 72 h of perfusion. No effects were observed on hepatocyte morphology, but the levels of mRNA and CYP1A2 activity were found to be dependent on the initial cell densities and flow rates. The dataset made it possible to extract a best estimated range of parameters in which the rat hepatocytes appeared the most functional in the biochips. Namely, at 0.25 × 106 inoculated cells cultivated at 25 µL/min for 72 h, we demonstrated better induction of the expression of all the genes analyzed in comparison with other cell densities and flow rates. More precisely, when primary rat hepatocytes were cultivated at these conditions, the time‐lapse analysis demonstrated an over expression of CYP3A1, CYP2B1, ABCC1b and ABCC2 in the biochips when compared to the postextraction levels. Furthermore, the AHR, CYP1A2, GSTA2, SULT1A1, and UGT1A6 levels remained higher than 50% of the postextraction values whereas values of HNF4α, CEBP, and PXR remained higher than 20% during the duration of the culture process. Nevertheless, an important reduction in mRNA levels was found for the xenosensors CAR and FXR, and the related CYP (CYP2E1, CYP7A1, CYP3A2, and CYP2D2). CYP1A2 functionality was illustrated by 700 ± 100 pmol/h/106 cells resorufin production. This study highlighted the functionality in optimized conditions of primary rat hepatocytes in parallelized microfluidic cultures and their potential for drug screening applications. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:401–410, 2014  相似文献   

11.
To understand the mechanisms of sucrose‐induced acclimation in relation to plant cryopreservation, sugars, sterols, fatty acids of different lipid fractions (neutral lipids, glycolipids and sphingolipids and phospholipids), as well as free fatty acids were analyzed in proliferating meristem cultures of different banana varieties. The four banana varieties that were selected show different post‐thaw shoot regeneration rates (0–53.4%). All mentioned parameters were analyzed using (1) control meristems that were cultured on a normal sucrose concentration (0.09 M), which resulted in low survival after cryopreservation; and (2) 2‐week sucrose precultured meristems (0.4 M). This sucrose preculture, essential for regeneration after cryopreservation, resulted in a significant increase of each of seven sugars detected. The ratio of stigmasterol/sitosterol (St/Si) in sucrose‐pretreated meristems significantly increased. The sucrose pretreatment also resulted in a significant increase of total fatty acid content of the neutral lipid fraction and of the glycolipid and sphingolipid fraction, as well as the total free fatty acid content. The individual fatty acid content of the phospholipids was differently changed by the sucrose pretreatment for the given varieties studied. In most cases, sucrose pretreatment resulted in an increase of the double bond index (DBI) in the neutral lipids and a decrease of DBI in the glycolipids and sphingolipids, in phospholipids as well as in free fatty acids. Principal component analysis of all collected data revealed that (1) for the control material, sucrose and total sugar contents were closely linked to the post‐thaw shoot regeneration, suggesting that sucrose and total sugar may be main limiting factors to survive cryopreservation; (2) accumulation of large quantities of sugars (glucose, fructose, sucrose and total sugar) in sucrose‐pretreated material cannot explain the differences in survival after cryopreservation of the four banana varieties. We assume that a minimal amount of sugars is needed in meristem cultures to survive cryopreservation. Still, other limiting factors do influence the survival following the sucrose pretreatment. We observed that the parameters which are closely linked to the post‐thaw shoot regeneration are a minimal change in the ratios of St/Si, the minimal change of the DBI of phospholipids and free fatty acids, as well as linoleic acid content (C18:2); and (3) inositol, raffinose, myristic acid (C14:0) and oleic acid (C18:1) were present in small quantities; however, they could be correlated to survival after cryopreservation, suggesting that they may be also involved in cryopreservation process.  相似文献   

12.
Hepatocytes cultured on collagen-coated surfaces formed aggregates in WilliamÕs E medium when supplemented with 1–2% dimethyl sulfoxide (DMSO) without causing obvious cellular injury. Hepatocytes in aggregates remained alive and differentiated for more than one month. DMSO decreased the adhesion of hepatocytes to collagen-coated surfaces which may explain the formation of hepatocyte aggregates.  相似文献   

13.
14.
Rat hepatocytes were cryopreserved in hormonally-defined medium (HDM) containing either fetal bovine serum (FBS), glycerol, dimethyl sulfoxide (DMSO), sucrose or a mixture of these as a cryoprotectant. The best survival was with 10% (v/v) DMSO containing 30% (v/v) FBS using 5 x 10(5) hepatocytes ml(-1) at -70 degrees C for 5 d on type I collagen-coated dishes. After thawing, the cell viability was 81% determined by the MTT-test. The cryopreserved hepatocytes had the capacity of albumin synthesis similar to hepatocytes without cryopreservation. This result shows that cryopreservation of rat hepatocyte can be used for the evaluation of hepatic functions.  相似文献   

15.
Primary rat hepatocytes are a widely used experimental model to estimate drug metabolism and toxicity. In currently used two‐dimensional (2D) cell culture systems, typical problems like morphological changes and the loss of liver cell‐specific functions occur. We hypothesize that the use of polymer scaffolds could overcome these problems and support the establishment of three‐dimensional (3D) culture systems in pharmaceutical research. Isolated primary rat hepatocytes were cultured on collagen‐coated nanofibrous scaffolds for 7 days. Cell loading efficiency was quantified via DNA content measurement. Cell viability and presence of liver‐cell‐specific functions (albumin secretion, glycogen storage capacity) were evaluated. The activity of liver‐specific factors was analyzed by immunofluorescent staining. RNA was isolated to establish quantitative real‐time PCR. Our results indicate that primary rat hepatocytes cultured on nanofibrous scaffolds revealed high viability and well‐preserved glycogen storage. Albumin secretion was existent during the entire culture period. Hepatocytes remain HNF‐4 positive, indicating highly preserved cell differentiation. Aggregated hepatocytes re‐established positive signaling for Connexin 32, a marker for differentiated hepatocyte interaction. ZO‐1‐positive hepatocytes were detected indicating formation of tight junctions. Expression of cytochrome isoenzymes was inducible. Altogether the data suggest that nanofibrous scaffolds provide a good in vitro microenvironment for neo tissue regeneration of primary rat hepatocytes. Biotechnol. Bioeng. 2011; 108:141–150. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
17.
Sibutramine is a serotonin–norepine‐phrine reuptake inhibitor that was used for weight‐loss management in obese patients. Even though it was officially withdrawn from the market in 2010, it is still present in some tainted weight‐loss pills (as reported by US Food and Drug Administration). Thus, it is still reasonable to study the effects of this compound. The aim of this work was to investigate the potential of sibutramine to induce CYP1A1/CY3A4 in human cancer cell lines and CYP1A1/2, CYP2A6, CYP2B6, and CYP3A4 in human hepatocytes, a competent model of metabolically active cells. The levels of mRNA and protein of CYP1A1/1A2/3A4/2A6/2B6 were compared with the typical inducers, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD) and rifampicin (RIF) for CYP1A1/2 and for other CYPs, respectively. The mRNA and protein levels of all genes in either cancer cell lines or human hepatocytes were induced when treated with typical inducers but not with sibutramine.  相似文献   

18.
Plant diseases are a serious threat to crop production. The informed use of naturally occurring disease resistance in plant breeding can greatly contribute to sustainably reduce yield losses caused by plant pathogens. The TaLr34res gene encodes an ABC transporter protein and confers partial, durable, and broad spectrum resistance against several fungal pathogens in wheat. Transgenic barley lines expressing TaLr34res showed enhanced resistance against powdery mildew and leaf rust of barley. While TaLr34res is only active at adult stage in wheat, TaLr34res was found to be highly expressed already at the seedling stage in transgenic barley resulting in severe negative effects on growth. Here, we expressed TaLr34res under the control of the pathogen‐inducible HvGer4c promoter in barley. Sixteen independent barley transformants showed strong resistance against leaf rust and powdery mildew. Infection assays and growth parameter measurements were performed under standard glasshouse and near‐field conditions using a convertible glasshouse. Two HvGer4c::Ta‐Lr34res transgenic events were analysed in detail. Plants of one transformation event had similar grain production compared to wild‐type under glasshouse and near‐field conditions. Our results showed that negative effects caused by constitutive high expression of TaLr34res driven by the endogenous wheat promoter in barley can be eliminated by inducible expression without compromising disease resistance. These data demonstrate that TaLr34res is agronomically useful in barley. We conclude that the generation of a large number of transformants in different barley cultivars followed by early field testing will allow identifying barley lines suitable for breeding.  相似文献   

19.
Summary Primary adult rat hepatocytes were cultured in serum-free L15 medium supplemented with 20 mM NaHCO3 and 10 ng/ml epidermal growth factor in a 5% CO2:95% air incubator. The number of cells increased and reached about 180% of the initial value by Day 4, and after 2% dimethyl sulfoxide (DMSO) was added to the culture medium at Day 4, the cells continued to proliferate until Day 6. The number of cells reached about 210% at Day 6 and they were well maintained until Day 18. The cell number gradually decreased with time in culture, but many cells remained for more than 2 mo. On the other hand, without 2% DMSO, the cells proliferated until Day 5, but thereafter they rapidly decreased. After DMSO addition, albumin and transferrin were secreted into the medium and the production of both proteins continued for more than 2 mo. Immunocytochemically both proteins were strongly stained in the cells treated with 2% DMSO. Although the expression of G6Pase in the cells disappeared at Day 6 without DMSO, the cells treated with 2% DMSO recovered G6Pase activity at Day 16. In addition, induction of peroxisomes by 2 mM sodium clofibric acid was clearly shown in the hepatocytes at Day 14 and Day 25 using enzyme-cytochemistry. Ultrastructurally, DMSO-treated hepatocytes had many mitochondria and large peroxisomes with a crystalline nucleoid, and both gap junctions and desmosomes were well developed between the cells even at Day 40. Thus, the number of cells doubled, some differentiated functions of the primary hepatocytes were well restored by the use of 2% DMSO, and these functions were maintained for more than 2 mo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号