首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photosystem II membranes were isolated from chloroplasts of pokeweed (Phytolacca americana) and rendered deficient in Ca2+, an inorganic cofactor of photosynthetic water oxidation. The thermoluminescence properties of such membranes were found to depend on the Ca2+-depleting method used. This feature was analyzed with respect to the thermoluminescence emission that accompanied the recombination reaction between the reduced acceptor QA and the oxidant of the S2 state. It was determined that the differences observed among various preparations of Ca2+-depleted membranes were attributable to the presence or absence of the extrinsic 23 kDa polypeptide on the membranes. The binding of this polypeptide to Ca2+-depleted membranes devoid of the 17 and 23 kDa extrinsic polypeptides caused the thermoluminescence to be emitted at a higher temperature due to a further stabilization of an already abnormally stable S2 state. Addition of the chelators EDTA or EGTA and of citrate brought about a similar response. The conditions required for the upshift of the emission temperature of thermoluminescence strongly resembled those identified by Boussac et al. (FEBS Lett. 277 (1990) 69–74) as responsible for modifying the EPR multiline signal from the S2 state of Ca2+-depleted PS II membranes. Consistent with the authors' interpretation of the reason for this modification, we conclude that the elevated emission temperature of the thermoluminescence emission reflects an abnormal ligand environment of the Mn-center in PS II that may be created by a direct ligation of the added agents to Mn. Evidence is also presented that the return to a normal S2 after an addition of Ca2+ occurs via yet another condition of S2 which, in terms of its thermoluminescence properties, resembles that of Ca2+-depleted membranes before addition of modifying agents, but is not identical to it.  相似文献   

2.
Ca2+ and Cl? ions are essential elements for the oxygen evolution activity of photosystem II (PSII). It has been demonstrated that these ions can be exchanged with Sr2+ and Br?, respectively, and that these ion exchanges modify the kinetics of some electron transfer reactions at the Mn4Ca cluster level (Ishida et al., J. Biol. Chem. 283 (2008) 13330–13340). It has been proposed from thermoluminescence experiments that the kinetic effects arise, at least in part, from a decrease in the free energy level of the Mn4Ca cluster in the S3 state though some changes on the acceptor side were also observed. Therefore, in the present work, by using thin-layer cell spectroelectrochemistry, the effects of the Ca2+/Sr2+ and Cl?/Br? exchanges on the redox potential of the primary quinone electron acceptor QA, Em(QA/QA?), were investigated. Since the previous studies on the Ca2+/Sr2+ and Cl?/Br? exchanges were performed in PsbA3-containing PSII purified from the thermophilic cyanobacterium Thermosynechococcus elongatus, we first investigated the influences of the PsbA1/PsbA3 exchange on Em(QA/QA?). Here we show that i) the Em(QA/QA?) was up-shifted by ca. + 38 mV in PsbA3-PSII when compared to PsbA1-PSII and ii) the Ca2+/Sr2+ exchange up-shifted the Em(QA/QA?) by ca. + 27 mV, whereas the Cl?/Br? exchange hardly influenced Em(QA/QA?). On the basis of the results of Em(QA/QA?) together with previous thermoluminescence measurements, the ion-exchange effects on the energetics in PSII are discussed.  相似文献   

3.
The oxygen evolving complex of photosystem II (PS II) contains three extrinsic polypeptides of approximate molecular weights 16, 23 and 33 kDa. These polypeptides are associated with the roles of Cl-, Ca2+ and Mn2+ in oxygen evolution. We have shown that selective removal of 16 and 23 kDa polypeptides from the above complex by NaCl washing of PS II enriched membrane fragments renders the PS II core complex more susceptible to the herbicide atrazine. On the other hand, when both native and depleted preparations were resupplied with exogenous Ca2+ and Cl-, we obtained a reduction of atrazine inhibition which was much stronger in the depleted preparations than in the native ones. It is concluded that removal of 16 and 23 kDa polypeptides in general, and disorganization of associated Ca2+ and Cl- in particular, enhances atrazine penetration to its sites of action in the vicinity of the PS II complex. The above could be interpreted if we assume a reduced plastoquinone affinity at the QB (secondary plastoquinone electron acceptor) pocket of D1 polypeptide following transmembranous modifications caused by the depletion of these polypeptides.Abbreviations CCCP carbonylcyanide-m-chlorophenylhydrazone - Chl chlorophyll - DCIP 2,6-dichlorophenolindophenol - MES 2-(N-morpholino)ethanesulfonic acid - PMSF phenylmethylsul-phonyfluoride - PS II photosystem II - PAGE polyacrilamide gel electrophoresis  相似文献   

4.
PsbP is an extrinsic protein of PSII having a function of Ca2+ and Cl? retention in the water-oxidizing center (WOC). In order to understand the mechanism how PsbP regulates the Cl? binding in WOC, we examined the effect of PsbP depletion on the protein structures around the Cl? sites using Fourier transform infrared (FTIR) spectroscopy. Light-induced FTIR difference spectra upon the S1→S2 transition were obtained using Cl?-bound and NO3?-substituted PSII membranes in the presence and absence of PsbP. A clear difference in the amide I band changes by PsbP depletion was observed between Cl?-bound and NO3?-substituted PSII samples, indicating that PsbP binding perturbed the protein conformations around the Cl?ion(s) in WOC. It is suggested that PsbP stabilizes the Cl? binding by regulating the dissociation constant of Cl? and/or an energy barrier of Cl? dissociation through protein conformational changes around the Cl? ion(s).  相似文献   

5.
Lumenal extrinsic proteins PsbO, PsbP, and PsbQ of photosystem II (PSII) protect the catalytic cluster Mn4CaO5 of oxygen-evolving complex (OEC) from the bulk solution and from soluble compounds in the surrounding medium. Extraction of PsbP and PsbQ proteins by NaCl-washing together with chelator EGTA is followed also by the depletion of Ca2+ cation from OEC. In this study, the effects of PsbP and PsbQ proteins, as well as Ca2+ extraction from OEC on the kinetics of the reduced primary electron acceptor (QA ?) oxidation, have been studied by fluorescence decay kinetics measurements in PSII membrane fragments. We found that in addition to the impairment of OEC, removal of PsbP and PsbQ significantly slows the rate of electron transfer from QA ? to the secondary quinone acceptor QB. Electron transfer from QA ? to QB in photosystem II membranes with an occupied QB site was slowed down by a factor of 8. However, addition of EGTA or CaCl2 to NaCl-washed PSII did not change the kinetics of fluorescence decay. Moreover, the kinetics of QA ? oxidation by QB in Ca-depleted PSII membranes obtained by treatment with citrate buffer at pH 3.0 (such treatment keeps all extrinsic proteins in PSII but extracts Ca2+ from OEC) was not changed. The results obtained indicate that the effect of NaCl-washing on the QA ? to QB electron transport is due to PsbP and PsbQ extrinsic proteins extraction, but not due to Ca2+ depletion.  相似文献   

6.
《BBA》1987,892(2):224-235
The effects of Cl depletion and removal of the 33 kDa extrinsic protein on the charge stabilization in O2-evolving Photosystem II (PS II) particles were studied by curve fitting and deconvolution of thermoluminescence bands. The following results were obtained. (1) Cl depletion reversibly decreases the redox potential of the S2 state by 60–80 mV, and thereby elevates the recombination temperature of both S2QB and S2QA charge pairs. (2) Removal of the 33 kDa extrinsic protein specifically elevates the recombination temperature of the S2QA charge pair, with practically no effect on the S2QB pair. This was tentatively interpreted as showing that the protein removal decreases the redox potential of both S2 and QB, but not of QA, and, thus, the effects are mutually cancelled for the S2QB pair, but are manifested for the S2QA pair. (3) Deconvolution of glow curves demonstrated that S3 is not formed in Cl-depleted PS II, but is formed in 33 kDa protein-depleted PS II even at a low (20 mM) Cl concentration. Analysis of thermoluminescence oscillations confirmed that Cl depletion interrupts S2-S3 transition, whereas the protein removal interrupts S3-(S4)-S0 transition at mM Cl. (4) Cl depletion by SO2−4 replacement in the absence of 33 kDa protein affected thermoluminescence in a different way from that in the presence of the protein. Based on these findings, the properties of charge pairs in the Cl-depleted PS II particles were discussed in relation to the role of the 33 kDa extrinsic protein.  相似文献   

7.
A hypothesis is proposed to explain the function of Cl- in activating the oxygenevolving complex (OEC) of photosystem II (PS II), based on the results of recent 35Cl-NMR studies. The putative mechanism involves Cl- binding to two types of sites. An intrinsic site is suggested to be composed of three histidyl residues (His 332 and His 337 from D1 and His 337 D2). It is proposed that Cl- binding to this site accelerates the abstraction of H+ from water by raising the pKa's of the histidine imidazole groups. Cl- binding also stimulates the transfer of H+ from this intrinsic site to a set of extrinsic sites on the 33 kD extrinsic polypeptide. The extrinsic Cl- binding sites are suggested to involve four protein domains that are linked together by salt-bridge contacts. Chloride and H+ donated from the intrinsic site attack these intramolecular salt-bridges in a defined sequence, thereby exposing previously inaccessible Cl- and H+ binding sites and stimulating the oxidation of water. This hypothesis also proposes a possible structure for the Mn active site within the D1/D2 complex. Specific amino-acid residues that are likely to participate as Mn lignads are identified on the lumenal portions of the D1 and D2 proteins that are different from those in the L and M subunits of photosynthetic bacteria; the choice of these residues is based on the metal coordination chemistry of these residues, their location within the polypeptide chain, the regularity of their spacing, and their conservation through evolution. The catalytic Mn-binding residues are suggested to be D-61, E-65, E-92, E-98, D-103; D-308, E-329, E-342 and E-333 in D1, and H-62, E-70, H-88, E-97, D-101; E-313, D-334, E-338 and E-345 in D2. Finally, this hypothesis identifies sites on both D2 and the 33 kD extrinsic polypeptide that might be involved in high- and low-affinity Ca2+ binding.To whom correspondence should be addressed  相似文献   

8.
The photosystem II (PSII) manganese-stabilizing protein (PsbO) is known to be the essential PSII extrinsic subunit for stabilization and retention of the Mn and Cl cofactors in the oxygen evolving complex (OEC) of PSII, but its function relative to Ca2+ is less clear. To obtain a better insight into the relationship, if any, between PsbO and Ca2+ binding in the OEC, samples with altered PsbO-PSII binding properties were probed for their potential to promote the ability of Ca2+ to protect the Mn cluster against dark-inhibition by an exogenous artificial reductant, N,N-dimethylhydroxylamine. In the absence of the PsbP and PsbQ extrinsic subunits, Ca2+ and its surrogates (Sr2+, Cd2+) shield Mn atoms from inhibitory reduction (Kuntzleman et al., Phys Chem Chem Phys 6:4897, 2004). The results presented here show that PsbO exhibits a positive effect on Ca2+ binding in the OEC by facilitating the ability of the metal to prevent inhibition of activity by the reductant. The data presented here suggest that PsbO may have a role in the formation of the OEC-associated Ca2+ binding site by promoting the equilibrium between bound and free Ca2+ that favors the bound metal.  相似文献   

9.
Abstract. Net efflux of Cl? was measured potentiometrically (Ag/AgCl electrode) during turgor regulation which was induced by hypotonic treatment (hypotonic turgor regulation) in the alga Lamprothamnium succinctum. The efflux of Cl? reached the peak value (11 μmol m ?2s?1) several minutes after the hypotonic treatment was started and then declined. The efflux of Cl? and inhibition of the cytoplasmic streaming [reflection of an increase in cytoplasmic concentration of free Ca2+([Ca2+]c)] were blocked under a low external concentration of Ca2+ ([Ca2+]e) (0·01 mol m?3) and resumed after raising [Ca2+]e to the normal value (3·9 mol m?3). The decrease in cell-osmotic pressure upon hypotonic treatment was inhibited by lowering either turgor pressure or [Ca2h]e. The inhibition was reflected in decreases of both the efflux of Cl? and the membrane conductance. Recovery of the cytoplasmic streaming from the inhibition was also accelerated by the same treatments. It is concluded that an increase in turgor pressure is continuously sensed by the cells and that continuous presence of external Ca2+ is necessary for the hypotonic turgor regulation.  相似文献   

10.
Xenopus follicles are endowed with specific receptors for ATP, ACh, and AII, transmitters proposed as follicular modulators of gamete growth and maturation in several species. Here, we studied ion‐current responses elicited by stimulation of these receptors and their activation mechanisms using the voltage‐clamp technique. All agonists elicited Cl? currents that depended on coupling between oocyte and follicular cells and on an increase in intracellular Ca2+ concentration ([Ca2+]i), but they differed in their activation mechanisms and in the localization of the molecules involved. Both ATP and ACh generated fast Cl? (FCl) currents, while AII activated an oscillatory response; a robust Ca2+ influx linked specifically to FCl activation elicited an inward current (Iiw,Ca) which was carried mainly by Cl? ions, through channels with a sequence of permeability of SCN? > I? > Br? > Cl?. Like FCl, Iiw,Ca was not dependent on oocyte [Ca2+]i; instead both were eliminated by preventing [Ca2+]i increase in the follicular cells, and also by U73122 and 2‐APB, drugs that inhibit the phospolipase C (PLC) pathway. The results indicated that FCl and Iiw,Ca were produced by the expected, PLC‐stimulated Ca2+‐release and Ca2+‐influx, respectively, and by the opening of ICl(Ca) channels located in the follicular cells. Given their pharmacological characteristics and behavior in conditions of divalent cation deprivation, Ca2+‐influx appeared to be driven through store‐operated, calcium‐like channels. The AII response, which is also known to require PLC activation, did not activate Iiw,Ca and was strictly dependent on oocyte [Ca2+]i increase; thus, ATP and ACh receptors seem to be expressed in a population of follicular cells different from that expressing AII receptors, which were coupled to the oocyte through distinct gap‐junction channels. J. Cell. Physiol. 227: 3457–3470, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

11.
Yih-Kuang Lu 《BBA》2007,1767(6):633-638
The effects of Cl, Mn2+, Ca2+, and pH on extrinsic and intrinsic photosystem II carbonic anhydrase activity were compared. Under the conditions of our in vitro experiments, extrinsic CA activity, located on the OEC33 protein, was optimum at about 30 mM Cl, and strongly inhibited above this concentration. This enzyme is activated by Mn2+ and stimulated somewhat by Ca2+. The OEC33 showed dehydration activity that is optimum at pH 6 or below. In contrast, intrinsic CA activity found in the PSII complex after removal of extrinsic proteins was stimulated by Cl up to 0.4 M. Ca2+ appears to be the required cofactor, which implies that the location of the intrinsic CA activity is in the immediate vicinity of the CaMn4 complex. Up to now, intrinsic CA has shown only hydration activity that is nearly pH independent.  相似文献   

12.
Yuta Taguchi 《BBA》2007,1767(6):535-540
A Fourier transform infrared (FTIR) difference spectrum of the oxygen-evolving Mn cluster upon the S1-to-S2 transition was obtained with Ca2+-depleted photosystem II (PSII) membranes to investigate the structural relevance of Ca2+ to the Mn cluster. Previously, Noguchi et al. [Biochim. Biophys. Acta 1228 (1995) 189] observed drastic changes in the carboxylate stretching region of the S2/S1 FTIR spectrum upon Ca2+ depletion, whereas Kimura and co-workers [Biochemistry 40 (2001) 14061; ibid. 41 (2002) 5844] later claimed that these changes were not ascribed to Ca2+ depletion itself but caused by the interaction of EDTA to the Mn cluster and/or binding of K+ at the Ca2+ site. In the present study, the preparation of the Ca2+-depleted PSII sample and its FTIR measurement were performed in the absence of EDTA and K+. The obtained S2/S1 spectrum exhibited the loss of carboxylate bands at 1587/1562 and 1364/1403 cm− 1 and diminished amide I intensities, which were identical to the previous observations in the presence of EDTA and K+. This result indicates that the drastic FTIR changes are a pure effect of Ca2+ depletion, and provides solid evidence for the general view that Ca2+ is strongly coupled with the Mn cluster.  相似文献   

13.
H.Y. Nakatani  A.W. Rutherford  Y. Inoue 《BBA》1984,766(2):416-423
In this paper, we present the first measurements on thermoluminescence from isolated thylakoids to probe the recombination reactions of S2 (or possibly S3) with Q?B or Q?A, after bicarbonate depletion and its readdition. The effects of bicarbonate depletion on the S2Q?B (or S3O?B) thermoluminescence band was (1) a 6–10°C shift to a higher temperature; (2) a reduction in its intensity upon prolonged depletion; and (3) elimination after the first few flashes of the characteristic period four oscillations in its intensity as a function of the flash number. On the other hand, addition of diuron (3-(3′,4′-dichlorophenyl)-1,1-dimethylurea), which blocks electron flow from Q?A to QB, produced the same thermoluminescence band, at about + 20°C, assigned to S2Q?A recombination, in both depleted and reconstituted samples. These results suggest (1) the initial effect of bicarbonate depletion is to increase the activation energy for S2(S3)Q?B recombination; (2) with further depletion, the incidence of this recombination decreases and the cycling of the S2Q?B and S3Q?B recombination is inhibited through effects at the QB apoprotein; and (3) the depletion effects are fully reversible. It is suggested that a conformational change of the PS II complex in the region of the QB apoprotein is responsible for these effects.  相似文献   

14.
Treatment of Photosystem II particles from spinach chloroplasts with Triton X-100 with 2.6 M urea in the presence of 200 mM NaCl removed 3 polypeptides of 33 kDa, 24 kDa and 18 kDa, but left Mn bound to the particles. The (urea + NaCl)-treated particles could evolve oxygen in 200 mM, but not in 10 mM NaCl. Mn was gradually released with concomitant loss of oxygen-evolution activity in 10 mM NaCl but not in 200 mM Cl?. The NaCl-treated particles, which contained Mn and the 33-kDa polypeptide but not the 24-kDa and 18-kDa polypeptides, did not lose Mn or oxygen-evolution activity in 10 mM NaCl. These observations suggest that the 33-kDa polypeptide maintains the binding of Mn to the oxygen-evolution system and can be functionally replaced by 200 mM Cl?.  相似文献   

15.
《BBA》1986,850(2):380-389
The effects of removal and reconstitution of the three extrinsic proteins on the flash O2 yield were investigated and the following results were obtained. (1) Removal in darkness of the 24 and 16 kDa proteins affected neither the oscillation pattern nor the signal amplitude of the flash O2 yield. However, the signal amplitude was reduced with a factor of 2 in the presence of EDTA and was restored by excess Ca2+. The EDTA treatment did not change the oscillation pattern of the flash O2 yield, but considerably damped the oscillation pattern of thermoluminescence B band. These results suggest a heterogeneity among the centers in binding affinity for Ca2+, and that Ca2+ removal induces an all-or-none type inactivation of O2 evolution but not in the thermoluminescence processes, indicative of an inhibition of the S-state turnover at a specific S-state. (2) Removal in darkness of the 33, 24 and 16 kDa proteins abolished the flash O2 yield, but the inhibited yield was appreciably restored either by reconstitution with the 33 kDa protein or by inclusion of 200 mM Cl in the reaction mixture. The flash O2 yield reconstituted by the 33 kDa protein exhibited a rather normal oscillation pattern accompanied by a slightly increased damping, which could be simulated by assuming a high miss factor (30%) for S3 → S0 transition. The Cl-restored flash O2 yield exhibited a strongly damped oscillation pattern with obscured maxima at the 4th and 8th flashes, which was simulated by assuming a much higher miss factor (70%) for S3 → S0 transition. It was indicated that the Cl-restored O2 evolution considerably differs from the 33 kDa protein-reconstituted O2 evolution with respect to the mechanism of S-state turnover.  相似文献   

16.
Structural roles of functional Ca2+ and Cl ions in photosynthetic oxygen-evolving complexes (OEC) were studied using low- (640–350 cm−1) and mid- (1800–1200 cm−1) frequency S2/S1 Fourier transform infrared (FTIR) difference spectroscopy. Studies using highly active Photosystem (PS) II core particles from spinach enabled the detection of subtle spectral changes. Ca2+-depleted and Ca2+-reconstituted particles produced very similar mid- and low-frequency spectra. The mid-frequency spectrum was not affected by reconstitution with 44Ca isotope. In contrast, Sr2+-substituted particles showed unique spectral changes in the low-frequency Mn–O–Mn mode at 606 cm−1 as well as in the mid-frequency carboxylate stretching modes. The mid-frequency spectrum of Cl-depleted OEC exhibited marked changes in the carboxylate stretching modes and the suppression of protein modes compared with that of Cl-reconstituted OEC. However, Cl-depletion did not exert significant effects on the low-frequency spectrum.  相似文献   

17.
Inhibition of Photosystem II (PS II) activity induced by continuous light or by saturating single turnover flashes was investigated in Ca2+-depleted, Mn-depleted and active PS II enriched membrane fragments. While Ca2+- and Mn-depleted PS II were more damaged under continuous illumination, active PS II was more susceptible to flash-induced photoinhibition. The extent of photoinactivation as a function of the duration of the dark interval between the saturating single turnover flashes was investigated. The active centres showed the most photodamage when the time interval between the flashes was long enough (32 s) to allow for charge recombination between the S2 or S3 and QB to occur. Illumination with groups of consecutive flashes (spacing between the flashes 0.1 s followed by 32 s dark interval) resulted in a binary oscillation of the loss of PS II-activity in active samples as has been shown previously (Keren N, Gong H, Ohad I (1995), J Biol Chem 270: 806–814). Ca2+- and Mn-depleted PS II did not show this effect. The data are explained by assuming that charge recombination in active PS II results in a back reaction that generates P680 triplet and thence singlet oxygen, while in Ca2+- and Mn-depleted PS II charge recombination occurs through a different pathway, that does not involve triplet generation. This correlates with an up-shift of the midpoint potential of QA in samples lacking Ca2+ or Mn that, in term, is predicted to result in the triplet generating pathway becoming thermodynamically less favourable (G.N. Johnson, A.W. Rutherford, A. Krieger, 1995, Biochim. Biophys. Acta 1229, 201–207). The diminished susceptibility to flash-induced photoinhibition in Ca2+- and Mn-depleted PS II is attributed at least in part to this mechanism. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The transient Ca2+ and Ca2+-dependent Cl? currents in the plasma membrane of voltage-clamped cells of the freshwater alga Chara corallina were studied. We used our own earlier proposed method, which utilized a rapid (~10 ms) injection of Ca2+ ions into the cell during the deactivation period of calcium channels after their activation with a positive voltage pulse (injection with a “tail” Ca2+ current). This procedure makes it possible to determine the amplitude of the Ca2+ component in the transient current as well as the amplitude and kinetics of the Cl? component, dependent on the Ca2+ submembrane concentration. The calculated results, which used a cell model that takes the diffusion of Ca2+, the Ca2+-buffering properties of the cytoplasm, and the nonlinear dependence of i Cl on [Ca2+]cyt, as well as the presence of chloroplasts into account, were in good agreement with the actual behavior of transient current in the experiments. It was demonstrated that the duration of the slow stage of [Ca2+]cyt relaxation to the resting level (~10?7 M) (which is related to the function of Ca2+-ATPases), was ~102 s. This suggests that the slow stage determines the duration of the refractory period after generation of the action potential.  相似文献   

19.
The actions of intracellular pH (pH i ) on Ca2+dependent Cl? channels were studied in secretory epithelial cells derived from human colon carcinoma (T84) and in isolated rat parotid acinar cells. Channel currents were measured with the whole cell voltage clamp technique with pipette solutions of different pH. Ca2+dependent Cl? channels were activated by superfusing ionomycin to increase the intracellular calcium concentration ([Ca2+] i ) or by using pipette solutions with buffered Ca2+ levels. Large currents were activated in T84 and parotid cells by both methods with pH i levels of 7.3 or 8.3. Little or no Cl? channel current was activated with pH i at 6.4. We used on-cell patch clamp methods to investigate the actions of low pH i on single Cl? channel current amplitude in T84 cells. Lowering the pH i had little or no effect on the current amplitude of a 8 pS Cl? channel, but did reduce channel activity. These results suggest that cytosolic acidification may be able to modulate stimulus-secretion coupling in fluid-secreting epithelia by inhibiting the activation of Ca2+-activated Cl? channels.  相似文献   

20.
Many heavy metals inhibit electron transfer reactions in Photosystem II (PSII). Cd2+ is known to exchange, with high affinity in a slow reaction, for the Ca2+ cofactor in the Ca/Mn cluster that constitutes the oxygen-evolving center. This results in inhibition of photosynthetic oxygen evolution. There are also indications that Cd2+ binds to other sites in PSII, potentially to proton channels in analogy to heavy metal binding in photosynthetic reaction centers from purple bacteria. In search for the effects of Cd2+-binding to those sites, we have studied how Cd2+ affects electron transfer reactions in PSII after short incubation times and in sites, which interact with Cd2+ with low affinity. Overall electron transfer and partial electron transfer were studied by a combination of EPR spectroscopy of individual redox components, flash-induced variable fluorescence and steady state oxygen evolution measurements. Several effects of Cd2+ were observed: (i) the amplitude of the flash-induced variable fluorescence was lost indicating that electron transfer from YZ to P680+ was inhibited; (ii) QA to QB electron transfer was slowed down; (iii) the S2 state multiline EPR signal was not observable; (iv) steady state oxygen evolution was inhibited in both a high-affinity and a low-affinity site; (v) the spectral shape of the EPR signal from QAFe2+ was modified but its amplitude was not sensitive to the presence of Cd2+. In addition, the presence of both Ca2+ and DCMU abolished Cd2+-induced effects partially and in different sites. The number of sites for Cd2+ binding and the possible nature of these sites are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号