首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The antioxidant behaviors of vitamin E and its analogues, 2, 2, 5, 7, 8-pentamethyl-6-hydroxychroman and l, 2-diacyl-sn-glycero-3-phospho-2?-(hydroxyethyl)-2?, 5?, 7?, 8?-tetramethyl-6?-hydroxychro-man, were studied in unilamellar vesicles. The two analogues scavenged aqueous radicals generated from azo compounds more efficiently than vitamin E. On the other hand, vitamin E scavenged the lipid peroxyl radicals preferentially. It is concluded that the superior antioxidant activity of vitamin E is attributed to its location suitable for breaking the chain propagation reaction.  相似文献   

2.
Exposure to organophosphate insecticides such as fenitrothion (FNT) in agriculture andpublic health has been reported to affect sperm quality. Antioxidants may have a potentialto reduce spermatotoxic effects induced by organophosphate. The present study was carriedout to evaluate the effects of palm oil tocotrienol-rich fraction (TRF) in reducing thedetrimental effects occurring in spermatozoa of FNT-treated rats. Adult maleSprague-Dawley rats were divided into four equal groups: a control group and groups ofrats treated orally with palm oil TRF (200 mg/kg), FNT (20 mg/kg) and palm oil TRF (200mg/kg) combined with FNT (20 mg/kg). The sperm characteristics, DNA damage, superoxidedismutase (SOD) activity, and levels of reduced glutathione (GSH), malondialdehyde (MDA),and protein carbonyl (PC) were evaluated. Supplementation with TRF attenuated thedetrimental effects of FNT by significantly increasing the sperm counts, motility, andviability and decreased the abnormal sperm morphology. The SOD activity and GSH level weresignificantly increased, whereas the MDA and PC levels were significantly decreased in theTRF+FNT group compared with the rats receiving FNT alone. TRF significantly decreased theDNA damage in the sperm of FNT-treated rats. A significant correlation between abnormalsperm morphology and DNA damage was found in all groups. TRF showed the potential toreduce the detrimental effects occurring in spermatozoa of FNT-treated rats.  相似文献   

3.
    
Objective: Isoprostanes are a marker of oxidant stress and atherosclerotic risk, and plasma concentrations are elevated in obesity. Adiponectin is a regulator of insulin sensitivity, and low circulating levels are associated with oxidant stress and obesity. The aim of this study was to determine the effect of vitamin E supplementation on plasma concentrations of 8‐isoprostane and adiponectin in overweight/obese subjects. Research Methods and Procedures: The study was a 6‐month, randomized, double‐blind, placebo‐controlled trial in 80 overweight subjects (60 women and 20 men, BMI >27 kg/m2). Exclusion criteria were serious illness, smoking, or taking antioxidant supplements. Participants were randomized to receive 800 IU/d natural vitamin E (n = 39) or placebo (n = 41) for 3 months with an increase in the dose to 1200 IU/d for a further 3 months. Plasma 8‐isoprostane and adiponectin concentrations were measured at baseline and 3 and 6 months. Results: During 6 months of supplementation with vitamin E, plasma vitamin E concentration increased significantly (p < 0.001) by 76%, and plasma 8‐isoprostane concentrations decreased significantly (?11%, p = 0.03), whereas plasma adiponectin concentrations did not change significantly. Discussion: These findings suggest that supplementation with high‐dose vitamin E decreases systemic oxidative stress and 8‐isoprostane concentrations in overweight/obese individuals. A decrease in plasma 8‐isoprostane has the potential to reduce risk of cardiovascular disease in obesity.  相似文献   

4.
    
The study was undertaken to investigate the influence of alpha-tocopherol (vitamin E) on malondialdehyde (MDA) and glutathione (GSH) levels and catalase (CAT) activity in lung of rats with bleomycin-induced pulmonary fibrosis (PF). Fourteen Wistar-albino rats were randomly divided into two groups of seven animals each. The first group was treated intra-tracheally with bleomycin hydrochloride (BM group); the second group was also instilled with BM but received injections of alpha-tocopherol twice a week (BM + E group). The third group was treated in the same manner with saline solution only, acting as controls (C). There were decreases in GSH level and CAT activity while an increase in MDA level in BM group was found compared to the control group (p < 0.05). Vitamin E had a regulator effect on these parameters. After administration of alpha-tocopherol, the increase in GSH level and CAT activity and the decrease in MDA level were seen in BM + E group compared to BM group (p < 0.05). Distinct histopathological changes were found in the BM group compared to the untreated rats. Less severe fibrotic lesions were also observed in the BM + E group. The results show that vitamin E is effective on the prevention of BM-induced PF, as indicated by differences in the lung levels of oxidants and antioxidants.  相似文献   

5.
    
We performed laboratory experiments to investi‐gate whether the synthesis of the antioxidants α‐tocopherol (vitamin E) and β‐carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe‐ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K‐0591, both good producers of this compound, α‐tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv/Fm). On the other hand, β‐carotene accumulation was positively affected by higher Fv/Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K‐0591 and R. salina SCCAP K‐0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α‐tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β‐carotene performs immediate photo‐oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short‐term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α‐tocopherol and β‐carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo‐synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large‐scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.  相似文献   

6.
    
The aim of this study was to investigate the levels of the oxidant and antioxidant changes in orthodontic tooth movement and the effects of vitamin E on these parameters. For this purpose, 50 orthodontic patients (aged 13-18 years) required non-extracted treatment were divided randomly into the following groups: Control and Vitamin E. Same pre-adjusted appliances were applied to all patients, and vitamin E (300 mg day(-1)) was given during 1 month in vitamin E group. Gingival crevicular fluid was collected and periodontal indexes were recorded at the baseline and after 1 month. Lipid peroxidation (LP) levels as malonyldialdehyde, reduced glutathione (GSH) and glutathione peroxidase (GSH-Px), vitamin C and E levels were measured in the anterior and posterior regions of the dentition. After 1 month, orthodontic treatment LP levels increased in control group in both anterior and posterior regions in vitamin E group. LP levels also increased in vitamin E group in only posterior region. The level of GSH and vitamin C did not change statistically in control and vitamin E groups. Periodontal indexes did not show any differences in comparison with the groups. In conclusion, we observed protective role of vitamin E on LP levels in anterior region of patients with orthodontic tooth movement.  相似文献   

7.
The Function of Tocopherols and Tocotrienols in Plants   总被引:1,自引:0,他引:1  
Referee: Dr. Kozi Asada, Department of Biotechnology, Faculty of Engineering, Fukuyama University, Gakuencho 1, Fukuyama 729-0292, Japan Tocopherols and tocotrienols, which differ only in the degree of saturation of their hydrophobic prenyl side chains, are lipid-soluble molecules that have a number of functions in plants. Synthesized from homogentisic acid and isopentenyl diphosphate in the plastid envelope, tocopherols and tocotrienols are essential to maintain membrane integrity. α-Tocopherol is the major form found in green parts of plants, while tocotrienols are mostly found in seeds. These compounds are antioxidants, thus they protect the plant from oxygen toxicity. Tocopherols and tocotrienols scavenge lipid peroxy radicals, thereby preventing the propagation of lipid peroxidation in membranes, and the ensuing products tocopheroxyl and tocotrienoxyl radicals, respectively, are recycled back to tocopherols and tocotrienols by the concerted action of other antioxidants. Furthermore, tocopherols and tocotrienols protect lipids and other membrane components by physically quenching and reacting chemically with singlet oxygen. The scavenging of singlet oxygen by α-tocopherol in chloroplasts results in the formation of, among other products, α -tocopherol quinone, a known contributor to cyclic electron transport in thylakoid membranes, therefore providing photoprotection for chloroplasts. Moreover, given that α-tocopherol increases membrane rigidity, its concentration, together with that of the other membrane components, might be regulated to afford adequate fluidity for membrane function. Furthermore, α-tocopherol may affect intracellular signaling in plant cells. The effects of this compound in intracellular signaling may be either direct, by interacting with key components of the signaling cascade, or indirect, through the prevention of lipid peroxidation or the scavenging of singlet oxygen. In the latter case, α-tocopherol may regulate the concentration of reactive oxygen species and plant hormones, such as jasmonic acid, within the cell, which control both the growth and development of plants, and also plant response to stress.  相似文献   

8.
Physical restraint has been associated with increased oxidative damage to lipid, protein, and DNA. The purpose of this experiment was to determine whether physical restraint would further exacerbate oxidative stress in mice fed a selenium (Se) and vitamin E (VE) deficient diet. Three-week-old mice were fed a Torula yeast diet containing adequate or deficient Se and VE. Menhaden oil was added to the deficient diet to impose an additional oxidative stress. After 4 wk feeding, half the mice in each group were restrained for 5 d in well-ventilated conical tubes for 8 h daily. Mice fed the Se and VE deficient diets had increased liver thiobarbituric acid-reactive substance (TBARS) levels and decreased liver glutathione peroxidase (GPX1) activity and α-tocopherol levels. Plasma corticosterone levels were elevated in restrained mice fed the deficient diet compared to unrestrained mice fed the adequate diet. Restraint had no effect on liver TBARS or α-tocopherol levels. Liver GPX1 activity, however, was lower in restrained mice fed the adequate diet. In addition, liver superoxide dismutase (SOD) activity was lower in the restrained mice fed the adequate or deficient diet. Thus, under our conditions, Se and VE deficient diet, but not restraint, increased lipid peroxidation in mice. Restraint, however, decreased antioxidant protection in mice due to decreased activities of GPX1 and SOD enzymes.  相似文献   

9.
    
Thyroid hormones are associated with the oxidative and antioxidative status of the organism. Since data on the oxidative status of hypothyroidism are limited and controversial, we investigated the oxidant and antioxidant status and serum paraoxonase/arylesterase activities in propylthiouracil-induced hypothyroidism and examined the effect of vitamin E supplementation on this experimental model. Forty male Sprague Dawley rats were randomly divided into four groups (group 1, control; group 2, control + vitamin E; group 3, propylthiouracil; group 4, propylthiouracil + vitamin E). Plasma, red blood cell, liver, heart and skeletal muscle malondialdehyde levels were increased in the propylthiouracil-treated group compared with the control rats and were decreased in propylthiouracil + vitamin E group compared with the propylthiouracil-treated group. Vitamin E supplementation also significantly increased liver and kidney reduced glutathione levels in propylthiouracil treated animals. Serum paraoxonase and arylesterase activities were decreased in propylthiouracil treated group and vitamin E supplementation caused significant increase in serum paraoxonase activity compared with the propylthiouracil-treated rats. These findings suggest that hypothyroidism is accompanied with increased oxidative stress and vitamin E supplementation exerts beneficial effects on this situation.  相似文献   

10.
    
Pycnogenol® (PYC), a patented combination of bioflavonoids extracted from the bark of French maritime pine (Pinus maritima), scavenges free radicals and promotes cellular health. The protective capacity of PYC against ethanol toxicity of neurons has not previously been explored. The present study demonstrates that in postnatal day 9 (P9) rat cerebellar granule cells the antioxidants vitamin E (VE) and PYC (1) dose dependently block cell death following 400, 800, and 1600 mg/dL ethanol exposure (2) inhibit the ethanol‐induced activation of caspase‐3 in the same model system; and (3) reduce neuronal membrane disruption as assayed by phosphatidylserine translocation to the cell surface. These results suggest that both PYC and VE have the potential to act as therapeutic agents, antagonizing the induction of neuronal cell death by ethanol exposure. © 2004 Wiley Periodicals, Inc. J Neurobiol 59: 261–271, 2004  相似文献   

11.
Alpha-tocopherol (vitamin E) is synthesized from gamma-tocopherol in chloroplasts by gamma-tocopherol methyltransferase (gamma-TMT; VTE4). Leaves of many plant species including Arabidopsis contain high levels of alpha-tocopherol, but are low in gamma-tocopherol. To unravel the function of different forms of tocopherol in plants, an Arabidopsis plant (vte4-1) carrying a functional null mutation in the gene gamma-TMT was isolated by screening a mutant population via thin-layer chromatography. A second mutant allele (vte4-2) carrying a T-DNA insertion in the coding sequence of gamma-TMT was identified in a T-DNA tagged mutant population. In vte4-1 and vte4-2 leaves, high levels of gamma-tocopherol accumulated, whereas alpha-tocopherol was absent indicating that, presumably, these two mutants represents null alleles. Over-expression of the gamma-TMT cDNA in vte4-1 restored wild-type tocopherol composition. Mutant plants were very similar to wild type. During oxidative stress (high light, high temperature, cold treatment) the amounts of alpha-tocopherol and gamma-tocopherol increased in wild type, and gamma-tocopherol in vte4-1. However, chlorophyll content and photosynthetic quantum yield were very similar in wild type and vte4-1, suggesting that alpha-tocopherol can be replaced by gamma-tocopherol in vte4-1 to protect the photosynthetic apparatus against oxidative stress. Fatty acid and lipid composition were very similar in WT, vte4-1 and vte1, an Arabidopsis mutant previously isolated which is completely devoid of tocopherol. Therefore, a shift in tocopherol composition or the absence of tocopherol has no major impact on the amounts of specific fatty acids or on lipid hydrolysis.  相似文献   

12.
We examined the influence of aging upon the uptake of glutamate by synaptosomes, and the oxidation of Synaptosomal vitamin E. Synaptosomes isolated from the cerebral hemispheres of Fischer 344 rats, 4 and 24 months old, were suspended at 37°C in buffer (pH 7.4) simulating extracellular fluid containing 10 mM glucose. The Km for the high affinity uptake of tritium labeled glutamate was 10 M. The uptake of glutamate was lower in synaptosomes from older animals than those from younger animals for periods of up to 20 minutes. Upon incubation with a mixture of ferrous iron and ascorbate, more of the alpha tocopherol in synaptosomes derived from older rats was oxidized than in those derived from younger ones. Older animals may be more susceptible to excitotoxicity because: a) Synaptosomal reuptake of glutamate is less efficient and b) oxidative stress induced by various agents including glutamate may be higher in synaptosomes from the older animal.  相似文献   

13.
    
Oxidative stress after stroke is associated with the inflammatory system activation in the brain. The complement cascade, especially the degradation products of complement component 3, is a key inflammatory mediator of cerebral ischemia. We have shown that pro‐inflammatory complement component 3 is increased by oxidative stress after ischemic stroke in mice using DNA array. In this study, we investigated whether up‐regulation of complement component 3 is directly related to oxidative stress after transient focal cerebral ischemia in mice and oxygen‐glucose deprivation in brain cells. Persistent up‐regulation of complement component 3 expression was reduced in copper/zinc‐superoxide dismutase transgenic mice, and manganese‐superoxide dismutase knock‐out mice showed highly increased complement component 3 levels after transient focal cerebral ischemia. Antioxidant N‐tert‐butyl‐α‐phenylnitrone treatment suppressed complement component 3 expression after transient focal cerebral ischemia. Accumulation of complement component 3 in neurons and microglia was decreased by N‐tert‐butyl‐α‐phenylnitrone, which reduced infarct volume and impaired neurological deficiency after cerebral ischemia and reperfusion in mice. Small interfering RNA specific for complement component 3 transfection showed a significant increase in brain cells viability after oxygen‐glucose deprivation. Our study suggests that the neuroprotective effect of antioxidants through complement component 3 suppression is a new strategy for potential therapeutic approaches in stroke.  相似文献   

14.
《Free radical research》2013,47(5):337-345
Abstract

The major causes for cataract formation are free radicals, and these free radicals are neutralized by the presence of endogenous antioxidants in the eye. Using xenobiotics, it has been confirmed that free radicals mediate the formation of cataract. Two cataract model-selenite model and the diabetic cataract model-have been developed to study the pathophysiology of cataract formation due to free radicals and the role of antioxidants during the process of cataractogenesis. This review focuses on natural compounds with antioxidant properties that could actually be applied as an interventional strategy on a large scale and are also relatively inexpensive. A brief overview of plants with antioxidant properties that in addition possess potential anti-cataract properties has been discussed. In addition to plants, three natural compounds (curcumin, vitamin C and vitamin E), on which a lot of data exist showing anti-cataract and antioxidant activities, have also been discussed. These antioxidants can be supplemented in the diet for a better defence against free radicals. Studies on vitamin C and vitamin E have proved that they are capable of preventing lipid peroxidation, thereby preventing the generation of free radicals, but their efficacy as anti-cataract agent is questionable. Unlike vitamins C and E, curcumin is well established as an anti-cataract agent, but the issue of curcumin bioavailability is yet to be addressed. Nanotechnology proves to be a promising area in increasing the curcumin bioavailability, but still a lot more research needs to be done before the use of curcumin as an effective anti-cataract agent for humans.  相似文献   

15.
Mitochondria-deficient cells (rho(o) cells) survive through enhanced glycolytic metabolism in the presence of pyruvate and uridine. The plasma membrane redox system (PMRS) contains several NAD(P)H-related enzymes and plays a key role in maintaining the levels of NAD(+)/NADH and reduced coenzyme Q. In this study, rho(o) cells were used to investigate how the PMRS is regulated under conditions of mitochondrial dysfunction. rho(o) cells exhibited a lower oxygen consumption rate and higher levels of lactate than parental cells, and were more sensitive to glycolysis inhibitors (2-deoxyglucose and iodoacetamide) than control cells. However, they were more resistant to H(2)O(2), consistent with increased catalase activity and decreased oxidative damage (protein carbonyls and nitrotyrosine). PM-associated redox enzyme activities were enhanced in rho(o) cells compared to those in control cells. Our data suggest that all PMRS enzymes and biomarkers tested are closely related to the ability of the PMs to maintain redox homeostasis. These results illustrate that an up-regulated PM redox activity can protect cells from oxidative stress as a result of an improved antioxidant capacity, and suggest a mechanism by which neurons adapt to conditions of impaired mitochondrial function.  相似文献   

16.
    
This study was designed to evaluate and compare the effect of melatonin, vitamin E and L-carnitine on brain and liver oxidative stress and liver damage. Oxidative stress and hepatic failure were produced by a single dose of thioacetamide (TAA) (150 mg kg(-1)) in Wistar rats. A dose of either melatonin (3 mg kg(-1)) vitamin E (20 mg kg(-1) ) or L-carnitine (100 mg kg(-1)) was used. Blood samples were taken from the neck vasculature in order to determine ammonium, blood urea nitrogen (BUN) and liver enzymes. Lipid peroxidation products, glutathione (GSH) content and antioxidative enzymes were determined in cerebral and hepatic homogenates. The results showed a decrease in BUN and in the antioxidant enzymes activities and GSH in the brain and liver. Likewise, TAA induced significant enhancement of lipid peroxidation products levels in both liver and brain, as well as in ammonia values. Melatonin, vitamin E and L-carnitine, although melatonin more significantly, decreased the intensity of the changes produced by the administration of TAA alone. Furthermore melatonin combined with TAA, decreased the ammonia levels and increased the BUN values compared with TAA animals. Also it was more effective than vitamin E or L-carnitine in these actions. These data show the protective effect of these agents, especially melatonin, against oxidative stress and hepatic damage present in fulminant hepatic failure.  相似文献   

17.
Traumatic brain injury is a well-recognized environmental risk factor for developing Alzheimer's disease. Repetitive concussive brain injury (RCBI) exacerbates brain lipid peroxidation, accelerates amyloid (Abeta) formation and deposition, as well as cognitive impairments in Tg2576 mice. This study evaluated the effects of vitamin E on these four parameters in Tg2576 mice following RCBI. Eleven-month-old mice were randomized to receive either regular chow or chow-supplemented with vitamin E for 4 weeks, and subjected to RCBI (two injuries, 24 h apart) using a modified controlled cortical impact model of closed head injury. The same dietary regimens were maintained up to 8 weeks post-injury, when the animals were killed for biochemical and immunohistochemical analyses after behavioral evaluation. Vitamin E-treated animals showed a significant increase in brain vitamin E levels and a significant decrease in brain lipid peroxidation levels. After RBCI, compared with the group on regular chow, animals receiving vitamin E did not show the increase in Abeta peptides, and had a significant attenuation of learning deficits. This study suggests that the exacerbation of brain oxidative stress following RCBI plays a mechanistic role in accelerating Alphabeta accumulation and behavioral impairments in the Tg2576 mice.  相似文献   

18.
    
Many oncologists contend that patient undergoing chemotherapy must avoid antioxidant supplementation as it may interfere with the activity of the drug. In the present investigation, we have explored the influence of vitamin E, a well‐known antioxidant on Camptothecin (CPT), a potent anti‐cancer drug induced cell apoptosis and death of cervical cancer cells. HeLa cells were treated with different concentrations of CPT in presence and absence of 100 μm vitamin E. Treated cells were subjected to cytotoxicity studies, catalase assay, DNA fragmentation assay, clonogenic assay and flow cytometry based apoptosis detection. Also, Raman spectroscopy a label free technique which provides global information, in conjunction with multivariate tools like PCA, PCLDA and FDA, was investigated to explore vitamin E supplementation induced alterations. Our data based on biochemical and biophysical experimental analysis reveals that CPT causes DNA damage along with protein and lipid alteration culminating in cell death. Importantly, Raman spectroscopic analysis could uniquely differentiate the cluster of control and vitamin E control from CPT and CPT + Vit E treated cells. We conclusively prove that presence of vitamin E at 100 μM concentration shows promising antioxidant activity and displays no modulatory role on CPT induced effect, thereby causing no possible hindrance with the efficacy of the drug. Vitamin E may prove beneficial to alleviate chemotherapy associated side effects in patients during clinical settings which may open the doors further for subsequent exploration in in vivo preclinical studies.   相似文献   

19.
When supplementing lamb diets with vitamin E, an equivalence factor of 1.36 is used to discriminate between RRR-α-tocopheryl acetate and all-rac-α-tocopheryl acetate. However, more recent studies suggest a need for new equivalence factors for livestock animals. The current study aimed to determine the effect of RRR- and all-rac-α-tocopheryl acetate supplementation on α-tocopherol deposition in lamb tissues. A total of 108 Rasa Aragonesa breed lambs were fed increasing amounts of all-rac-α-tocopheryl acetate (0.25, 0.5, 1.0 and 2.0 g/kg compound feed) or RRR-α-tocopheryl acetate (0.125, 0.25, 0.5 and 1.0 g/kg compound feed) by adding them to a basal diet that contained 0.025 g/kg feed of all-rac-α-tocopheryl acetate as part of the standard vitamin and mineral mixture. The diets were fed for the last 14 days before slaughtering at 25.8±1.67 kg BW. Within 20 min after slaughter samples of muscle, heart, liver, brain and spleen were frozen at −20°C until α-tocopherol analysis. Increased supplementation of either vitamin E sources led to a significant increase (P < 0.001) in α-tocopherol concentration in all tissues studied. The tissue with the highest α-tocopherol concentration was the liver followed by spleen, heart and muscle. At similar supplementation levels (0.25, 0.50 and 1.0 g/kg compound feed), α-tocopherol content in the selected tissues was not affected by α-tocopherol source. However, the ratios between RRR- and all-rac-α-tocopheryl acetate increased with the increasing α-tocopherol supplementation (at 0.25 and 1.0 g/kg compound feed), from 1.06 to 1.16 in muscle, 1.07 to 1.15 in heart, 0.91 to 0.94 in liver and 0.98 to 1.10 in spleen. The highest relative proportion of Ʃ2S (sum of SSS-, SSR-, SRS- and SRR-α-tocopherol)-configured stereoisomers was found in the liver of lambs supplemented with all-rac-α-tocopheryl acetate accounting for up to 35 to 39% of the total α-tocopherol retained, whereas the proportion of Ʃ2S-configured stereoisomers in the other tissues accounted for <14%. Increasing all-rac-α-tocopheryl acetate supplementation was also found to affect the 2R-configured stereoisomer profile in muscle, heart and spleen with increasing proportions of RRS-, RSR- and RSS- at the cost of RRR-α-tocopherol. In all tissues, the relative proportion of all non-RRR-stereoisomers in lambs receiving RRR-α-tocopheryl acetate was lower than RRR-α-tocopherol. These results confirm that the relative bioavailability of RRR- and all-rac-α-tocopheryl acetate is dose- and tissue-dependent and that a single ratio to discriminate the two sources cannot be used.  相似文献   

20.
    
Hyperoxia causes acute lung injury along with an increase of oxidative stress and inflammation. It was hypothesized that vitamin E deficiency might exacerbate acute hyperoxic lung injury. This study used α-tocopherol transfer protein knockout (α-TTP KO) mice fed a vitamin E-deficient diet (KO E(-) mice) as a model of severe vitamin E deficiency. Compared with wild-type (WT) mice, KO E(-) mice showed a significantly lower survival rate during hyperoxia. After 72 h of hyperoxia, KO E(-) mice had more severe histologic lung damage and higher values of the total cell count and the protein content of bronchoalveolar lavage fluid (BALF) than WT mice. IL-6 mRNA expression in lung tissue and the levels of 8-iso-prostaglandin F2α (8-iso-PGF2α) in both lungs and BALF were higher in KO E(-) mice than in WT mice. It was concluded that severe vitamin E deficiency exacerbates acute hyperoxic lung injury associated with increased oxidative stress or inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号