首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Efficient production of large quantities of therapeutic antibodies is becoming a major goal of the pharmaceutical industry. We developed a proprietary expression system using a polyprotein precursor-based approach to antibody expression in mammalian cells. In this approach, the coding regions for heavy and light chains are included within a single open reading frame (sORF) separated by an in-frame intein gene. A single mRNA and subsequent polypeptide are produced upon transient and stable transfection into HEK293 and CHO cells, respectively. Heavy and light chains are separated by the autocatalytic action of the intein and antibody processing proceeds to produce active, secreted antibody. Here, we report advances in sORF technology toward establishment of a viable manufacturing platform for therapeutic antibodies in CHO cells. Increasing expression levels and improving antibody processing by intein and signal peptide selection are discussed.  相似文献   

2.
3.
Two different humanized immunoglobulin G1(kappa) antibodies and an Fab' fragment were produced by Aspergillus niger. The antibodies were secreted into the culture supernatant. Both light and heavy chains were initially synthesized as fusion proteins with native glucoamylase. After antibody assembly, cleavage by A. niger KexB protease allowed the release of free antibody. Purification by hydrophobic charge induction chromatography proved effective at removing any antibody to which glucoamylase remained attached. Glycosylation at N297 in the Fc region of the heavy chain was observed, but this site was unoccupied on approximately 50% of the heavy chains. The glycan was of the high-mannose type, with some galactose present, and the size ranged from Hex(6)GlcNAc(2) to Hex(15)GlcNAc(2). An aglycosyl mutant form of antibody was also produced. No significant difference between the glycosylated antibody produced by Aspergillus and that produced by mammalian cell cultures was observed in tests for affinity, avidity, pharmacokinetics, or antibody-dependent cellular cytotoxicity function.  相似文献   

4.
研究利用intein的蛋白质反式剪接功能在大肠杆菌中对凝血VIII因子(FVIII)重链和轻链的连接作用,将B结构域大部分缺失型FVIII(BDD-FVIII)于满足剪接所需的保守性氨基酸Ser1657前断裂为重链和轻链,分别与split mini Ssp DnaB intein的106个氨基酸的N端(Int-N)和48个氨基酸的C端(Int-C)融合,构建到原核表达载体pBV220。诱导表达后SDS-PAGE分析可见预期大小的BDD-FVIII蛋白条带,Western blotting用FVIII特异性抗体证明其为剪接所产生的BDD-FVIII蛋白,表明intein可有效连接BDD-FVIII的重链和轻链。为进一步甲型血友病基因治疗研究应用intein以双腺相关病毒载体(AAV)携带FVIII基因,克服单个AAV载体的容量限制提供了依据。  相似文献   

5.
Two different humanized immunoglobulin G1(κ) antibodies and an Fab′ fragment were produced by Aspergillus niger. The antibodies were secreted into the culture supernatant. Both light and heavy chains were initially synthesized as fusion proteins with native glucoamylase. After antibody assembly, cleavage by A. niger KexB protease allowed the release of free antibody. Purification by hydrophobic charge induction chromatography proved effective at removing any antibody to which glucoamylase remained attached. Glycosylation at N297 in the Fc region of the heavy chain was observed, but this site was unoccupied on approximately 50% of the heavy chains. The glycan was of the high-mannose type, with some galactose present, and the size ranged from Hex6GlcNAc2 to Hex15GlcNAc2. An aglycosyl mutant form of antibody was also produced. No significant difference between the glycosylated antibody produced by Aspergillus and that produced by mammalian cell cultures was observed in tests for affinity, avidity, pharmacokinetics, or antibody-dependent cellular cytotoxicity function.  相似文献   

6.
Protein splicing elements (inteins), capable of catalyzing controllable peptide bond cleavage reactions, have been used to separate recombinant proteins from affinity tags during affinity purification. Since the inteins eliminate the use of a protease in the recovery process, the intein-mediated purification system has the potential to significantly reduce recovery costs for the industrial production of recombinant proteins. Thus far, the intein system has only been examined and utilized for expression and purification of recombinant proteins at the laboratory scale for cells cultivated at low cell densities. In this study, protein splicing and in vitro cleavage of intein fusion proteins expressed in high-cell-density fed-batch fermentations of recombinant Escherichia coli were examined. Three model intein fusion constructs were used to examine the stability and splicing/cleavage activities of the fusion proteins produced under high-cell-density conditions. The data indicated that the intein fusion protein containing the wild-type intein catalyzed efficient in vivo protein splicing during high-cell-density cultivation. Also, the intein fusion proteins containing modified inteins catalyzed efficient thiol-induced in vitro cleavage reactions. The results of this study demonstrated the potential feasibility of using the intein-mediated protein purification system for industrial-scale production of recombinant proteins.  相似文献   

7.
The ability of bispecific antibodies to simultaneously bind two unique antigens has great clinical potential. However, most approaches utilized to generate bispecific antibodies yield antibody-like structures that diverge significantly from the structure of archetype human IgG, and those that do approach structural similarity to native antibodies are often challenging to engineer and manufacture. Here, we present a novel platform for the mammalian cell production of bispecific antibodies that differ from their parental mAbs by only a single point mutation per heavy chain. Central to this platform is the addition of a leucine zipper to the C terminus of the CH3 domain of the antibody that is sufficient to drive the heterodimeric assembly of antibody heavy chains and can be readily removed post-purification. Using this approach, we developed various antibody constructs including one-armed Abs, bispecific antibodies that utilize a common light chain, and bispecific antibodies that pair light chains to their cognate heavy chains via peptide tethers. We have applied this technology to various antibody pairings and will demonstrate the engineering, purification, and biological activity of these antibodies herein.  相似文献   

8.
U H Weidle  A Borgya  R Mattes  H Lenz  P Buckel 《Gene》1987,51(1):21-29
We report here for the first time reconstitution and secretion of functionally active antibody in non-lymphoid cells. Expression vectors for the light and the heavy chain of a monoclonal antibody directed against creatine kinase (EC 2.7.3.2) were introduced into COS and CHO Chinese hamster ovary dhfr- cells. Introduction of the expression vectors separately gave rise to immuno-reactive material in the culture supernatants, but only cotransfection of the expression plasmids resulted in secretion of protein with immuno-reactivity against antibodies directed against mouse heavy and light chains as well as specific antigen-binding affinity, as determined by enzyme-linked immunosorbent assay. Secreted kappa and gamma chains from reconstituted antibody were characterized by immunoadsorption and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In COS cells, reconstituted antibody was transiently secreted; cotransfection of kappa and gamma chain expression plasmids with a dihydrofolate reductase (DHFR)-expression plasmid into CHO dhfr- cells gave rise to stable transformants secreting functionally active antibody.  相似文献   

9.
《MABS-AUSTIN》2013,5(8):1248-1259
ABSTRACT

Bispecific antibody therapeutics can expand the functionality of a conventional monoclonal antibody drug because they can bind multiple antigens. However, their great potential is counterbalanced by the challenges faced in their production. The classic asymmetric bispecific containing an Fc requires the expression of four unique chains – two light chains and two heavy chains; each light chain must pair with its correct heavy chain, which then must heterodimerize to form the full bispecific. The light-chain pairing problem has several solutions, some of which require engineering and optimization for each bispecific pair. Here, we introduce a technology called EFab Domain Substitution, which replaces the Cε2 of IgE for one of the CL/CH1 domains into one arm of an asymmetric bispecific to encourage the correct pairing of the light chains. EFab Domain Substitution provides very robust correct pairing while maintaining antibody function and is effective for many variable domains. We report its effect on the biophysical properties of an antibody and the crystal structure of the EFab domain substituted into the adalimumab Fab (PDB ID 6CR1).  相似文献   

10.
本文旨在通过B区缺失型凝血因子8(BDD-FVⅢ)重、轻链间二硫键形成,改善蛋白质反式剪接效率,提高双载体转BDD FVⅢ基因功效. 将BDD-FVⅢ重链A2区的Met662和轻链A3区的Asp1828突变为Cys,用蛋白内含子融合的重链和轻链基因共转染HEK293细胞,Western印迹检测到细胞内BDD-FVⅢ剪接量的提高以及重、轻链间二硫键的形成,用ELISA和Coatest测得细胞分泌至培养上清的剪接BDD-FVⅢ的量(119±14 ng/mL)和活性(1.06±0.08 IU/mL),明显高于野生型BDD FVⅢ重链和轻链基因共转染细胞的量(81±12 ng/mL)和活性(0.70±0.15 IU/mL);混合培养的转突变重链和轻链基因细胞培养基中剪接BDD FVⅢ的量(17±5 ng/mL)和活性(0.15±0.03 IU/mL),与混合培养的转野生型重链和轻链基因细胞 (分别为21±9 ng/mL和0.18±0.05 IU/mL)相近,反映不依赖细胞机制的蛋白质反式剪接. 结果表明,重、轻链间二硫键形成通过增强蛋白质反式剪接提高双载体转BDD FVⅢ基因的功效. 为进一步运用双AAV载体动物体内转BDD-FVⅢ基因提供了实验依据.  相似文献   

11.
The light and truncated heavy chains of human factor VIII, expressed separately in baculovirus-infected insect cells, exhibited different secretory behaviour when compared with each other and with a biologically active fusion molecule of the truncated heavy and light chains.The light chain was very efficiently secreted into culture medium, as judged by high extracellular protein levels and the absence of evidence for light chain retention within cells.Alternatively, proteins containing the heavy chain sequence were poorly secreted and appeared to be sequestered within cells, suggesting that regions within the heavy chain are responsible for the low levels of secreted protein which have generally been observed for recombinant factor VIII.  相似文献   

12.
Monoclonal antibodies can be effective therapeutics against a variety of human diseases, but currently marketed antibody‐based drugs are very expensive compared to other therapeutic options. Here, we show that the eukaryotic green algae Chlamydomonas reinhardtii is capable of synthesizing and assembling a full‐length IgG1 human monoclonal antibody (mAb) in transgenic chloroplasts. This antibody, 83K7C, is derived from a human IgG1 directed against anthrax protective antigen 83 (PA83), and has been shown to block the effects of anthrax toxin in animal models. Here we show that 83K7C heavy and light chain proteins expressed in the chloroplast accumulate as soluble proteins that assemble into complexes containing two heavy and two light chain proteins. The algal‐expressed 83K7C binds PA83 in vitro with similar affinity to the mammalian‐expressed 83K7C antibody. In addition, a second human IgG1 and a mouse IgG1 were also expressed and shown to properly assemble in algal chloroplast. These results show that chloroplasts have the ability to fold and assemble full‐length human mAbs, and suggest the potential of algae as a platform for the cost effective production of complex human therapeutic proteins. Biotechnol. Bioeng. 2009; 104: 663–673 © 2009 Wiley Periodicals, Inc.  相似文献   

13.
Heavy chain-binding protein (BiP) associates posttranslationally with nascent Ig heavy chains in the endoplasmic reticulum (ER) and remains associated with these heavy chains until they assemble with light chains. The heavy chain-BiP complex can be precipitated by antibody reagents against either component. To identify sites on heavy chain molecules that are important for association with BiP, we have examined 30 mouse myelomas and hybridomas that synthesize Ig heavy chains with well characterized deletions. Mutant Ig heavy chains that lack the CH1 domain could not be demonstrated to associate with BiP, whereas mutant Ig heavy chains with deletions of the CH2 or CH3 domain were still able to associate with BiP. In two light chain negative cell lines that produced heavy chains with deletions of the CH1 domain, free heavy chains were secreted. When Ig assembly and secretion were examined in mutants that did not associate with BiP, and were compared with normal parental lines, it was found that the rate of Ig secretion was increased in the mutant lines and that the Ig molecules were secreted in various stages of assembly. In one mutant line (CH1-) approximately one-third of the secreted Ig molecules were incompletely assembled, whereas the Ig molecules secreted by the parental line were completely assembled. Our data show the CH1 domain to be important for association with BiP and that when this association does not occur, incompletely assembled heavy chains can be secreted. This implies a role for BiP in preventing the transport of unassembled Ig molecules from the ER.  相似文献   

14.
Evaluation of immunoglobulins from plant cells.   总被引:3,自引:0,他引:3  
Expression of cDNA constructs encoding full-length mouse immunoglobulin chains with their native leader sequences or fusion constructs substituting the native leader with a pre-pro sequence derived from Saccharomyces cerevisiae yielded blocked N-termini on the gamma chain or the correct amino terminal sequence on the mature kappa chain. Lectin binding assays revealed that assembled immunoglobulin complexes contained a glycosylated heavy chain. The attached glycan was resistant to digestion by endoglycosidase H and its lectin binding pattern was distinguishable from that of the mammalian glycan. The results indicated processing of the immunoglobulin carbohydrate in the tobacco Golgi to yield a complex oligosaccharide. Secretion of antibody by protoplasts isolated from regenerated transgenic plants or from suspension callus cells was demonstrated by pulse-chase labeling experiments. When purified, the tobacco-produced antibody was found to possess the antigen binding and catalytic properties of the murine monoclonal antibody. Kinetic parameters (Km, Ki, Vmax, and kcat) of the tobacco-derived antibody were comparable to those of the mouse-derived antibody. The results in general show that the endomembrane system of tobacco cells possesses cognate mechanisms for the recognition of diverse leader sequences. These signals can be used to initiate the assembly, processing, and secretion by plant cells of complex foreign proteins.  相似文献   

15.
抗HEV嵌合抗体的构建及在CHO细胞中的表达   总被引:1,自引:0,他引:1  
通过RT-PCR方法从分泌戊型肝炎(戊肝)病毒中和性鼠源单克隆抗体(单抗)8C11的杂交瘤细胞中克隆出抗体基因的重链可变区(VH)、轻链可变区(VK)序列,并分别克隆到含有人gamma 1重链和kappa轻链恒定区序列的pcDNA3.1/Hygro和pcDNA3.1( )质粒中,共转染中华仓鼠卵巢癌细胞(CHO)细胞.RT-PCR结果表明,转染的CHO细胞转录了嵌合重链及轻链基因,间接ELISA及Western blot结果表明:翻译出的两种多肽在细胞内正确组装成嵌合抗体分子,并可分泌至细胞外,表达的嵌合抗体保留了原鼠单抗的抗原结合特异性及对8H3结合抗原的增强作用.8C11嵌合抗体的成功表达可降低鼠源性,为探讨戊肝抗体治疗的可能性奠定了基础.  相似文献   

16.
Inteins excise themselves out of precursor proteins by the protein splicing reaction and have emerged as valuable protein engineering tools in numerous and diverse biotechnological applications. Split inteins have recently attracted particular interest because of the opportunities associated with generating a protein from two separate polypeptides and with trans-cleavage applications made possible by split intein mutants. However, natural split inteins are rare and differ greatly in their usefulness with regard to the achievable rates and yields. Here we report the first functional characterization of new split inteins previously identified by bioinformatics from metagenomic sources. The N- and C-terminal fragments of the four inteins gp41-1, gp41-8, NrdJ-1, and IMPDH-1 were prepared as fusion constructs with model proteins. Upon incubation of complementary pairs, we observed trans-splicing reactions with unprecedented rates and yields for all four inteins. Furthermore, no side reactions were detectable, and the precursor constructs were consumed virtually quantitatively. The rate for the gp41-1 intein, the most active intein on all accounts, was k = 1.8 ± 0.5 × 10(-1) s(-1), which is ~10-fold faster than the rate reported for the Npu DnaE intein and gives rise to completed reactions within 20-30 s. No cross-reactivity in exogenous combinations was observed. Using C1A mutants, all inteins were efficient in the C-terminal cleavage reaction, albeit at lower rates. C-terminal cleavage could be performed under a wide range of reaction conditions and also in the absence of native extein residues flanking the intein. Thus, these inteins hold great potential for splicing and cleavage applications.  相似文献   

17.
摘要用双载体转运凝血VⅢ因子基因在甲型血友病基因治疗研究中可克服AAV毒载体容量限制,但存在重链分泌低效和链不均衡性问题。为探索重、轻链间二硫键形成对重链分泌的促进作用,该丈用双载体转B结构域大部缺失型FVⅢ(BDD-FVⅢ)的重链和轻链基因,将重链的Tyr664和轻链Thr1826突变为Cys,研究了HEK293细胞共转基因后的基因表达、分泌至培养上清的重链量和凝血生物活性。用Western blot检测细胞裂解液结果显示,非还原条件下有明显的二硫键交联的重、轻链蛋白;链特异性ELISA定量检测细胞分泌的重链为(125+29)ng/mL,明显高于共转野生型重链和轻链基因细胞的(75+23)ng/mL;Coatest法显示细胞分泌的凝血活性为(0.784±0.29)U/mL.也明显高于共转野生型重链和轻链基因细胞(0.34+0.12)U/mL。结果表明,重、轻链间的二硫键形成可提高双载体转FVⅢ基因的功效,为进一步在动物体内转基因提供了实验依据。  相似文献   

18.
The development of hybridoma and recombinant DNA technologies has made it possible to use antibodies against cancer, autoimmune disorders, and infectious diseases in humans. These advances in therapy, as well as immunoprophylaxis, could also make it possible to use these technologies in agricultural species of economic importance such as pigs. Porcine reproductive and respiratory syndrome virus (PRRSV) is an arterivirus causing very important economic losses to the industry. Passive transfer of antibodies obtained by biotechnology could be used in the future to complement or replace vaccination against this and other pig pathogens. To this end, we constructed and studied the properties of chimeric mouse × pig anti‐PRRSV antibodies. We cloned the constant regions of gamma‐1 and gamma‐2 heavy chains and the lambda light chain of pig antibodies in frame with the variable regions of heavy and light chains of mouse monoclonal antibody ISU25C1, which has neutralizing activity against PRRSV. The coding regions for chimeric IgG1 and IgG2 were expressed in a baculovirus expression system. Both chimeric antibodies recognized PRRSV in ELISA as well as in a Western‐blot format and, more importantly, were able to neutralize PRRSV in the same fashion as the parent mouse monoclonal antibody ISU25C1. In addition, we show that both pig IgG1 and IgG2 antibodies could bind complement component C1q, with IgG2 being more efficient than IgG1 in binding C1q. Expressing chimeric pig antibodies with protective capabilities offers a new alternative strategy for infectious disease control in domestic pigs. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

19.
基因工程技术已经被广泛应用于抗体的生产。但是由于抗体的分子量较大,导致合成抗体较为困难。蛋白质内含子是前体蛋白质中的一段氨基酸序列,能够将自身剪切出来,并将两端的外显子连接形成成熟的蛋白质。将抗体的Fab(antigen binding fragment)和Fc(crystalline fragment)分别与蛋白质内含子(intein) 的N端(IN)和C端(IC)融合表达,利用蛋白质内含子的剪接功能,可形成完整的抗体分子。KSCDKTH是存在于抗体铰链区(hinge region)的一段氨基酸序列,如果在KSCDKTH序列中筛选到高效剪接的蛋白质内含子,即可通过蛋白质剪接,将抗体分子的Fab和Fc剪接形成完整抗体。本文筛选发现,Ssp DnaX的3种断裂蛋白质内含子(S0, S1, S11)具有在KSCDKTH序列中高效剪接的能力,这一研究结果为抗体的剪接合成提供了可行性。  相似文献   

20.
用双载体转运凝血Ⅷ因子基因在甲型血友病基因治疗研究中可克服AAV毒载体容量限制,但存在重链分泌低效和链不均衡性问题。为探索重、轻链间二硫键形成对重链分泌的促进作用,该文用双载体转B结构域大部缺失型FⅧ(BDD-FVⅢ)的重链和轻链基因,将重链的Tyr664和轻链Thr1826突变为Cys,研究了HEK293细胞共转基因后的基因表达、分泌至培养上清的重链量和凝血生物活性。用Western blot检测细胞裂解液结果显示,非还原条件下有明显的二硫键交联的重、轻链蛋白;链特异性ELISA定量检测细胞分泌的重链为(125±29)ng/mL,明显高于共转野生型重链和轻链基因细胞的(75±23)ng/mL;Coatest法显示细胞分泌的凝血活性为(0.78±0.29)U/mL,也明显高于共转野生型重链和轻链基因细胞(0.34±0.12)U/mL。结果表明,重、轻链间的二硫键形成可提高双载体转FⅧ基因的功效,为进一步在动物体内转基因提供了实验依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号