首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although some studies have shown that the cell penetrating peptide (CPP) TAT can enter a variety of cell lines with high efficiency, others have observed little or no transduction in vivo or in vitro under conditions mimicking the in vivo environment. The mechanisms underlying TAT‐mediated transduction have been investigated in cell lines, but not in primary brain cells. In this study we demonstrate that transduction of a green fluorescent protein (GFP)‐TAT fusion protein is dependent on glycosaminoglycan (GAG) expression in both the PC12 cell line and primary astrocytes. GFP‐TAT transduced PC12 cells and did so with even higher efficiency following NGF differentiation. In cultures of primary brain cells, TAT significantly enhanced GFP delivery into astrocytes grown under different conditions: (1) monocultures grown in serum‐containing medium; (2) monocultures grown in serum‐free medium; (3) cocultures with neurons in serum‐free medium. The efficiency of GFP‐TAT transduction was significantly higher in the monocultures than in the cocultures. The GFP‐TAT construct did not significantly enter neurons. Experimental modulation of GAG content correlated with alterations in TAT transduction in PC12 cells and astrocyte monocultures grown in the presence of serum. In addition, this correlation was predictive of TAT‐mediated transduction in astrocyte monocultures grown in serum free medium and in coculture. We conclude that culture conditions affect cellular GAG expression, which in turn dictates TAT‐mediated transduction efficiency, extending previous results from cell lines to primary cells. These results highlight the cell‐type and phenotype‐dependence of TAT‐mediated transduction, and underscore the necessity of controlling the phenotype of the target cell in future protein engineering efforts aimed at creating more efficacious CPPs. Biotechnol. Bioeng. 2009; 104: 10–19 © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Overexpression of bcl‐xL in recombinant Chinese hamster ovary (rCHO) cells has been known to suppress apoptotic cell death and thereby extend culture longevity during batch culture. However, its effect on specific productivity (q) of rCHO cells is controversial. This study attempts to investigate the effect of bcl‐xL overexpression on q of rCHO cells producing erythropoietin (EPO). To regulate the bcl‐xL expression level, the Tet‐off system was introduced in rCHO cells producing EPO (EPO‐off‐bcl‐xL). The bcl‐xL expression level was tightly controlled by doxycycline concentration. To evaluate the effect of bcl‐xL overexpression on specific EPO productivity (qEPO) at different levels, EPO‐off‐bcl‐xL cells were cultivated at the two different culture temperatures, 33°C and 37°C. The qEPO at 33°C and 37°C in the presence of 100 ng/mL doxycycline (without bcl‐xL overexpression) were 4.89 ± 0.21 and 3.18 ± 0.06 μg/106cells/day, respectively. In the absence of doxycycline, bcl‐xL overexpression did not affect qEPO significantly, regardless of the culture temperature, though it extended the culture longevity. Taken together, bcl‐xL overexpression showed no significant effect on the qEPO of rCHO cells grown at 33°C and 37°C. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
4.
Stem cell therapy is a new strategy for chronic ischaemic heart disease in patients. However, no consensus exists on the most optimal delivery strategy. This randomized study was designed to assess cell delivery efficiency of three clinically relevant strategies: intracoronary (IC) and transendocardial (TE) using electromechanical mapping guidance (NOGA) compared to surgical delivery in a chronic pig model of ischaemic cardiomyopathy. Twenty‐four animals underwent delivery of 107 autologous Indium‐oxine‐labelled bone marrow‐derived mesenchymal stem cells (MSC) 4 weeks after infarction and were randomized to one of three groups (n = 8 each group): IC, TE or surgical delivery (reference group). Primary endpoint was defined as percentage (%) of injected dose per organ and assessed by in vivo gamma‐emission counting. In addition, troponin and coronary flow were assessed before and after MSC injection. Blinded endpoint analysis showed no significant difference in efficiency after surgical (16 ± 4%), IC (11 ± 1%) and TE (11 ± 3%) (= 0.52) injections. IC showed less variability in efficiency compared with TE and surgical injection. Overall, TE injection showed less distribution of MSC to visceral organs compared with other modalities. Troponin rise and IC flow did not differ between the percutaneous groups. This randomized study showed no significant difference in cell delivery efficiency to the myocardium in a clinically relevant ischaemic large animal model between IC and TE delivery. In addition, no differences in safety profile were observed. These results are important in view of the choice of percutaneous cell delivery modality in future clinical stem cell trials.  相似文献   

5.
Hematopoietic stem cells (HSCs) can self-renew extensively after transplantation. The conditions supporting their in vitro expansion are still being defined. Retroviral overexpression of the human homeobox B4 (HOXB4) gene in mouse bone marrow cells enables over 40-fold expansion of HSCs in vitro. To circumvent the requirement for retroviral infection, we used recombinant human TAT-HOXB4 protein carrying the protein transduction domain of the HIV transactivating protein (TAT) as a potential growth factor for stem cells. HSCs exposed to TAT-HOXB4 for 4 d expanded by about four- to sixfold and were 8-20 times more numerous than HSCs in control cultures, indicating that HSC expansion induced by TAT-HOXB4 was comparable to that induced by the human HOXB4 retrovirus during a similar period of observation. Our results also show that TAT-HOXB4-expanded HSC populations retain their normal in vivo potential for differentiation and long-term repopulation. It is thus feasible to exploit recombinant HOXB4 protein for rapid and significant ex vivo expansion of normal HSCs.  相似文献   

6.
Gold nanoparticles have enormous applications in cancer treatment, drug delivery and nanobiosensor due to their biocompatibility. Biological route of synthesis of metal nanoparticles are cost effective and eco-friendly. Acinetobacter sp. SW 30 isolated from activated sewage sludge produced cell bound as well as intracellular gold nanoparticles when challenged with HAuCl4 salt solution. We first time report the optimization of various physiological parameters such as age of culture, cell density and physicochemical parameters viz HAuCl4 concentration, temperature and pH which influence the synthesis of gold nanoparticles. Gold nanoparticles thus produced were characterized by various analytical techniques viz. UV–Visible spectroscopy, X-ray diffraction, cyclic voltammetry, transmission electron microscopy, selected area electron diffraction, high resolution transmission electron microscopy, environmental scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and dynamic light scattering. Polyhedral gold nanoparticles of size 20 ± 10 nm were synthesized by 24 h grown culture of cell density 2.4 × 109 cfu/ml at 50 °C and pH 9 in 0.5 mM HAuCl4. It was found that most of the gold nanoparticles were released into solution from bacterial cell surface of Acinetobacter sp. at pH 9 and 50 °C.  相似文献   

7.
It has been reported that obestatin regulates adipocyte metabolism via receptors on the cell surface. We wondered whether obestatin can interact with intracellular components that activated signalling pathways in adipocytes. Because obestatin (human) only presents one lysine (at position 10), which cannot penetrate the cell membrane, therefore, we used a cell‐permeable peptide TAT (49‐57) as a vector to carry obestatin across the cell membrane. The goal of this study was to further understand the function of obestatin after penetrating the cell membrane. Our results showed that TAT‐obestatin could cross the 3T3‐L1 cell membrane in the absence of cytotoxicity. TAT‐obestatin showed no effect on the proliferation of 3T3‐L1 preadipocytes. In contrast, obestatin significantly stimulated proliferation at a dose of 10‐11 M and 10‐13 M. In addition, TAT‐obestatin demonstrated a more potent inhibitory effect on cell apoptosis induced by serum starvation than that of obestatin. During the progress of adipocyte differentiation, TAT‐obestatin and obestatin had no effect on adipogenesis. In the lipolysis assay, TAT‐obestatin significantly increased glycerol and free fatty acid release from 3T3‐L1 adipocytes after 3 h treatment but showed no significant effect on lipolysis after 24 h and 48 h of treatment. In contrast, obestatin (10‐7 M) had no effect on glycerol release after 3, 24 and 48 h of treatment. The difference between the effect of TAT‐obestatin and obestatin on adipocytes metabolism indicated that TAT‐obestatin may trigger intracellular signalling as well as signalling at the cell membrane. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
High‐resolution tracking of stem cells remains a challenging task. An ultra‐bright contrast agent with extended intracellular retention is suitable for in vivo high‐resolution tracking of stem cells following the implantation. Here, a plasmonic‐active nanoplatform was developed for tracking mesenchymal stromal cells (MSCs) in mice. The nanoplatform consisted of TAT peptide‐functionalized gold nanostars (TAT‐GNS) that emit ultra‐bright two‐photon photoluminescence capable of tracking MSCs under high‐resolution optical imaging. In vitro experiment showed TAT‐GNS‐labeled MSCs retained a similar differentiability to that of non‐labeled MSCs controls. Due to their star shape, TAT‐GNS exhibited greater intracellular retention than that of commercial Q‐Tracker. In vivo imaging of TAT‐GNS‐labeled MSCs five days following intra‐arterial injections in mice kidneys showed possible MSCs implantation in juxta‐glomerular (JG) regions, but non‐specifically in glomeruli and afferent arterioles as well. With future design to optimize GNS labeling specificity and clearance, plasmonic‐active nanoplatforms may be a useful intracellular tracking tool for stem cell research.

An ultra‐bright intracellular contrast agent is developed using TAT peptide‐functionalized gold nanostars (TAT‐GNS). It poses minimal influence on the stem cell differentiability. It exhibits stronger two‐photon photoluminescence and superior labeling efficiency than commercial Q‐Tracker. Following renal implantation, some TAT‐GNS‐labeled MSCs permeate blood vessels and migrate to the juxta‐glomerular region.  相似文献   


9.
Human embryonic stem cells (hESCs) can be induced to differentiate into blood cells using either co-culture with stromal cells or following human embryoid bodies (hEBs) formation. It is now well established that the HOXB4 homeoprotein promotes the expansion of human adult hematopoietic stem cells (HSCs) but also myeloid and lymphoid progenitors. However, the role of HOXB4 in the development of hematopoietic cells from hESCs and particularly in the generation of hESC-derived NK-progenitor cells remains elusive. Based on the ability of HOXB4 to passively enter hematopoietic cells in a system that comprises a co-culture with the MS-5/SP-HOXB4 stromal cells, we provide evidence that HOXB4 delivery promotes the enrichment of hEB-derived precursors that could differentiate into fully mature and functional NK. These hEB-derived NK cells enriched by HOXB4 were characterized according to their CMH class I receptor expression, their cytotoxic arsenal, their expression of IFNγ and CD107a after stimulation and their lytic activity. Furthermore our study provides new insights into the gene expression profile of hEB-derived cells exposed to HOXB4 and shows the emergence of CD34(+)CD45RA(+) precursors from hEBs indicating the lymphoid specification of hESC-derived hematopoietic precursors. Altogether, our results outline the effects of HOXB4 in combination with stromal cells in the development of NK cells from hESCs and suggest the potential use of HOXB4 protein for NK-cell enrichment from pluripotent stem cells.  相似文献   

10.
Pulsed electromagnetic fields (PEMFs) have been used clinically to slow down osteoporosis and accelerate the healing of bone fractures for many years. The aim of this study is to investigate the effect of PEMFs on the proliferation and differentiation potential of human bone marrow mesenchymal stem cells (BMMSC). PEMF stimulus was administered to BMMSCs for 8 h per day during culture period. The PEMF applied consisted of 4.5 ms bursts repeating at 15 Hz, and each burst contained 20 pulses. Results showed that about 59% and 40% more viable BMMSC cells were obtained in the PEMF‐exposed cultures at 24 h after plating for the seeding density of 1000 and 3000 cells/cm2, respectively. Although, based on the kinetic analysis, the growth rates of BMMSC during the exponential growth phase were not significantly affected, 20–60% higher cell densities were achieved during the exponentially expanding stage. Many newly divided cells appeared from 12 to 16 h after the PEMF treatment as revealed by the cell cycle analysis. These results suggest that PEMF exposure could enhance the BMMSC cell proliferation during the exponential phase and it possibly resulted from the shortening of the lag phase. In addition, according to the cytochemical and immunofluorescence analysis performed, the PEMF‐exposed BMMSC showed multi‐lineage differentiation potential similar to the control group. Bioelectromagnetics 30:251–260, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
The aim of the study was to investigate whether there is transmembrane transport of intact glutathione ([3H]-GSH, 0.1 μCi) in rat and human type II pneumocytes (T2P), and if this transport might be dependent on the redox state of the extracellular fluid. The T2P were pretreated with acivicin (250 μM) to inhibit γ-glutamyl-transferase activity and with L-buthionine-[SR]-sulfoximine (1 mM) to inhibit intracellular GSH synthesis. After 48 h in culture, initial GSH influx rate was 0.70 ± 0.20 nmol/min/mg protein (37°C) and 0.35 ± 0.04 nmol/min/mg protein (4°C) during the first 5 min in rat T2P. In human T2P, the initial GSH influx rate was 0.36 ± 0.30 nmol/min/mg protein (37°C) and 0.32 ± 0.06 nmol/min/mg protein (4°C) during the first 10 min. Thereafter no further influx was found. The influx of 1 mM GSH in freshly isolated rat and human T2P in suspension was 2.3 ± 0.3 and 1.2 ± 0.3 nmol/mg protein after 15 min at 37°C, and 2.8 ± 0.2 and 1.0 ± 0.3 nmol/mg protein at 4°C, respectively. When GSH influx was studied at different concentrations between 0 and 40 mM, a linear increase without saturation or difference between 37°C and 4°C was found. Preexposure to ouabain had no effect on GSH influx. Efflux of GSH was stimulated and influx inhibited by preexposure of the cells to reduced thiols, while disulphides inhibited efflux and favoured inward uptake. Thus, in human and rat T2P a GSH-carrier exists which operates as an effluxer. At GSH concentrations in the physiological range no uptake is seen, but some uptake can be observed at GSH concentrations above normal physiological levels. The uptake appears to be energy-independent and non-saturable. Efflux of GSH is stimulated and influx inhibited by reduced thiols, while disulphides inhibit the efflux and favour inward uptake. GSH uptake in T2P thus may depend on concentration gradients and driving forces, such as the redox state of the extracellular fluid.  相似文献   

12.
A problem in the mass production of recombinant proteins and biopesticides using insect cell culture is CO2 accumulation. This research investigated the effect of elevated CO2 concentration on insect cell growth and metabolism. Spodoptera frugiperda Sf‐9 insect cells were grown at 20% air saturation, 27°C, and a pH of 6.2. The cells were exposed to a constant CO2 concentration by purging the medium with CO2 and the headspace with air. The population doubling time (PDT) of Sf‐9 cells increased with increasing CO2 concentration. Specifically, the PDT for 0‐37, 73, 147, 183, and 220 mm Hg CO2 concentrations were 23.2 ± 6.7, 32.4 ± 7.2, 38.1 ± 13.3, 42.9 ± 5.4, and 69.3 ± 35.9 h (n = 3 or 4, 95% confidence level), respectively. The viability of cells in all experiments was above 90%, i.e., while increased CO2 concentrations inhibited cell growth, it did not affect cell viability. The osmolality for all bioreactor experiments was observed to be 300–360 mOsm/kg, a range that is known to have a negligible effect on insect cell culture. Elevated CO2 concentration did not significantly alter the cell specific glucose consumption rate (2.5–3.2 × 10?17 mol/cell s), but slightly increased the specific lactate production rate from ?3.0 × 10?19 to 10.2 × 10?19 mol/cell s. Oxidative stress did not contribute to CO2 inhibition in uninfected Sf‐9 cells as no significant increase in the levels of lipid hydroperoxide and protein carbonyl concentrations was discovered at elevated CO2 concentration. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:465–469, 2016  相似文献   

13.
14.
We investigated the role of homeobox B4 (HOXB4) mRNA/protein expression induced by human cytomegalovirus (HCMV) and/or all-trans retinoic acid (ATRA) in proliferation and committed differentiation of human cord blood hematopoietic stem cells (HSCs) into colony-forming-units of T-lymphocyte (CFU-TL) and erythroid (CFU-E) progenitors in vitro. Twelve cord blood samples were collected from the fetal placenta umbilical vein and cultured in vitro. The proliferation and differentiation of cord blood HSCs into CFU-TL and CFU-E were continuously disrupted with HCMV-AD169 and/or 6 × 10(-8) mol/l of ATRA. HOXB4 mRNA/protein expression in CFU-TL and CFU-E was detected in control, ATRA, HCMV and ATRA + HCMV groups on days 3, 7, and 12 of culture by fluorescent qRT-PCR/western blot. We found that HOXB4 mRNA/protein expression was detectable on day 3, increased on day 7 and was highest on day 12. HOXB4 mRNA/protein expression in HCMV group was downregulated compared with control group (P < 0.05). However, the levels were significantly upregulated in HCMV + ATRA group compared with HCMV group (P < 0.05). We concluded that the abnormal HOXB4 mRNA/protein expression induced by HCMV could play a role in hematopoietic damage. ATRA, at the concentration used, significantly up-regulated HOXB4 mRNA/protein expression in normal lymphocyte and erythrocyte progenitor cells as well as in HCMV-infected cells.  相似文献   

15.
Monitoring and control of primary cell cultures is challenging as they are heterogenous and dynamically complex systems. Feedback signaling proteins produced from off‐target cell populations can accumulate, inhibiting the production of the desired cell populations. Although culture strategies have been developed to reduce feedback inhibition, they are typically optimized for a narrow range of process parameters and do not allow for a dynamically regulated response. Here we describe the development of a microbead‐based process control system for the monitoring and control of endogenously produced signaling factors. This system uses quantum dot barcoded microbeads to assay endogenously produced signaling proteins in the culture media, allowing for the dynamic manipulation of protein concentrations. This monitoring system was incorporated into a fed‐batch bioreactor to regulate the accumulation of TGF‐β1 in an umbilical cord blood cell expansion system. By maintaining the concentration of TGF‐β1 below an upper threshold throughout the culture, we demonstrate enhanced ex vivo expansion of hematopoietic progenitor cells at higher input cell densities and over longer culture periods. This study demonstrates the potential of a fully automated and integrated real‐time control strategy in stem cell culture systems, and provides a powerful strategy to achieve highly regulated and intensified in vitro cell manufacturing systems. Biotechnol. Bioeng. 2014;111: 1258–1264. © 2013 The Authors Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

16.

Background

A variety of synthetic carriers, such as cationic polymers and lipids, have been used as nonviral carriers for small interfering RNA (siRNA) delivery. Although siRNA polyplexes and lipoplexes exhibited good gene silencing efficiencies, they often showed serious cytotoxicities, which are not useful for clinical applications. A double‐stranded RNA binding cellular protein with highly specific siRNA binding property and noncytotoxicity was used for siRNA delivery.

Methods

A double‐stranded RNA binding domain (dsRBD) of human double‐stranded RNA activated protein kinase R was genetically produced and utilized to complex siRNA for intracellular delivery. For characterization of the siRNA/dsRBD complexes, decomplexation assay and RNase protection assay were performed. Cytotoxicity and target gene inhibition ability were also examined using human carcinoma cell lines.

Results

The recombinantly produced polypeptide dsRBD exhibited its inherent binding activity for siRNA without sequence specificity, and the siRNA/dsRBD complexes protected siRNA from degradation by ribonucleases. Green fluorescent protein (GFP) siRNA/dsRBD complexes showed prominent down‐regulation of a target GFP gene, when an endosomal escape function was supplemented by addition of a fusogenic peptide, KALA, in the formulation.

Conclusions

The results suggest that dsRBD‐based protein carriers could be successfully applied for a wide range of therapeutic siRNAs for intracellular gene inhibition without showing any cytotoxicity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell‐based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non‐invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)‐free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin‐based Cultispher®S microcarriers and xeno‐free culture medium for the expansion of umbilical cord matrix (UCM)‐derived MSC. This system enabled the production of 2.4 (±1.1) x105 cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)‐fold increase in cell number. The established protocol was then implemented in a stirred‐tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier‐based stirred culture system, using xeno‐free culture medium that suits the intrinsic features of UCM‐derived MSC represents an important step towards a GMP compliant large‐scale production platform for these promising cell therapy candidates.  相似文献   

18.
Mitochondria play an important role in the integration and transmission of cell death signals mediated by the Bcl‐2 family proteins. Experiments were conducted to determine whether the anti‐apoptotic peptides BH4 domain of Bcl‐xL (TAT‐BH4) and Bax inhibitor peptide (BIP) suppresses heat stress (HS) injury in oocytes by reduction of apoptotic‐like events. Cumulus–oocyte complexes (COCs) were matured at 39°C (control) or 41°C (HS) for 21 hr then placed in maturation medium containing 0 or 100 µM BIP in water and 0 or 1 µM TAT‐BH4 in dimethyl sulfoxide (DMSO), or a combination of both peptides (BIP + BH4). Peptide effects on embryo development, DNA fragmentation, mitochondrial membrane potential (ΔΨm), and mitochondrial DNA (mtDNA) copy number were measured. All groups were fertilized and cultured in vitro at 39°C for 8 days. Compared to control, HS‐treated oocytes induced a decrease in embryo development (P < 0.05), increase in proportion of TUNEL‐positive chromatin in oocytes and blastocysts (P < 0.05), and loss of oocyte ΔΨm (P < 0.001). In the presence of BIP or BIP + BH4, development of HS‐treated oocytes into blastocysts was increased (P < 0.05). Conversely, COCs matured with TAT‐BH4 at 41°C showed reduced embryonic development (P < 0.05). Exposure of HS‐treated to each or both peptides resulted in a reduction of TUNEL frequency in oocytes and blastocysts cells derived from these oocytes (P < 0.05). The loss of ΔΨm in HS‐treated oocytes was not restored by exposure to BIP + BH4 and there was no effect in mtDNA copy number. In conclusion, the present results show that HS‐induced apoptosis in bovine oocytes involves Bax and BH4 domain‐dependent pathways. Mol. Reprod. Dev. 76: 637–646, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
20.
Human hematopoietic stem/progenitor cells (HSC) isolated based upon specific patterns of CD34 and CD38 expression, despite phenotypically identical, were found to be functionally heterogeneous, raising the possibility that reversible expression of these antigens may occur during cellular activation and/or proliferation. In these studies, we combined PKH67 tracking with CD34/CD38 immunostaining to compare cell division kinetics between human bone marrow (BM) and cord blood (CB)‐derived HSC expanded in a serum‐free/stromal‐based system for 14 days (d), and correlated CD34 and CD38 expression with the cell divisional history. CB cells began dividing 24 h earlier than BM cells, and significantly higher numbers underwent mitosis during the time in culture. By d10, over 55% of the CB‐cells reached the ninth generation, whereas BM‐cells were mostly distributed between the fifth and seventh generation. By d14, all CB cells had undergone multiple cell divisions, while 0.7–3.8% of BM CD34+ cells remained quiescent. Furthermore, the percentage of BM cells expressing CD34 decreased from 60.8 ± 6.3% to 30.6 ± 6.7% prior to initiating division, suggesting that downmodulation of this antigen occurred before commencement of proliferation. Moreover, with BM, all primitive CD34+CD38? cells present at the end of culture arose from proliferating CD34+CD38+ cells that downregulated CD38 expression, while in CB, a CD34+CD38? population was maintained throughout culture. These studies show that BM and CB cells differ significantly in cell division kinetics and expression of CD34 and CD38, and that the inherent modulation of these antigens during ex vivo expansion may lead to erroneous quantification of the stem cell content of the expanded graft. J. Cell. Physiol. 220: 102–111, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号