首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The ability to discriminate between different ionic species, termed ion selectivity, is a key feature of ion channels and forms the basis for their physiological function. Members of the degenerin/epithelial sodium channel (DEG/ENaC) superfamily of trimeric ion channels are typically sodium selective, but to a surprisingly variable degree. While acid-sensing ion channels (ASICs) are weakly sodium selective (sodium:potassium ratio ∼10:1), ENaCs show a remarkably high preference for sodium over potassium (>500:1). This discrepancy may be expected to originate from differences in the pore-lining second transmembrane segment (M2). However, these show a relatively high degree of sequence conservation between ASICs and ENaCs, and previous functional and structural studies could not unequivocally establish that differences in M2 alone can account for the disparate degrees of ion selectivity. By contrast, surprisingly little is known about the contributions of the first transmembrane segment (M1) and the preceding pre-M1 region. In this study, we used conventional and noncanonical amino acid–based mutagenesis in combination with a variety of electrophysiological approaches to show that the pre-M1 and M1 regions of mASIC1a channels are major determinants of ion selectivity. Mutational investigations of the corresponding regions in hENaC show that these regions contribute less to ion selectivity, despite affecting ion conductance. In conclusion, our work suggests that the remarkably different degrees of sodium selectivity in ASICs and ENaCs are achieved through different mechanisms. These results further highlight how M1 and pre-M1 are likely to differentially affect pore structure in these related channels.  相似文献   

2.
We have examined the effect of extracellular protons on the activity of epithelial sodium channels (ENaCs). We found that alphabeta channels, but not alphabetagamma or alphagamma channels, are inhibited by low extracellular pH. External protons induced short and long closed states that markedly decreased the open probability of alphabeta channels. External protons did not change the single-channel conductance or amiloride binding. Analysis of the proton-induced changes on the kinetics of single channels indicates that at least two protons sequentially bind to the extracellular domain at sites that are not in the ion pathway. Conformational changes induced by protonation of those sites are transmitted to the second hydrophobic domain (M2) of the subunits to induce closure of the pore. The results suggest that elements located in the carboxy-terminal half of M2 participate in the gating mechanism of ENaCs.  相似文献   

3.
《Biophysical journal》2020,118(4):861-872
Despite the sequence homology between acid-sensing ion channels (ASICs) and epithelial sodium channel (ENaCs), these channel families display very different functional characteristics. Whereas ASICs are gated by protons and show a relatively low degree of selectivity for sodium over potassium, ENaCs are constitutively active and display a remarkably high degree of sodium selectivity. To decipher if some of the functional diversity originates from differences within the transmembrane helices (M1 and M2) of both channel families, we turned to a combination of computational and functional interrogations, using statistical coupling analysis and mutational studies on mouse ASIC1a. The coupling analysis suggests that the relative position of M1 and M2 in the upper part of the pore domain is likely to remain constant during the ASIC gating cycle, whereas they may undergo relative movements in the lower part. Interestingly, our data suggest that to account for coupled residue pairs being in close structural proximity, both domain-swapped and nondomain-swapped ASIC M2 conformations need to be considered. Such conformational flexibility is consistent with structural work, which suggested that the lower part of M2 can adopt both domain-swapped and nondomain-swapped conformations. Overall, mutations to residues in the middle and lower pore were more likely to affect gating and/or ion selectivity than those in the upper pore. Indeed, disrupting the putative interaction between a highly conserved Trp/Glu residue pair in the lower pore is detrimental to gating and selectivity, although this interaction might occur in both domain-swapped and nonswapped conformations. Finally, our results suggest that the greater number of larger, aromatic side chains in the ENaC M2 helix may contribute to the constitutive activity of these channels at a resting pH. Together, the data highlight differences in the transmembrane domains of these closely related ion channels that may help explain some of their distinct functional properties.  相似文献   

4.
5.
Degenerin/Epithelial Sodium Channels (DEG/ENaCs) are a large family of animal-specific non-voltage gated ion channels, with enriched expression in neuronal and epithelial tissues. While neuronal DEG/ENaCs were originally characterized as sensory receptor channels, recent studies indicate that several DEG/ENaC family members are also expressed throughout the central nervous system. Human genome-wide association studies have linked DEG/ENaC-coding genes with several neurologic and psychiatric disorders, including epilepsy and panic disorder. In addition, studies in rodent models further indicate that DEG/ENaC activity in the brain contributes to many behaviors, including those related to anxiety and long-term memory. Although the exact neurophysiological functions of DEG/ENaCs remain mostly unknown, several key studies now suggest that multiple family members might exert their neuronal function via the direct modulation of synaptic processes. Here, we review and discuss recent findings on the synaptic functions of DEG/ENaCs in both vertebrate and invertebrate species, and propose models for their possible roles in synaptic physiology.  相似文献   

6.
7.
Many nociceptors detect mechanical cues, but the ion channels responsible for mechanotransduction in these sensory neurons remain obscure. Using in?vivo recordings and genetic dissection, we identified the DEG/ENaC protein, DEG-1, as the major mechanotransduction channel in ASH, a polymodal nociceptor in Caenorhabditis elegans. But DEG-1 is not the only mechanotransduction channel in ASH: loss of deg-1 revealed a minor current whose properties differ from those expected of DEG/ENaC channels. This current was independent of two TRPV channels expressed in ASH. Although loss of these TRPV channels inhibits behavioral responses to noxious stimuli, we found that both mechanoreceptor currents and potentials were essentially wild-type in TRPV mutants. We propose that ASH nociceptors rely on two genetically distinct mechanotransduction channels and that TRPV channels contribute to encoding and transmitting information. Because mammalian and insect nociceptors also coexpress DEG/ENaCs and TRPVs, the cellular functions elaborated here for these ion channels may be conserved.  相似文献   

8.
Nelson AM  Marshall KL  Lumpkin EA 《Neuron》2011,71(5):763-765
Degenerin/epithelial sodium channels (DEG/ENaCs) are luminaries of gentle touch in Caenorhabditis elegans. In this issue of Neuron, Geffeney et?al. demonstrate that eponymous DEG-1 channels carry mechanotransduction currents in a polymodal neuron, where they act upstream of transient receptor potential (TRP) channels.  相似文献   

9.
The kidney has a central role in the regulation of blood pressure, in large part through its role in the regulated reabsorption of filtered Na+. Epithelial Na+ channels (ENaCs) are expressed in the most distal segments of the nephron and are a target of volume regulatory hormones. A variety of factors regulate ENaC activity, including several aldosterone-induced proteins that are present within an ENaC regulatory complex. Proteases also regulate ENaC by cleaving the channel and releasing intrinsic inhibitory tracts. Polymorphisms or mutations within channel subunits or regulatory pathways that enhance channel activity may contribute to an increase in blood pressure in individuals with essential hypertension.  相似文献   

10.
Mammalian neuronal DEG/ENaC channels known as ASICs (acid-sensing ion channels) mediate sensory perception and memory formation. ASICS are closed at rest and are gated by protons. Members of the DEG/ENaC family expressed in epithelial tissues are called ENaCs and mediate Na(+) transport across epithelia. ENaCs exhibit constitutive activity and strict Na(+) selectivity. We report here the analysis of the first DEG/ENaC in Caenorhabditis elegans with functional features of ENaCs that is involved in sensory perception. ACD-1 (acid-sensitive channel, degenerin-like) is constitutively open and impermeable to Ca(2+), yet it is required with neuronal DEG/ENaC channel DEG-1 for acid avoidance and chemotaxis to the amino acid lysine. Surprisingly, we document that ACD-1 is required in glia rather than neurons to orchestrate sensory perception. We also report that ACD-1 is inhibited by extracellular and intracellular acidification and, based on the analysis of an acid-hypersensitive ACD-1 mutant, we propose a mechanism of action of ACD-1 in sensory responses based on its sensitivity to protons. Our findings suggest that channels with ACD-1 features may be expressed in mammalian glia and have important functions in controlling neuronal function.  相似文献   

11.
Umami taste is elicited by monosodium glutamate (MSG), a compound consisting of two potent taste stimuli, Na(+) and glutamate. In rat fungiform taste cells, amiloride-sensitive epithelial sodium channels (ENaCs) mediate Na(+) transduction, while glutamate is transduced by a combination of ionotropic and metabotropic glutamate receptors. We used giga-seal whole-cell recording to determine if responses to glutamate and Na(+) occur in the same taste cells. Approximately 68% of the cells tested responded to amiloride, indicating that they express functional ENaCs. Responses to glutamate occurred in about 58% of the cells tested. Interestingly, responses to glutamate occurred in the subset of cells that also responded to amiloride, indicating that glutamate receptors are located preferentially in the same taste cells that also express ENaCs. Further experiments showed that amiloride did not suppress responses to glutamate under voltage-clamp conditions. Taken together, the data suggest that although ENaCs are not involved directly in glutamate transduction, their co-localization with glutamate receptors provides a substrate for the cellular integration of these independent pathways. Copyright Copyright 1999 S. Karger AG, Basel  相似文献   

12.
Membrane depolarization and intracellular calcium transients generated by activation of voltage-gated sodium and calcium channels are local signals, which initiate physiological processes such as action potential conduction, synaptic transmission, and excitation-contraction coupling. Targeting of effector proteins and regulatory proteins to ion channels is an important mechanism to ensure speed, specificity, and precise regulation of signaling events in response to local stimuli. In this article, we review recent experimental results showing that sodium and calcium channels form local signaling complexes, in which effector proteins, anchoring proteins, and regulatory proteins interact directly with ion channels. The intracellular domains of these channels serve as signaling platforms, mediating their participation in intracellular signaling processes. These protein-protein interactions are important for efficient synaptic transmission and for regulation of ion channels by neurotransmitters and intracellular second messengers. These localized signaling complexes are essential for normal function and regulation of electrical excitability, synaptic transmission, and excitation-contraction coupling.  相似文献   

13.
Ion channels contribute to virtually all basic cellular processes, including such crucial ones for maintaining tissue homeostasis as proliferation, differentiation, and apoptosis. The involvement of ion channels in regulation of programmed cell death, or apoptosis, has been known for at least three decades based on observation that classical blockers of ion channels can influence cell death rates, prolonging or shortening cell survival. Identification of the central role of these channels in regulation of cell cycle and apoptosis as well as the recent discovery that the expression of ion channels is not limited solely to the plasma membrane, but may also include membranes of internal compartments, has led researchers to appreciate the pivotal role of ion channels plays in development of cancer. This review focuses on the aspects of programmed cell death influenced by various ion channels and how dysfunctions and misregulations of these channels may affect the development and progression of different cancers.  相似文献   

14.
Regulation of sodium and calcium channels by signaling complexes   总被引:1,自引:0,他引:1  
Membrane depolarization and intracellular calcium transients generated by activation of voltage-gated sodium and calcium channels are local signals, which initiate physiological processes such as action potential conduction, synaptic transmission, and excitation-contraction coupling. Targeting of effector proteins and regulatory proteins to ion channels is an important mechanism to ensure speed, specificity, and precise regulation of signaling events in response to local stimuli. In this article, we review recent experimental results showing that sodium and calcium channels form local signaling complexes, in which effector proteins, anchoring proteins, and regulatory proteins interact directly with ion channels. The intracellular domains of these channels serve as signaling platforms, mediating their participation in intracellular signaling processes. These protein-protein interactions are important for efficient synaptic transmission and for regulation of ion channels by neurotransmitters and intracellular second messengers. These localized signaling complexes are essential for normal function and regulation of electrical excitability, synaptic transmission, and excitation-contraction coupling.  相似文献   

15.
A family of novel epithelial Na+ channels (ENaCs) have recently been cloned from several different tissues. Three homologous subunits (alpha, beta, gamma-ENaCs) from the core conductive unit of Na(+)-selective, amiloride-sensitive channels that are found in epithelia. We here report the results of a study assessing the regulation of alpha,beta,gamma-rENaC by Ca2+ in planar lipid bilayers. Buffering of the bilayer bathing solutions to [Ca2+] < 1 nM increased single-channel open probability by fivefold. Further investigation of this phenomenon revealed that Ca2+ ions produced a voltage-dependent block, affecting open probability but not the unitary conductance of ENaC. Imposing a hydrostatic pressure gradient across bilayers containing alpha,beta,gamma-rENaC markedly reduced the sensitivity of these channels to inhibition by [Ca2+]. Conversely, in the nominal absence of Ca2+, the channels lost their sensitivity to mechanical stimulation. These results suggest that the previously observed mechanical activation of ENaCs reflects a release of the channels from block by Ca2+.  相似文献   

16.
Amiloride-sensitive epithelial Na(+) channels (ENaCs) can be formed by different combinations of four homologous subunits, named α, β, γ, and δ. In addition to providing an apical entry pathway for transepithelial Na(+) reabsorption in tight epithelia such as the kidney distal tubule and collecting duct, ENaCs are also expressed in nonepithelial cells, where they may play different functional roles. The δ-subunit of ENaC was originally identified in humans and is able to form amiloride-sensitive Na(+) channels alone or in combination with β and γ, generally resembling the canonical kidney ENaC formed by α, β, and γ. However, δ differs from α in its tissue distribution and channel properties. Despite the low sequence conservation between α and δ (37% identity), their similar functional characteristics provide an excellent model for exploring structural correlates of specific ENaC biophysical and pharmacological properties. Moreover, the study of cellular mechanisms modulating the activity of different ENaC subunit combinations provides an opportunity to gain insight into the regulation of the channel. In this review, we examine the evolution of ENaC genes, channel subunit composition, the distinct functional and pharmacological features that δ confers to ENaC, and how this can be exploited to better understand this ion channel. Finally, we briefly consider possible functional roles of the ENaC δ-subunit.  相似文献   

17.
The epithelial Na? channels (ENaCs) are present in kidney and contribute to Na? and water homeostasis. All three ENaC subunits (α, β, and γ) were demonstrated in the cardiovascular regulatory centers of the rat brain, including the magnocellular neurons (MNCs) in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN). However, the functional significance of ENaCs in vasopressin (VP) and oxytocin (OT) synthesizing MNCs is completely unknown. In this study, we show with immunocytochemical double-labeling that the α-ENaC is colocalized with either VP or OT in MNCs in the SON and PVN. In addition, parvocellular neurons in the dorsal, ventrolateral, and posterior subregions of the PVN (not immunoreactive to VP or OT) are also immunoreactive for α-ENaC. In contrast, immunoreactivity to β- and γ-ENaC is colocalized with VP alone within the MNCs. Furthermore, immunoreactivity for a known target for ENaC expression, the mineralcorticoid receptor (MR), is colocalized with both VP and OT in MNCs. Using single-cell RT-PCR, we detected mRNA for all three ENaC subunits and MR in cDNA libraries derived from single MNCs. In whole cell voltage clamp recordings, application of the ENaC blocker benzamil reversibly reduced a steady-state inward current and decreased cell membrane conductance approximately twofold. Finally, benzamil caused membrane hyperpolarization in a majority of VP and about one-half of OT neurons in both spontaneously firing and quiet cells. These results strongly suggest the presence of functional ENaCs that may affect the firing patterns of MNCs, which ultimately control the secretion of VP and OT.  相似文献   

18.
Epithelial sodium channels (ENaCs) mediate Na(+) entry across the apical membrane of high resistance epithelia that line the distal nephron, airway and alveoli, and distal colon. These channels are composed of three homologous subunits, termed alpha, beta, and gamma, which have intracellular amino and carboxyl termini and two membrane-spanning domains connected by large extracellular loops. Maturation of ENaC subunits involves furin-dependent cleavage of the extracellular loops at two sites within the alpha subunit and at a single site within the gamma subunit. The alpha subunits must be cleaved twice, immediately following Arg-205 and Arg-231, in order for channels to be fully active. Channels lacking alpha subunit cleavage are inactive with a very low open probability. In contrast, channels lacking both alpha subunit cleavage and the tract alphaAsp-206-Arg-231 are active when expressed in oocytes, suggesting that alphaAsp-206-Arg-231 functions as an inhibitor that stabilizes the channel in the closed conformation. A synthetic 26-mer peptide (alpha-26), corresponding to alphaAsp-206-Arg-231, reversibly inhibits wild-type mouse ENaCs expressed in Xenopus oocytes, as well as endogenous Na(+) channels expressed in either a mouse collecting duct cell line or primary cultures of human airway epithelial cells. The IC(50) for amiloride block of ENaC was not affected by the presence of alpha-26, indicating that alpha-26 does not bind to or interact with the amiloride binding site. Substitution of Arg residues within alpha-26 with Glu, or substitution of Pro residues with Ala, significantly reduced the efficacy of alpha-26. The peptide inhibits ENaC by reducing channel open probability. Our results suggest that proteolysis of the alpha subunit activates ENaC by disassociating an inhibitory domain (alphaAsp-206-Arg-231) from its effector site within the channel complex.  相似文献   

19.
The adenosine triphosphate (ATP)‐gated P2X receptor cation channel family consists of permeable ligand‐gated ion channels that expand on the binding of extracellular adenosine 5’‐ATP. ATP‐gated P2X receptors are trimer ion channels that assemble homo or isomer from seven cloned subunits. P2X receptors are discovered mostly in mammalian and are being found in an increasing number of non‐vertebrates, such as zebrafish, bullfrog, and ameba. P2X receptors are involved in many physiological processes, including regulation of heart rhythm and contractility, and regulation of pain, especially chronic pain and glia integration. This review summarizes the current studies on the regulation of P2X receptors in abnormal neuronal‐glial interaction and the pathological changes in viscera, especially in myocardial ischemia.  相似文献   

20.
Epithelial sodium channels (ENaCs) perform diverse physiological roles by mediating Na+ absorption across epithelial surfaces throughout the body. Excessive Na+ absorption in kidney and colon elevates blood pressure and in the airways disrupts mucociliary clearance. Potential therapies for disorders of Na+ absorption require better understanding of ENaC regulation. Recent work has established partial and selective proteolysis of ENaCs as an important means of channel activation. In particular, channel-activating transmembrane serine proteases (CAPs) and cognate inhibitors may be important in tissue-specific regulation of ENaCs. Although CAP2 (TMPRSS4) requires catalytic activity to activate ENaCs, there is not yet evidence of ENaC fragments produced by this serine protease and/or identification of the site(s) where CAP2 cleaves ENaCs. Here, we report that CAP2 cleaves at multiple sites in all three ENaC subunits, including cleavage at a conserved basic residue located in the vicinity of the degenerin site (α-K561, β-R503, and γ-R515). Sites in α-ENaC at K149/R164/K169/R177 and furin-consensus sites in α-ENaC (R205/R231) and γ-ENaC (R138) are responsible for ENaC fragments observed in oocytes coexpressing CAP2. However, the only one of these demonstrated cleavage events that is relevant for the channel activation by CAP2 takes place in γ-ENaC at position R138, the previously identified furin-consensus cleavage site. Replacement of arginine by alanine or glutamine (α,β,γR138A/Q) completely abolished both the Na+ current (INa) and a 75-kD γ-ENaC fragment at the cell surface stimulated by CAP2. Replacement of γ-ENaC R138 with a conserved basic residue, lysine, preserved both the CAP2-induced INa and the 75-kD γ-ENaC fragment. These data strongly support a model where CAP2 activates ENaCs by cleaving at R138 in γ-ENaC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号