首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Objective: To assess the interaction of high‐fat diets (HF) made with different dietary fatty acids and exercise on body‐weight regulation, adiposity, and metabolism. Research Methods and Procedures: Male Wistar rats born to dams fed HF diets (40% w/w) made with either fish oil (FO), soybean oil (SO), or palm oil (PO) were fed diets similar to their dams and divided randomly into exercise (EX, swimming) or sedentary control (SD) groups when they were 9 weeks old. EX lasted for 6 weeks. Twenty‐four hours after the last EX bout, fasted rats were killed by decapitation. Chemical analyses and body composition analysis were conducted. Results: The results demonstrated that different fatty acids had different effects on body weight, composition, and metabolism. SO‐fed rats gained the most weight and fat. EX reduced body weight of FO‐ and PO‐fed rats, but SO‐fed rats were still heavier and fatter than other rats. Data from SO‐ and PO‐fed rats suggested that they are insulin resistant and that EX normalized this abnormality. Of the three HF diets used, FO produced the least adverse effects compared with PO and SO. Discussion: Not only the quantity of dietary fat, but also the type of fat used, will produce different effects on body weight and metabolism. EX ameliorates the suggested insulin resistance induced in rats fed either highly saturated or n‐6 polyunsaturated fatty acids. Long‐chain n‐3 polyunsaturated fatty acids, as found in fish oil, are more beneficial than n‐6 polyunsaturated fatty acids when fed in high amounts to rats.  相似文献   

2.
3.
Iron status in rats fed a purified diet without vitamin A   总被引:3,自引:0,他引:3  
The effect of vitamin A deficiency on iron status was investigated in rats. After 28 d of feeding either low or high vitamin A diets (0 vs 4000 IU of vitamin A per kg feed), the final body weight was slightly but significantly lowered by the low vitamin A diet. Plasma retinol concentrations were decreased in rats fed diets low in vitamin A. Marginal vitamin A deficiency produced slightly, but significantly lower blood hemoglobin concentrations; it did not clearly affect hematocrit. The concentration of iron in liver was significantly higher when diets low in vitamin A were fed while significantly lower levels were observed in femur.  相似文献   

4.
Chew BP  Archer RG 《Theriogenology》1983,20(4):459-472
Female rats were used to investigate the comparative role of vitamin A and beta-carotene (dietary or injected) on growth, feed intake and reproduction. After 3 wk of vitamin A and beta-carotene depletion, rats were assigned to one of six groups: 1) CON = fed 5% NRC recommended level of vitamin A (= 60 mug retinol equivalent (RE)/kg diet); 2) VA = fed 100% of vitamin A (= 1200 mug RE/kg diet); 3) HVA = fed 150% of vitamin A; 4) VA+C = fed 100% of vitamin A + 1.2mg beta-carotene; 5) VA+IC = fed 100% of vitamin A + injected weekly with 8.37 mg of beta-carotene; and 6) VA+IVA = fed 100% of vitamin A + injected weekly with 1400 IU of vitamin A. The level of vitamin A and beta-carotene in dam blood and liver reflected the level of supplementation. No difference in feed intake or body weight was observed. Although mean litter size was similar for all groups, mean pup weight at birth was lowest for deficient rats. Pup mortality through 2 wk postpartum was lower for groups receiving higher levels of either vitamin A or beta-carotene. However, supplemental beta-carotene did not influence growth or reproductive performance. Therefore, low intakes in vitamin A or beta-carotene had no effect on feed intake, growth or reproduction in female rats but decreased fetal growth and increased mortality among pups.  相似文献   

5.
K K Vaswani 《Life sciences》1985,37(12):1107-1115
Effects of neonatal thiamine deficiency and vitamin A deficiency on total and fractions of gangliosides (GT1, GD1a, GD1b and GM1) were studied in Charles Foster rat brain at 21 days of age. GT1, GD1b+GD1a and GM1 are being presented here as poly-, di- and mono-sialo gangliosides. Thiamine and vitamin A deficiencies were induced by feeding mothers essentially thiamine and vitamin A free diets respectively. A normal control (G+L+) and weight matched undernourished groups (G+L- for thiamine and LL for vitamin A experiments) were used for comparison. At 21 days, the concentration of total gangliosides in thiamine deficient and G+L- rat brains were 49.0% and 45.7%; in vitamin A deficient and LL group were 66.6% and 88.0% of the G+L+ group, respectively. The percent contribution of poly-, di- and mono-sialo gangliosides in G+L+/thiamine deficient/G+L- were; 17.2/46.8/73.5, 54.4/51.7/14.2, and 6.6/8.7/5.8, respectively. The percent contribution of poly-, di- and mono-sialo gangliosides in G+L+/vitamin A deficient/LL were; 19.3/39.9/43.7, 57.0/37.6/35.1, and 8.4/11.6/19.7 respectively. The changes observed in these experiments suggest an underlying possibility of metabolic defect in undernourished animals.  相似文献   

6.
Dietary nutrients play an important role in skeletal tissue metabolism of fish. Deficiency and toxicity of certain nutrients have been linked to bone deformities in larval and juvenile fish. The pathogenesis of skeletal disorders in larval and juvenile fish from the same genetic stock, cultured under similar environment conditions is often difficult to distinguish when marginal deficiencies of multiple nutrients are involved. A study was conducted to characterize the skeletal deformities linked to the deficiency of phosphorus and ascorbic acid, vitamin A toxicity and lipid peroxidation in juvenile halibut. Five experimental diets containing a low level of phosphorus (0.5% dry matter basis), no vitamin C supplement, high level of vitamin A (80 000 IU kg?1) and oxidized marine fish oil (peroxide value, 7.53 meq kg?1) and a control diet based on cod fillet and vitamin free casein were fed to juvenile Atlantic halibut for 14 weeks in an attempt to characterize the skeletal deformities. Phosphorus, ascorbic acid, retinol, and α‐tocopherol concentrations of liver and kidney were measured at 0 and 14 weeks. Reduced vertebral ash and phosphorus content were observed in fish fed the low phosphorus diet. Skeletal abnormalities included abnormal hemal and neural spines in the hemal region and scoliosis in the cephalic and hemal regions of the vertebral column. Hepatic and kidney ascorbic acid concentrations were significantly lower in the group fed no ascorbic acid supplement. Skeletal abnormalities were scoliosis and lordosis primarily in the hemal region of the vertebral column. High levels of vitamin A in the diet caused increased hepatic retinol content and scoliosis spanning the cephalic/prehemal and anterior hemal regions of the vertebral column. Fish fed the oxidized oil diet showed increased thiobarbituric acid (TBA) value in the liver and muscle tissue with no significant decrease in hepatic vitamin E concentration. The most frequent skeletal deformity observed was scoliosis, spanning the cephalic/prehemal regions as well as the anterior hemal region of the vertebral column. The pattern and type of abnormalities observed in fish fed these experimental diets were similar to those observed in a commercial halibut hatchery.  相似文献   

7.
This study investigated the effect of high‐dose vitamin C supplementation on growth, tissue ascorbic acid concentrations and physiological response to transportation stress in juvenile silver pomfret, Pampus argenteus (initial average weight 6.2 ± 0.2 g). Three practical diets were formulated to contain 100 (control), 450 and 800 mg ascorbic acid/kg diet, respectively, supplied as l‐ascorbyl‐2‐polyphosphate. Each diet was fed to triplicate groups of fish in circular tanks (3 m ø, 1.5 m depth) (60 fish/tank) for 9 weeks. Growth did not change significantly with dietary vitamin C levels, although an improvement tendency with an increase in vitamin C supplementation was observed. Ascorbic acid concentrations in the liver and muscle of fish fed diets containing graded levels of vitamin C were positively correlated with dietary levels of this vitamin. Tissue ascorbic acid concentrations significantly increased with increasing vitamin C supplementation. After 9 weeks, the fish were subjected to transportation stress for 4 h to determine the influence of high vitamin C supplementation on the physiological response to this stressor. Serum cortisol, glucose and lactate levels significantly increased in stressed fish. Serum cortisol and glucose concentrations after stress were significantly higher in fish fed the control diet (7.91 μg L?1 and 0.80 mm , respectively) than in the other groups. However, there were no significant differences in serum cortisol and glucose levels after stress between the 450 and 800 mg kg?1 diets. No significant change could be found in serum lactate levels after stress among the different treatments. In conclusion, the dietary administration of high doses of vitamin C could reduce stress in silver pomfret and increase the survival of fish under stress conditions.  相似文献   

8.
One day old pullets derived from marginally vitamin A deficient laying hens were fed diets containing either adequate or marginal amounts of vitamin A. At the age of 34 days, animals fed the diet low in vitamin A had group mean plasma concentrations of retinol which were one tenth the mean plasma concentrations of controls. When compared with their controls, the deficient animals displayed body weights which were on average 16% less. Of 20 pullets per dietary group one control animal and 9 deficient animals died by the age of 34 days. At the age of 29 days, control (n = 16) and deficient chickens (n = 11) were examined clinically by assigning scores to a number of parameters. Three assessors carried out the examination independently. The birds were presented for examination at random and their treatment groups were not disclosed to the assessors. Out of 26 parameters assessed quantitatively per individual animal, only three parameters discriminated between control and deficient chickens. Deficient animals grew poorly, had a hunched up posture and increased fluid content in faeces. Classical signs of chronic vitamin A deficiency in domestic fowl such as bone deformities, keratinization of the tongue and decreased transparency of the cornea were not observed.  相似文献   

9.
Objective: Scavenger receptor class BI (SR‐BI), authentic high‐density lipoprotein (HDL) receptors expressed in liver, are known to play an important role in HDL‐cholesterol (C) metabolism and reverse cholesterol transport. Interestingly, obese rats of WNIN/Ob strain have abnormally elevated levels of serum HDL‐C compared with their lean counterparts. Based on the well‐established role of SR‐B1 in HDL‐C metabolism, it was hypothesized that these obese rats may have an underexpression of hepatic SR‐B1 receptors. In view of the significant role of vitamin A in energy expenditure and obesity, we also tested whether vitamin A supplementation can correct abnormal HDL‐C metabolism. Research Methods and Procedures: To test this hypothesis, 7‐month‐old male lean and obese rats of WNIN/Ob strain were divided into two groups; each group was subdivided into two subgroups consisting of six lean and six obese rats and received diets containing either 2.6 or 129 mg vitamin A/kg diet for 2 months. Results: At the end, obese rats receiving normal levels of vitamin A diet showed high serum HDL‐C and lower hepatic SR‐BI expression levels compared with lean counterparts. Furthermore, chronic dietary vitamin A supplementation resulted in overexpression of hepatic SR‐BI receptors (protein and gene) with concomitant reduction in serum HDL‐C levels in obese rats. Discussion: Thus, our observations highlight the role of vitamin A in reverse cholesterol transport through up‐regulation of hepatic SR‐BI receptors and, thereby, HDL‐C homeostasis in obese rats of WNIN/Ob strain.  相似文献   

10.
This study evaluated the effect of possible synergic interaction between high fat diet (HF) and hydrochlorothiazide (HCTZ) on biochemical parameters of oxidative stress in brain. Rats were fed for 16 weeks with a control diet or with an HF, both supplemented with different doses of HCTZ (0.4, 1.0, and 4.0 g kg−1 of diet). HF associated with HCTZ caused a significant increase in lipid peroxidation and blood glucose levels. In addition, HF ingestion was associated with an increase in cerebral lipid peroxidation, vitamin C and non‐protein thiol groups (NPSH) levels. There was an increase in vitamin C as well as NPSH levels in HCTZ (1.0 and 4.0 g kg−1 of diet) and HF plus HCTZ groups. Na+–K+‐ATPase activity of HCTZ (4.0 g kg−1 of diet) and HCTZ plus HF‐fed animals was significantly inhibited. Our data indicate that chronic intake of a high dose of HCTZ (4 g kg−1 of diet) or HF change biochemical indexes of oxidative stress in rat brain. Furthermore, high‐fat diets consumption and HCTZ treatment have interactive effects on brain, showing that a long‐term intake of high‐fat diets can aggravate the toxicity of HCTZ. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Neonatal vitamin A stores are limited even in well-nourished full-term infants and are yet smaller in the premature infant. The object of this experiment was to determine whether vitamin A deficiency could be induced in pregnant guinea pigs and, if so, whether it would affect vitamin A status of the neonate. Adult (600 g) guinea pigs were fed a casein-agar diet that was vitamin A deficient (AD). Controls (vitamin A adequate) were orally dosed weekly with 2 mg of retinyl palmitate. Weight gains of dams and birth weights of neonates did not differ. No external signs of deficiency were observed. Six of eight AD and seven of eight vitamin A-adequate dams carried pregnancy to term (greater than or equal to Day 64). One AD dam died during delivery. Liver retinol concentrations were below the detection limit (less than 3 micrograms/g) for all AD neonates and dams and in postpartum serum of AD dams. Of neonates born greater than or equal to Day 64, 15 of 18 AD were dead or moribund compared with 4 of 22 vitamin A adequate. The unexpectedly severe effect on the neonate indicates that the guinea pig will be a sensitive model for investigating the affect of poor maternal vitamin A status on neonatal vitamin A-dependent functions. However, a less severe maternal deprivation should be used for such studies.  相似文献   

12.
Vitamin A deficiency is one of the most common dietary deficiencies in the developing world and is a major health concern where it is associated with increased risk of fetal and infant mortality and morbidity. Early studies in the rat demonstrated that, in addition to respiratory problems, neonates showed evidence of mobility problems in response to moderate vitamin A deficiency. This study investigated whether moderate deficiency of this vitamin plays a role in regulating key skeletal muscle regulatory pathways during development. Thirty female rats were fed vitamin A-moderate (VAM) or vitamin A-sufficient diets from weaning and throughout pregnancy. Fetal and neonatal hindlimb and muscle samples were collected on days 13.5, 15.5, 17.5, and 19.5 of pregnancy and 1 day following birth. Mothers fed the VAM diet had reduced retinol concentrations at all time points studied (P < 0.01), and neonates had reduced relative lung weights (P < 0.01). Fetal weight and survival did not differ between groups but neonatal survival was lower in the VAM group where neonates had increased relative heart weights (P < 0.05). Analysis of myogenic regulatory factor expression and calcineurin signaling in fetuses and neonates demonstrated decreased protein levels of myf5 [50% at 17.5 dg (P < 0.05)], myogenin [70% at birth (P < 0.001)], and myosin heavy chain fast [50% at birth (P < 0.05)] in response to moderate vitamin A deficiency. Overall, these changes suggest that vitamin A status during pregnancy may have important implications for fetal muscle development and subsequent muscle function in the offspring.  相似文献   

13.
The present experiment was conducted to determine the dietary vitamin A requirement of juvenile Amur sturgeon (Acipenser schrenckii) by formulating seven semipurified diets containing 10, 258, 510, 1050, 2020, 4100 and 8300 IU vitamin A (as retinol acetate) kg?1 diet, respectively. Each experimental diet was fed to triplicate groups of 20 juveniles each with initial average weights of 12.09 ± 0.22 g in 405‐L aquaria and maintained at 25.0 ± 2.0°C for 8 weeks. Fish fed the basal diet (10 IU vitamin A kg?1 diet) exhibited poor appetite and activity, whereas these signs were not observed in any group fed vitamin A‐supplemented diets. Weight gain, feed efficiency and hepatosomatic index increased significantly with increases in the dietary vitamin A level, reaching a peak with the vitamin A 1050 IU kg?1 diet, and then decreasing. Muscle chemical compositions were not affected by the dietary vitamin A levels. Vitamin A concentrations in liver and muscle increased significantly as the vitamin A levels increased within a range of 10~4100 IU kg?1 diet; above this level there were no significant changes. Broken‐line regression analysis of weight gain and liver vitamin A concentration against the dietary vitamin A level showed that juvenile Amur sturgeon required a minimum of 923 IU vitamin A kg?1 in the diet for maximal growth, and 1981 IU kg?1 for highest liver vitamin A accumulation.  相似文献   

14.
The objective of this study was to evaluate the fatty acid profile and qualitative characteristics of meat from feedlot young bulls fed ground soybean or ground cottonseed, with or without supplementation of vitamin E. A total of 40 Red Norte young bulls, with an initial average age of 20 months, and an initial average BW of 339±15 kg, were allotted in a completely randomized design using a 2×2 factorial arrangement, with two oilseeds, and daily supplementation or not of 2500 IU of vitamin E. The experimental period was for 84 days, which was preceded by an adaptation period of 28 days. The treatments were ground soybean (SB), ground soybean plus vitamin E (SBE), ground cottonseed (CS) and ground cottonseed plus vitamin E (CSE). The percentage of cottonseed and soybean in the diets (dry matter basis) was 24% and 20%, respectively. Diets were isonitrogenous (13% CP) and presented similar amount of ether extract (6.5%). The animals were slaughtered at average live weight of 464±15 kg, and samples were taken from the longissimus dorsi muscle for the measurement of fatty acid concentration and the evaluation of lipid oxidation and color of the beef. Before fatty acid extraction, muscle tissue and subcutaneous fat of the longissimus dorsi were separated to analyze fatty acid profile in both tissues. Supplementation of vitamin E did not affect fatty acid concentration, lipid oxidation and color (P>0.05). Subcutaneous fat from animals fed CS diet had greater C12:0, C16:0 and C18:0 contents (P<0.03). In addition, CS diets reduced the C18:1 and C18:2 cis-9, trans-11 contents in subcutaneous fat (P<0.05). The muscle from animals fed CS tended to higher C16:0 and C18:0 contents (P<0.11), and decreased C18:1, C18:2 cis-9, trans-11 and C18:3 contents (P<0.05) compared with SB. The Δ9-desaturase index was greater in muscle from animals fed SB (P<0.01). At 42 days of age, meat from cattle fed SB had a greater lipid oxidation rate (P<0.05). Meat from animals fed SB diets had less lightness and redness indices than meat from animals fed CS diets after 14 days of age. In conclusion, the addition of ground cottonseed in the finishing diets did increase the saturated fatty acid content of the longissimus dorsi. However, animals fed cottonseed exhibited greater lightness and redness of beef. In this study, the addition of vitamin E did not affect qualitative characteristics of meat.  相似文献   

15.
Objective: Obesity is thought to result from poor diet and insufficient exercise. An additional factor may be endocrine‐disrupting environmental chemicals that contaminate the air, water, and food supply. We tested the hypothesis that a class of lipid‐soluble flame retardant chemicals known to accumulate in adipose tissue, polybrominated diphenyl ethers (PBDEs), disrupts insulin and isoproterenol sensitivity of isolated rat adipocytes. Research Methods and Procedures: Six‐week‐old Sprague‐Dawley rats were gavaged daily with 14 mg/kg body weight (BW) pentabrominated diphenyl ether (penta‐BDE) in corn oil (n = 24) or corn oil alone (n = 24). At 2 and 4 weeks of treatment, epididymal fat pad adipocytes were isolated, and isoproterenol‐stimulated lipolysis, insulin‐stimulated glucose oxidation, and adipocyte size were measured. Results: There was no alteration in adipocyte metabolism after 2 weeks of in vivo penta‐BDE treatment, but after 4 weeks of treatment, adipocytes averaged a 30% increase in isoproterenol‐stimulated lipolysis and a 59% decrease in insulin‐stimulated glucose oxidation, compared with control. There were no differences in average rat BW and adipocyte size between treated and control rats, but plasma total thyroxine level in 2‐ and 4‐week treated rats was 30% of control. Discussion: Daily exposure of rats to 14 mg/kg BW penta‐BDE for 4 weeks has no effect on animal or adipocyte size but significantly alters insulin and isoproterenol‐stimulated metabolism of isolated adipocytes. These alterations, hallmark features of metabolic obesity, suggest the need for further research on the contribution of lipid‐soluble, endocrine‐disrupting environmental chemicals to the obesity epidemic.  相似文献   

16.
The effect of vitamin D deficiency on proteoglycan and hyaluronate constituents of cortical diaphyseal chick bone was studied. Proteoglycans in rachitic bone showed no significant change with respect to their size, composition, or amount relative to other extractable macromolecular components. In contrast, bone hyaluronate levels were raised in chicks fed on diets that were either vitamin D-deficient or depleted in calcium or phosphate, a 7-fold increase being seen in hypocalcaemic vitamin D-deficient chicks. This increase in hyaluronate was not directly related either to the absence of vitamin D or to abnormal levels of blood calcium or phosphate per se; hyaluronate levels are probably regulated by another factor, not yet identified, that is responsive to changes in vitamin D and mineral metabolism.  相似文献   

17.
Clinical and biochemical evidence of vitamin A deficiency was produced in rabbits as early as 4-5 weeks after weaning to a vitamin A deficient diet from dams maintained during lactation on the deficient diet. Mean serum retinol levels at the time of weaning for the deficient dams were 25 +/- 6 micrograms/dl compared with 74 +/- 8 micrograms/dl for the controls. Five weeks after weaning, 25% of pups fed the vitamin A deficient diet had ocular lesions characterized by the accumulation of sloughed epithelium on the cornea. At this time, mean serum values of the pups were 10 +/- 4 micrograms/dl for the deficient group and 73 +/- 8 micrograms/dl for the controls. Evidence of critically depleted liver stores was documented in the deficient rabbits by an elevated relative dose response test (54 +/- 18%) that did not occur in the control group (6 +/- 5%). Although food consumption was similar, weight gain was lower in the deficient group when compared to the control group.  相似文献   

18.
Chronic dietary administration of 3,3′,4,4′,5,5′-hexabromobiphenyl (HBB), 1 mg/kg diet, caused a decrease in retinol (20-fold) and retinyl esters (23-fold) in the livers of female rats, but resulted in a 6.4-fold increase in retinol and 7.4-fold increase in retinyl esters in the kidneys. Liver acyl-CoA: retinol acyltransferase and retinyl palmitate hydrolase activities were reduced while serum concentration of retinol was unaffected by HBB feeding. Metabolism of a physiological dose of [11-3H]retinyl acetate (10 μg), was examined in rats fed either vitamin A-adequate diet, or marginal amounts of vitamin A, or vitamin A-adequate diet containing HBB. A 13-fold greater amount of the administered vitamin A was found in kidneys of HBB-treated rats. In rats fed adequate or low amounts of vitamin A, kidney radioactivity was primarily in the retinol fraction, while in HBB-fed rats the radioactivity was associated mostly with retinyl esters. Fecal and urinary excretion of radioactivity was greatly increased in HBB-treated rats. Chronic HBB feeding results in a loss of ability of liver to store vitamin A, and severely alters the uptake and metabolism of vitamin A in the kidneys. We conclude that HBB causes major disturbances in the regulation of vitamin A metabolism.  相似文献   

19.
20.
The study aimed at evaluating the optimum dietary vitamin E requirements using DL‐α‐tocopheryl acetate in the juvenile eel, Anguilla japonica, as assessed by fish growth performance and fish body composition. Five semi‐purified experimental diets were formulated to contain 0 (TA1), 15 (TA17), 30 (TA32), 60 (TA62) and 120 (TA119 mg TA kg?1 diet on a dry matter (DM) basis in the form of DL‐α‐tocopheryl acetate (TA). After a 4‐week conditioning period, fish (15 ± 0.3 g) were randomly distributed into aquaria in groups of 20 at 25 ± 1.0°C (mean ± SD). One of the five diets was fed on a DM basis to fish in three randomly selected aquaria twice daily to satiation (approximately 3% of wet body weight per day at the beginning and 2% of wet body weight per day at the end of the feeding trial) for 12 weeks. At the end of the 12‐week feeding trial, weight gain (WG), specific growth rate (SGR), feed efficiency (FE) and protein efficiency ratio (PER) were determined; these were significantly lower in control fish than in fish fed supplemented diets (P < 0.05). The values for fish fed TA17 were significantly higher than for fish fed TA1, TA62 or TA119 (P < 0.05). There were no significant differences in WG, FE or PER among fish that were fed TA17 and TA32, among those that were fed TA32 and TA62, and among those that were fed TA62 and TA119 (P > 0.05). There were also no significant differences in SGR among fish fed TA32, TA62 or TA119 (P > 0.05). A broken‐line regression analysis on the basis of WG, SGR, FE and PER showed that dietary vitamin E requirements of juvenile eels were 21.2, 21.6, 21.2 and 21.5 (mg kg?1 diet), respectively. These results indicate that the dietary vitamin E requirement could be <21.2 mg kg?1 but <21.6 mg kg?1 diet in juvenile eel, A. japonica, when DL‐α‐tocopheryl acetate is used as the dietary vitamin E source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号