首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the presence of dialkyl phosphate moiety, we evaluated twenty-seven salicylanilide diethyl phosphates (diethyl [2-(phenylcarbamoyl)phenyl] phosphates) for the inhibition of acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.) and butyrylcholinesterase (BChE) from equine serum. Ellman’s spectrophotometric method was used. The inhibitory activity (expressed as IC50 values) was compared with that of the established drugs galantamine and rivastigmine. Salicylanilide diethyl phosphates showed significant activity against both cholinesterases with IC50 values from 0.903 to 86.3 μM. IC50s for BChE were comparatively lower than those obtained for AChE. All of the investigated compounds showed higher inhibition of AChE than rivastigmine, and six of them inhibited BChE more effectively than both rivastigmine and galantamine. In general, derivatives of 4-chlorosalicylic acid showed enhanced activity when compared to derivatives of 5-halogenated salicylic acids, especially against BChE. The most effective inhibitor of AChE was O-{5-chloro-2-[(3-bromophenyl)carbamoyl]phenyl} O,O-diethyl phosphate with IC50 of 35.4 μM, which is also one of the most potent inhibitors of BChE. O-{5-Chloro-2-[(3,4-dichlorophenyl)carbamoyl]phenyl} O,O-diethyl phosphate exhibited in vitro the strongest inhibition of BChE (0.90 μM). Salicylanilide diethyl phosphates act as pseudo-irreversible cholinesterases inhibitors.  相似文献   

2.
Steroid sulfatase (STS) has recently emerged as a drug target for management of hormone-dependent malignancies. In the present study, a new series of twenty-one aryl amido-linked sulfamate derivatives 1a-u was designed and synthesized, based upon a cyclohexyl lead compound. All members were evaluated as STS inhibitors in a cell-free assay. Adamantyl derivatives 1h and 1p-r were the most active with more than 90% inhibition at 10 µM concentration and, for those with the greatest inhibitory activity, IC50 values were determined. These compounds exhibited STS inhibition within the range of ca 25–110 nM. Amongst them, compound 1q possessing a o-chlorobenzene sulfamate moiety exhibited the most potent STS inhibitory activity with an IC50 of 26 nM. Furthermore, to assure capability to pass through the cell lipid bilayer, compounds with low IC50 values were tested against STS activity in JEG-3 whole-cell assays. Consequently, 1h and 1q demonstrated IC50 values of ca 14 and 150 nM, respectively. Thus, compound 1h is 31 times more potent than the corresponding cyclohexyl lead (IC50 value = 421 nM in a JEG-3 whole-cell assay). Furthermore, the most potent STS inhibitors (1h and 1p-r) were evaluated for their antiproliferative activity against the estrogen-dependent breast cancer cell line T-47D. They showed promising activity with single digit micromolar IC50 values (ca 1–6 µM) and their potency against T-47D cells was comparable to that against STS enzyme. In conclusion, this new class of adamantyl-containing aryl sulfamate inhibitor has potential for further development against hormone-dependent tumours.  相似文献   

3.
A novel series of heat shock protein 90 (Hsp90) inhibitors was identified by X-ray crystal analysis of complex structures at solvent-exposed exit pocket C. The 2-amino-pyrrolo[2,3-d]pyrimidine derivatives, 7-deazapurines substituted with a benzyl moiety at C5, showed potent Hsp90 inhibition and broad-spectrum antiproliferative activity against NCI-60 cancer cell lines. The most potent compound, 6a, inhibited Hsp90 with an IC50 of 36 nM and showed a submicromolar mean GI50 value against NCI-60 cell lines. The interaction of 6a at the ATP-binding pocket of Hsp90 was confirmed by X-ray crystallography and Western blot analysis.  相似文献   

4.
Indanone derivatives containing meta/para-substituted aminopropoxy benzyl/benzylidene moieties were designed based on the structures of donepezil and ebselen analogs as the cholinesterase inhibitors. The designed compounds were synthesized and their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities were measured. Inhibitory potencies (IC50 values) for the synthesized compounds ranged from 0.12 to 11.92 μM and 0.04 to 24.36 μM against AChE and BChE, respectively. Compound 5 c showed the highest AChE inhibitory potency with IC50 value of 0.12 μM, whereas the highest BChE inhibition was achieved by structure 7 b (IC50=0.04 μM). Structure-activity relationship (SAR) analysis revealed that there is no significant difference between meta and para-substituted derivatives in AChE and BChE inhibition. However, the most potent AChE inhibitor 5 c belongs to meta-substituted compounds, while the most active BChE inhibitor is para-substituted derivative 7 b . The order of enzyme inhibition potency based on the substituted amine group is dimethyl amine>piperidine>morpholine. Compounds containing C=C linkage are more potent AChE inhibitors than the corresponding saturated structures. Molecular docking studies indicated that 5 c interacts with AChE in a very similar way to that observed experimentally for donepezil. The introduced indanone-aminopropoxy benzylidenes could be used in drug-discovery against Alzheimer's disease.  相似文献   

5.
In this paper, we report the structural design, synthesis, trypanocidal activity and docking studies of novel quinoxaline-N-acylhydrazone (NAH) derivatives, planned as cruzain inhibitors candidates, a cysteine protease essential for the survival of Trypanosoma cruzi within the host cell. The salicylaldehyde N-acylhydrazones 7a and 8a presented IC50 values of the same magnitude order than the standard drug nifurtimox (Nfx), when tested in vitro against epimastigote forms of Trypanosoma cruzi (Tulahuen 2 strain) and were non-toxic at the highest assayed doses rendering selectivity indexes (IC50 (macrophages)/IC50 (Trypanosoma cruzi)) of >25 for 7a and >20 for 8a, with IC50 values in macrophages >400 μM.  相似文献   

6.
7.
Novel isothiocyanate derivatives were synthesized starting from noscapine, bile acids, amino acids, and some aromatic compounds. Antiparasitic activities of the synthesized derivatives were tested against four unicellular protozoa, i.e., Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani, and Plasmodium falciparum. Interestingly, seven isothiocyanate analogues displayed promising antiparasitic activity against Leishmania donovani with IC50 values between 0.4 and 1.0 µM and selectivity index (SI) ranged from 7.8 to 18.4, comparable to the standard drug miltefosine (IC50 = 0.7 μM). Compound 7h demonstrated the best antileishmanial activity with an IC50 value of 0.4 µM. Seven products exhibited inhibition activity against T. brucei rhodesiense with IC50s below 2.0 μM and SI between 2.7 and 29.3. Four primary amine derivatives of noscapine and five isothiocyanate derivatives exhibited antiplasmodial activity with IC50s in the range of 1.1–2.7 µM and SI values between 1.1 and 14.5. The isothiocyanate derivative 7c showed against T. cruzi with an IC50 value of 1.9 µM and SI 4. Molecular docking and ADMET studies were performed to investigate the interaction between active ligands and T. brucei trypanothione reductase active site. The docking studies showed significant binding affinity of noscapine derivatives to enzyme active site and good compatibility with experimental data.  相似文献   

8.
In this study, a series of B-ring fluoro substituted bis-chalcone derivatives were synthesized by Claisen-Schmidt condensation reactions and evaluated for their ability to inhibit xanthine oxidase (XO) and growth inhibitory activity against MCF-7 and Caco-2 human cancer cell lines, in vitro. According to the results obtained, the bis-chalcone with fluoro group at the 2 (4b) or 2,5-position (4g) of B-ring were found to be potent inhibitors of the enzyme with IC50 values in the low micromolar range. The effects of these compounds were about 7 fold higher than allopurinol. The binding modes of the bis-chalcone derivatives in the active site of xanthine oxidase were explained using molecular docking calculations. Also, compound 4g and 4h showed in vitro growth inhibitory activity against a panel of two human cancer cell lines 1.9 and 6.8 μM of IC50 values, respectively.  相似文献   

9.
Herein we report a series of novel chloramphenicol amine derivatives as aminopeptidase N (APN)/CD13 inhibitors. All compounds were synthesized starting from commercially available (1S,2S)-2-amino-1-(4-nitrophenyl) propane-1,3-diol. The preliminary biological screening showed that some compounds exhibited potent inhibitory activity against APN. It should be noted that one compound, 13b (IC50 = 7.1 μM), possess similar APN inhibitory activity compared with Bestatin (IC50 = 3.0 μM).  相似文献   

10.
A new series of quinazolinone derivatives containing triazole, thiadiazole, thiosemicarbazide functionalities was synthesized and then screened for their in vitro urease inhibition properties. Most of the compounds showed excellent activity with IC50 values ranging between 1.88 ± 0.17 and 6.42 ± 0.23 µg/mL, compared to that of thiourea (IC50 = 15.06 ± 0.68) and acetohydroxamic acid (IC50 = 21.03 ± 0.94), as reference inhibitors. Among the synthesized molecules, compounds 5c, 5e and 5a showed the best inhibitory effect against urease enzyme with IC50 values of 1.88 ± 0.17 µg/mL, 1.90 ± 0.10 and 1.96 ± 0.07 µg/mL, respectively. Moreover in order to give better understanding of the inhibitory activity of synthesized compounds, molecular docking studies were applied at the target sites of jack bean urease enzyme (JBU). Their binding poses and energy calculations were analyzed using induced fit docking (IFD) and prime-MMGBSA tool. Binding poses of studied compounds were determined using induced fit docking (IFD) algorithms.  相似文献   

11.
This current study described the design and synthesis of a series of derivatives based on a natural pyranoisaflavone, which was obtained from the seeds of Millettia pachycarpa and displayed attractive BChE inhibition and high selectivity in our previous study. The inhibitory potential of all derivatives against two cholinesterases was evaluated. Only a few compounds demonstrated AChE inhibitory activity at the tested concentrations, while 26 compounds showed significant inhibition on BChE (the IC50 values varied from 9.34 μM to 0.093 μM), most of them presented promising selectivity to ward BChE. Prediction of ADME properties for 7 most active compounds was performed. Among them, 9g (IC50 = 222 nM) and 9h (IC50 = 93 nM) were found to be the most potent BChE inhibitors with excellent selectivity over AChE (SI ratio = 1339 and 836, respectively). The kinetic analysis demonstrated both of them acted as mixed-type BChE inhibitors, while the molecular docking results indicated that they interacted with both residues in the catalytic active site. A cytotoxicity test on PC12 cells showed that both 9g and 9h had a therapeutic safety range similar to tacrine. Overall, the results indicate that 9h could be a good candidate of BChE inhibitors.  相似文献   

12.
In the present study, a series of fifteen α-tetralone (3,4-dihydro-2H-naphthalen-1-one) derivatives were synthesised and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. The α-tetralone derivatives examined are structurally related to a series of chromone (1-benzopyran-4-one) derivatives which has previously been shown to act as MAO-B inhibitors. The results document that the α-tetralones are highly potent MAO-B inhibitors with all compounds exhibiting IC50 values in the nanomolar range (<78 nM). Although most compounds are selective inhibitors of MAO-B, the α-tetralones are also potent MAO-A inhibitors with ten compounds exhibiting IC50 values in the nanomolar range (<792 nM). The most potent MAO-B inhibitor, 6-(3-iodobenzyloxy)-3,4-dihydro-2H-naphthalen-1-one, exhibits an IC50 value of 4.5 nM with a 287-fold selectivity for MAO-B over the MAO-A isoform, while the most potent MAO-A inhibitor, 6-(3-cyanobenzyloxy)-3,4-dihydro-2H-naphthalen-1-one, exhibits an IC50 value of 24 nM with a 3.25-fold selectivity for MAO-A. Analyses of the structure–activity relationships for MAO inhibition show that substitution on the C6 position of the α-tetralone moiety is a requirement for MAO-A and MAO-B inhibition, and that a benzyloxy substituent on this position is more favourable for MAO-A inhibition than phenylethoxy and phenylpropoxy substitution. For MAO-B inhibition, alkyl and halogen substituents on the meta and para positions of the benzyloxy ring enhance inhibitory potency. It may be concluded that α-tetralone derivatives are promising leads for design of therapies for Parkinson’s disease and depression.  相似文献   

13.
We investigated twelve benzyl phenyl ketone derivatives which are synthetic precursors of isoflavonoids that are shown be good 5-hLOX inhibitors, especially those that have the catechol group, but these precursors never have been assayed as 5-hLOX inhibitors being a novelty as inhibitors of the enzyme, due to sharing important structural characteristics. Screening assays, half maximal inhibitory concentration (IC50) and kinetic assays of all the studied molecules (5 µg/ml in media assay) showed that 1-(2,4-dihydroxy-3-methylphenyl)-2-(3-chlorophenyl)-ethanone (K205; IC50 = 3.5 µM; Ki = 4.8 µM) and 1-(2,4-dihydroxy-3-methylphenyl)-2-(2-nitrophenyl)-ethanone (K206; IC50 = 2.3 µM; Ki = 0.7 µM) were potent, selective, competitive and nonredox inhibitors of 5-hLOX. Antioxidant behavior was also assayed by DPPH, FRAP, and assessing ROS production, and those with antibacterial and antiproliferative properties relating to 1-(2,4-dihydroxy-3-methylphenyl)-2-(2-chlorophenyl)-ethanone (K208) established it as the most interesting and relevant compound studied, as it showed nearly 100% inhibition of bacterial growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Finally, docking studies were done that helped to characterize how the inhibitor structures correlated to decreased 5-hLOX activity.  相似文献   

14.
New twenty compounds bearing thiazole ring (3a-3t) were designed and synthesized as monoamine oxidase (MAO) inhibitors. The fluorometric enzyme inhibition assay was used to determine the biological effects of synthesized compounds. Most of them showed remarkable inhibitory activity against both MAO-A and MAO-B. By comparing their IC50 values, it can be seen that active derivatives displayed generally selectivity on MAO-B enzyme. Compounds 3j and 3t, which bear dihydroxy moiety at the 3rd and 4th position of phenyl ring, were the most active derivatives in the series against both isoenzymes. Compounds 3j and 3t showed significant inhibition profile on MAO-A with the IC50 values of 0.134 ± 0.004 µM and 0.123 ± 0.005 µM, respectively, while they performed selectivity against MAO-B with the IC50 values of 0.027 ± 0.001 µM and 0.025 ± 0.001 µM, respectively. Also, docking studies about these compounds were carried out to evaluate their binding modes on the active regions of MAO-A and MAO-B.  相似文献   

15.
Human African trypanosomiasis (HAT, commonly known as African sleeping sickness) is categorized as a neglected disease, as it afflicts >50,000 people annually in sub-saharan Africa, and there are few formal programs in the world focused on drug discovery approaches for this disease. In this study, we examined the crude extracts of two fungal strains (Aspergillus fumigatus and Nectria inventa) isolated from deep water sediment which provided >99% growth inhibition at 1 μg/mL of Trypanosoma brucei, the causative parasite of HAT. A collection of fifteen natural products was supplemented with six semi-synthetic derivatives and one commercially available compound. Twelve of the compounds, each containing a diketopiperazine core, showed excellent activity against T. brucei (IC50 = 0.002–40 μM), with selectivity over mammalian cells as great as 20-fold. The trypanocidal diketopiperazines were also tested against two cysteine protease targets Rhodesain and TbCatB, where five compounds showed inhibition activity at concentrations less than 20 μM. A preliminary activity pattern is described and analyzed.  相似文献   

16.
We synthesized dammarane-type triterpene derivatives and evaluated their ability to inhibit HIV-1 and HCV proteases to understand their structure–activity relationships. All of the mono- and di-succinyl derivatives (5a5f) were powerful inhibitors of HIV-1 protease (IC50 < 10 μM). However, only di-succinyl (5e) and 2,3-seco-2,3-dioic acid (3b) derivatives similarly inhibited HCV protease (IC50 < 10 μM). A-nor dammarane-type triterpenes (4a and 4b, IC50 10.0 and 29.9 μM, respectively) inhibited HIV-1 protease moderately or strongly, but were inactive against HCV protease. All compounds that powerfully inhibited HIV-1 or HCV protease did not appreciably inhibit the general human proteases, renin and trypsin (IC50 > 1000 μM). These findings indicated that the mono-succinyl dammarane type derivatives (5a5d) selectively inhibited HIV-1 protease and that the di-succinyl (5e, 5f) as well as 2,3-seco-2,3-dioic acid (3b) derivatives preferably inhibited both viral proteases.  相似文献   

17.
A series of bezofuran appended 1,5-benzothiazepine compounds 7a–v was designed, synthesized and evaluated as cholinesterase inhibitors. The biological assay experiments showed that most of the compounds displayed a clearly selective inhibition for butyrylcholinesterase (BChE), while a weak or no effect towards acetylcholinesterase (AChE) was detected. All analogs exhibited varied BChE inhibitory activity with IC50 value ranging between 1.0?±?0.01 and 72?±?2.8?μM when compared with the standard donepezil (IC50, 2.63?±?0.28?μM). Among the synthesized derivatives, compounds 7l, 7m and 7k exhibited the highest BChE inhibition with IC50 values of 1.0, 1.0 and 1.8?μM, respectively. The results from a Lineweaver-Burk plot indicated a mixed-type inhibition for compound 7l with BChE. In addition, docking studies confirmed the results obtained through in vitro experiments and showed that most potent compounds bind to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of BChE active site. The synthesized compounds were also evaluated for their in vitro antibacterial and antifungal activities. The results indicated that the compounds possessed a broad spectrum of activity against the tested microorganisms and showed high activity against both gram positive and gram negative bacteria and fungi.  相似文献   

18.
The dihydroneopterin aldolase (DHNA, EC 4.1.2.25) activity of FolB protein is required for the conversion of 7,8-dihydroneopterin (DHNP) to 6-hydroxymethyl-7,8-dihydropterin (HP) and glycolaldehyde (GA) in the folate pathway. FolB protein from Mycobacterium tuberculosis (MtFolB) is essential for bacilli survival and represents an important molecular target for drug development. S8-functionalized 8-mercaptoguanine derivatives were synthesised and evaluated for inhibitory activity against MtFolB. The compounds showed IC50 values in the submicromolar range. The inhibition mode and inhibition constants were determined for compounds that exhibited the strongest inhibition. Additionally, molecular docking analyses were performed to suggest enzyme-inhibitor interactions and ligand conformations. To the best of our knowledge, this study describes the first class of MtFolB inhibitors.  相似文献   

19.
A series of novel aryl-2H-pyrazole derivatives bearing 1,4-benzodioxan or 1,3-benzodioxole moiety were designed as potential telomerase inhibitors to enhance the ability of aryl-2H-pyrazole derivatives to inhibit telomerase, a target of anticancer. The telomerase inhibition tests showed that compound 16A displayed the most potent inhibitory activity with IC50 value of 0.9 μM for telomerase. The antiproliferative tests showed that compound 16A exhibited high activity against human gastric cancer cell SGC-7901 and human melanoma cell B16-F10 with IC50 values of 18.07 and 5.34 μM, respectively. Docking simulation showed that compound 16A could bind well with the telomerase active site and act as telomerase inhibitor. 3D-QSAR model was also built to provide more pharmacophore understanding that could be used to design new agents with more potent telomerase inhibitory activity.  相似文献   

20.
The emerging of hepatitis C virus (HCV) resistant strains has been considered as a main drawback of the available drugs. Since HCV has a large inactive surface, we would like to hypothesis that the mutation occur in HCV is minimal and causing less resistance against inhibition. In this study, a short peptide inhibitor of HCV namely plectasin was identified by HCV NS3-4A serine protease assay. Plectasin peptide showed considerable inhibition against HCV NS3-4A serine protease. Enzymatic activity of the recombinant NS3-4Apro was analysed by fluorescence release from several fluorogenic peptide substrates which resembling the dibasic cleavage site sequences of the flavivirus polyprotein precursor. Of all amc-labelled peptides, Pyr-RTKR-amc was the most efficiently cleaved substrate with the lowest Km value of 20 µM. The kinetic assay showed that plectasin peptide inhibited NS3-4Apro activity with an IC50 value of 4.3 μM compared to the aprotinin as a standard proteases inhibitor with an IC50 of 6.1 μM. From the results, plectasin peptide also demonstrated a dose-dependent inhibition of HCV replication with a considerable reduction in RLuc activity at 15 µM using HCV replicon- containing Huh-7 cells. Our study has identified a unique natural peptide that can be used to highlight novel structures for the development of drug derivatives with high efficacy of HCV NS3-4A protease inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号