共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemiluminometric determination of ascorbic acid in pharmaceutical formulations exploiting photo‐activation of GSH‐capped CdTe quantum dots 下载免费PDF全文
M. K. Sasaki D. S. M. Ribeiro C. Frigerio J. A. V. Prior J. L. M. Santos E. A. G. Zagatto 《Luminescence》2014,29(7):901-907
An automated multi‐pumping flow system is proposed for the chemiluminometric determination of ascorbic acid in pharmaceutical formulations, relying on the ability of semiconductor nanocrystals to generate short‐lived reactive species upon photo‐irradiation. A photo‐unit based on visible‐light‐emitting diodes is used to photo‐excite cadmium telluride (CdTe) quantum dots capped with glutathione, leading to the generation of radicals that react with luminol under alkaline conditions, yielding the chemiluminescence. Ascorbic acid acts as a radical scavenger, preventing the oxidation of luminol, thus ensuring a concentration‐dependent chemiluminescence quenching. After system optimization, a linear working range of 5.0 × 10‐7 to 5.0 × 10‐6 mol/L ascorbic acid (r = 0.9967, n = 5) was attained, with a detection limit of 3.05 × 10‐7 mol/L and a sampling rate of 200/h. The flow system was applied to the analysis of pharmaceutical formulations and the results were in good agreement with those obtained by the reference titrimetric procedure (RD < ± 4.3%, n = 7). Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
2.
Capecitabine is a chemotherapeutic agent used for the treatment of patients with metastatic cancers. This study aimed at determining the drug capecitabine in a simple chemiluminescence (CL) system of acidic potassium permanganate using the stopped‐flow injection technique. Statistical methods were used to detect optimum conditions. The method showed two linear calibration ranges from 6.7 × 10?6 to 6.7 × 10?5 mol L?1 and from 6.7 × 10?5 to 2.7 × 10?3 mol L?1 with a detection limit of 1.5 × 10?6 mol L?1. Chitosan‐modified magnetic nanoparticles were studied in the drug‐delivery experiments. According to the pH sensitivity of chitosan and low pH values in tumour cells, the chitosan‐coated magnetic nanoparticles could provide a good targeting drug‐delivery system to tumour sites. To evaluate the applicability of the method, the capecitabine‐loaded magnetic chitosan nanoparticles were synthesized with two different cross‐linkers; loading and releasing rates of the drug were investigated using the proposed CL method and an ultraviolet–visible light spectrophotometric method (absorption at 305 nm). The results showed a good correlation between the two methods, and it was found that the synthesized chitosan‐modified magnetic nanoparticles could be used for pH‐dependent release of capecitabine in cancer cells. Moreover, determination of capecitabine in tablets and synthetic samples was performed. 相似文献
3.
Mortaza Iranifam 《Luminescence》2013,28(6):798-820
The state of the art in flow‐chemiluminescence (flow‐CL) technique for automated pharmaceutical analysis is reviewed. Flow‐CL approaches have become powerful and promising tools for pharmaceutical screening in recent years due to their simplicity, low cost and high sensitivity. Because of these advantages, these methods have been widely used for pharmaceutical analysis in recent years. The literature reviewed covers papers of analytical interest that appeared between 2007 and mid‐2012 and have been divided into several sections based on fundamental types of CL systems employed. Furthermore, entries have been summarized alphabetically in tabular form giving details of analytical figures of merit of the methods. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
4.
Rapid determination of isoamyl nitrite in pharmaceutical preparations by flow injection analysis with on‐line UV irradiation and luminol chemiluminescence detection 下载免费PDF全文
Naoya Kishikawa Naoko Kondo Abena Amponsaa‐Karikari Hitoshi Kodamatani Kaname Ohyama Kenichiro Nakashima Shigeo Yamazaki Naotaka Kuroda 《Luminescence》2014,29(1):8-12
Isoamyl nitrite is used as a therapeutic reagent for cardiac angina and as an antidote for cyanide poisoning, but it is abused because of its euphoric properties. Therefore, a method to determine isoamyl nitrite is required in many fields, including pharmaceutical and forensic studies. In this study, a simple, rapid and sensitive method for the determination of isoamyl nitrite was developed using a flow injection analysis system equipped with a chemiluminescence detector and on‐line photoreactor. This method is based on on‐line ultraviolet irradiation of isoamyl nitrite and subsequent luminol chemiluminescence detection without the addition of an oxidant. A linear standard curve was obtained up to 1.0 μM of isoamyl nitrite with a detection limit (blank + 3SD) of 0.03 μM. The method was successfully applied to determine isoamyl nitrite content in pharmaceutical preparations. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
5.
Development of a new procedure for the determination of captopril in pharmaceutical formulations employing chemiluminescence and a multicommuted flow analysis approach 下载免费PDF全文
Manoel J. A. Lima Ridvan N. Fernandes Auro A. Tanaka Boaventura F. Reis 《Luminescence》2016,31(1):288-294
This paper describes a new technique for the determination of captopril in pharmaceutical formulations, implemented by employing multicommuted flow analysis. The analytical procedure was based on the reaction between hypochlorite and captopril. The remaining hypochlorite oxidized luminol that generated electromagnetic radiation detected using a homemade luminometer. To the best of our knowledge, this is the first time that this reaction has been exploited for the determination of captopril in pharmaceutical products, offering a clean analytical procedure with minimal reagent usage. The effectiveness of the proposed procedure was confirmed by analyzing a set of pharmaceutical formulations. Application of the paired t‐test showed that there was no significant difference between the data sets at a 95% confidence level. The useful features of the new analytical procedure included a linear response for captopril concentrations in the range 20.0–150.0 µmol/L (r = 0.997), a limit of detection (3σ) of 2.0 µmol/L, a sample throughput of 164 determinations per hour, reagent consumption of 9 µg luminol and 42 µg hypochlorite per determination and generation of 0.63 mL of waste. A relative standard deviation of 1% (n = 6) for a standard solution containing 80 µmol/L captopril was also obtained. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
6.
Shazalia M. Ali Ahmed Abdalla A. Elbashir Fakhr Eldin O. Suliman Hassan Y. Aboul‐Enein 《Luminescence》2013,28(5):734-741
A simple, accurate, precise spectrofluorimetric method has been proposed for the determination of three cephalosporins, namely, cefixime (cefi), cephalexine (ceph), and cefotaxime sodium (cefo) in pharmaceutical formulations. This method is based on a reaction between cephalosporins with 8‐hydroxy‐1,3,6‐pyrenetrisulfonic acid trisodium salt (HPTS) in alkaline medium, at pH 12.0 for cefi and 13.0 for ceph and cefo to give highly fluorescent derivatives extracted with chloroform and subsequent measurements of the formed fluorescent products at 520, 500 and 510 nm after excitation at 480, 470 and 480 nm for cefi, ceph and cefo respectively. The optimum experimental conditions have been studied. Beer's law is obeyed over concentrations of 10–60 ng/mL, 5–35 ng/mL and 10–60 ng/mL for cefi, ceph and cefo, respectively. The detection limits were 4.20 ng/mL, 2.54 ng/mL and 4.09 ng/mL for cefi, ceph and cefo, respectively, with a linear regression correlation coefficient of 0.99783, 0.99705 and 0.9978 and recoveries in ranges 96.96–105.77, 96.13–102.55 and 95.45–105.39% for cefi, ceph and cefo, respectively. This method is simple and can be applied for the determination of cefi, ceph and cefo in pharmaceutical formulations in quality control laboratories. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
7.
Supramolecular interaction of 18‐crown‐6 ether with mesalazine and spectrofluorimetric determination of mesalazine in pharmaceutical formulations 下载免费PDF全文
Abdalla A. Elbashir Fatima Altayib Alasha Abdalla Hassan Y. Aboul‐Enein 《Luminescence》2015,30(8):1250-1256
The supramolecular interaction of protonated mesalazine (MSZ) and 18‐crown‐6 ether (18C6) has been examined by Ultraviolet–visible, FT‐IR and fluorescence spectroscopy. The formation of the inclusion complex has been confirmed based on the changes of the spectral properties. The MSZ–18C6 host–guest complex formed in (1:1) stoichiometry and the inclusion constant (K = 1.411 × 102 L mol–1) was ascertained by the typical double reciprocal plots. Furthermore, the thermodynamic parameters (ΔG°, ΔH° and ΔS°) of (MSZ‐18C6) were obtained. Based on the remarkable enhancement of the fluorescence intensity of MSZ produced through complex formation, a simple, accurate, rapid and highly sensitive spectrofluorometric method for the determination of MSZ in aqueous solution in the presence of 18C6 was developed. The measurement of relative fluorescence intensity was carried with excitation at 298 nm, emission 410 nm. All variables affecting the reactions were studied and optimized. Beer's law was obeyed in the concentration range of 0.1–0.9 µg/mL. The absorbance was found to increase linearly with increasing concentration of MSZ. The molar absorptivity, Sandell sensitivity, limit of detection (LOD) and limit of quantification (LOQ) were calculated. The validity of the described method was assessed, and the method was successfully applied to the determination of MSZ in its pharmaceutical formulation. In addition, a solid inclusion complex was synthesized by the coprecipitation method. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
8.
CdS nanoparticles (CdS NPs) of different sizes were synthesized by the citrate reduction method. It was found that CdS NPs could enhance the chemiluminescence (CL) of the luminol‐potassium ferricyanide system and baicalin could inhibit CdS NPs‐enhanced luminol‐potassium ferricyanide CL signals in alkaline solution. Based on this inhibition, a flow‐injection CL method was established for determination of baicalin in pharmaceutical preparations and human urine samples. Under optimized conditions, the linear range for determination of baicalin was 5.0 x 10?6 to 1.0 x 10?3 g/L. The detection limit at a signal‐to‐noise ratio of 3 was 1.7 x 10 ?6 g/L. CL spectra, UV‐visible spectra and transmission electron microscopy (TEM) were used to investigate the CL mechanism. The method described is simple, selective and obviates the need of extensive sample pretreatment. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
9.
DPPH·–luminol chemiluminescence system and its application in the determination of scutellarin in pharmaceutical injections and rat plasma with flow injection analysis 下载免费PDF全文
In this article, a DPPH·–luminol chemiluminescence (CL) system was reported and the CL mechanism was discussed according to the CL kinetic properties after sequence injecting DPPH· into the DPPH·–luminol reaction mixture. It was observed that scutellarin could inhibit the CL response of the DPPH·–luminol system. Based on this observation, a simple and rapid flow injection CL method was developed for the determination of scutellarin using the inhibition effect in alkaline medium. The optimized chemical conditions for the CL reaction were 5 × 10?6 mol/L DPPH · and 1.0 × 10?4 mol/L luminol in 0.01 mol/L NaOH. Under optimized conditions, the CL intensity was inversely proportional to the concentration of scutellarin over the ranges 5–2000 and 40–3200 ng/ml in pharmaceutical injection and rat plasma, respectively. The limits of detection (S/N = 3) were 5 and 40 ng/ml in preparations and rat plasma, respectively. Furthermore, the precision, recovery and stability of the validated method were acceptable for the determination of scutellarin in both pharmaceutical injections and rat plasma. The presented method was successfully applied in the determination of scutellarin in pharmaceutical injections and real rat plasma samples. 相似文献
10.
A flow injection method with chemiluminescence detection is reported for the determination of vitamin A. The method is based on the enhancement effect of vitamin A on chemiluminescence of tris(2,2′‐bipyridyl)Ru(II)–Ce(IV) in acidic medium. The proposed procedure is used to quantitate vitamin A in the range 1.0–100 × 10?6 mol/L with a correlation coefficient of 0.9991 (n = 9) and relative standard deviation in the range 1.2–2.3% (n = 4). The limit of detection (3 × blank) was 8.0 × 10?8 mol/L with a sample throughput of 100/h. The effect of common excipients used in pharmaceutical formulations and some clinically important compounds was also studied. The method was applied to determine vitamin A in pharmaceutical formulations and the results obtained were in reasonable agreement with the amount quoted. The results were compared using spectrophotometric method and no significant difference was found between the results of the two methods at 95% confidence limit. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
11.
A simple, accurate, precise and validated spectrofluorimetric method is proposed for the determination of two cephalosporins, namely, cefadroxile (cefa) and cefuroxime sodium (cefu) in pharmaceutical formulations. The method is based on a reaction between cephalosporins with 1,2‐naphthoquinone‐4‐sulfonate in alkaline medium, to form fluorescent derivatives that are extracted with chloroform and subsequently measured at 610 and 605 nm after excitation at 470 and 460 nm for cefa and cefu respectively. The optimum experimental conditions have been studied. Beer's law is obeyed over the concentrations of 20–70 ng/mL and 15–40 ng/mL for cefa and cefu, respectively. The detection limits were 4.46 ng/mL and 3.02 ng/mL with a linear regression correlation coefficient of 0.9984 and 0.998, and recoveries ranging 97.50–109.96% and 95.73–98.89% for cefa and cefu, respectively. The effects of pH, temperature, reaction time, 1,2‐naphthoquinone‐4‐sulfonic concentration and extraction solvent on the determination of cefa and cefu, have been examined. The proposed method can be applied for the determination of cefa and cefu in pharmaceutical formulations in quality control laboratories. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
12.
Sensitive determination of 2‐methoxyestradiol in pharmaceutical preparations and serum samples using flow injection chemiluminescence 下载免费PDF全文
A rapid and sensitive flow injection chemiluminescence (FI–CL) method is described for the determination of 2‐methoxyestradiol (2ME) based on enhancement of the CL intensity from a potassium ferricyanide–calcein system in sodium hydroxide medium. The optimum conditions for the CL emission were investigated. Under optimized conditions, a linear calibration graph was obtained over the range 1.0 × 10‐8 to 1.0 × 10‐6 mol/L (r = 0.998) 2ME with a detection limit (3σ) of 5.4 × 10‐9 mol/L. The relative standard deviation (RSD) for 5.0 × 10‐7 mol/L 2ME was 1.7%. As a preliminary application, the proposed method was successfully applied to the determination of 2ME in injection solutions and serum samples. The possible CL mechanism was also proposed. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
13.
A. Gregorio Alapont E. Aurechia Gimnez L. Lahuerta Zamora J. Martínez Calatayud 《Luminescence》1998,13(3):131-137
A flow injection procedure for the indirect chemiluminescent determination of isoniazid is proposed. The method is performed in a flow-injection manifold provided with a solid-phase reactor. The reactor was made from manganese dioxide physically entrapped by polymerization; the redox reaction isoniazid–manganese dioxide released Mn(II) which was monitored through its inhibitory effect on the reaction between luminol and hydrogen peroxide in presence of potassium hexacyanoferrate(III). The procedure resulted in a linear calibration graph over the range 5–15 mg/L of isoniazid with a sample throughput of 43 samples/h. The influence of foreign compounds was studied and the method was applied to determination of the drug in a pharmaceutical formulation. © 1998 John Wiley & Sons, Ltd. 相似文献
14.
A novel, rapid and sensitive method was described for the determination of epinephrine (EP) using flow injection analysis coupled with chemiluminescence (CL) detection, which based on EP enhanced the weak CL emission of luminol–KIO4 system in NaOH solution. Parameters affecting the CL intensity and reproducibility were optimized systematically. Under the optimized experiment conditions, the net CL intensity was proportional to the concentration of EP in the range of 5.0 × 10?8 to 1.5 × 10?6 mol/L with a detection limit of 1.9 × 10?9 mol/L. The relative standard deviation (RSD) was found to be 0.7% for 13 replicate determinations of 3.0 × 10?7 mol/L EP. The applicability of the proposed method was illustrated in the determination of EP in pharmaceutical preparation. The recoveries of EP at different levels in EP hydrochloride injection were between 95.4 and 104.7%. One assay procedure takes only 27 s, and the sampling rate was calculated about to be 130 samples/h. The possible mechanism of the enhanced CL intensity was studied by examining CL spectra and UV–vis spectra. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
15.
A novel flow‐injection chemiluminescence method for the determination of melamine in urine and plasma was developed. It was found that melamine can remarkably enhance chemiluminescence emission from the luminol–K3Fe(CN)6 system in an alkaline medium. Under the optimum conditions, chemiluminescence intensity had a good linear relationship with the concentration of melamine in the range 9.0 × 10–9–7.0 × 10–6 g/mL, with a correlation coefficient of 0.9992. The detection limit (3σ) was 3.5 ng/mL. The method has been applied to determine the concentration of melamine in samples using liquid–liquid extraction. Average recoveries of melamine were 102.6% in urine samples and 95.1% in plasma samples. The method provided a reproducible and stable approach for the sensitive detection of melamine in urine and plasma samples. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
16.
《Luminescence》2002,17(3):165-167
A new flow injection chemiluminescence method is described for the determination of captopril. It is based on the enhancing effect of captopril on the chemiluminescence reaction of luminol with potassium ferricyanide in alkaline solution in the presence of potassium ferrocyanide. The method allows the determination of captopril over 0.1–40 µg/mL range, with a relative standard deviation (SD) of 1.0% for the determination of 0.5 µg/mL captopril solution in 11 repeated measurements. The method was satisfactorily applied to the determination of captopril in commercial captopril tablets. The possible reaction mechanism is also discussed briefly. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
17.
A novel chemiluminescence method for the determination of gentiopicroside is presented, which was based on the inhibitory effect of gentiopicroside on the chemiluminescence reaction between luminol and myoglobin in a flow‐injection system. The decrement of chemiluminescence intensity was linear with the logarithm of gentiopicroside concentration over the range from 10.0 pg mL?1 to 500.0 ng mL?1 (r2 = 0.9992), with a detection limit of 3.0 pg mL?1 (3σ). At a flow rate of 2.0 mL min?1, a complete analytical process could be performed within 0.5 min, including sampling and washing, with a relative standard deviation of less than 3.0% (n = 5). The proposed procedure was applied successfully in the determination of gentiopicroside in pharmaceutical preparations, human urine and serum without any pretreatment procedure. The possible mechanism of the reaction was also discussed. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
18.
Salma Ali Al‐Tamimi Nawal Ahmad Alarfaj Fatma Ahmed Aly Amal Mohammed Al‐Mohaimeed 《Luminescence》2014,29(2):127-131
A simple, rapid and highly sensitive spectrofluorimetric method was developed for determination of gemifloxacin mesylate (GFX) in tablets. The method is based on measuring the native fluorescence of GFX in isopropanol at 400 nm after excitation at 272 nm. The fluorescence–concentration plot was rectilinear over the range of 0.01–0.50 µg/mL with a lower detection limit of 1.19 ng/mL and quantification limit of 3.6 ng/mL. The method was fully validated and successfully applied to the determination of GFX tablets with an average percentage recovery of 99.65 ± 0.532. The method was extended to the stability study of GFX. The drug was exposed to acidic, alkaline, oxidative and photolytic degradation according to International Conference on Harmonization guidelines. The rate of GFX degradation was found at its highest in acidic conditions, and in its lowest in the neutral one. However, it was stable under dry heat and photolytic degradation conditions. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
19.
A rapid and sensitive flow‐injection chemiluminescence (FI–CL) method is described for the determination of diazepam based on its reaction with N‐bromosuccinimide (NBS) in alkaline medium in the presence of dichlorofluorescein (DCF) as an effective energy‐transfer agent. Under optimum conditions, the proposed method allowed the measurement of diazepam over the range of 2.0 × 10?6 to 2.0 × 10?4 mol/L with a detection limit of 5.0 × 10?7 mol/L. The relative standard deviation for 11 parallel measurements of 2.0 × 10?5 mol/L diazepam was 2.1%. The method was applied satisfactorily for the determination of diazepam in pharmaceutical preparations, and the results agree well with those obtained by spectrophotometry. The use of the proposed system for the determination of diazepam in urine and plasma samples was also tested. The possible mechanism of the chemiluminescence reaction is discussed briefly. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
20.
A flow injection (FI) method is reported for the determination of l‐ cysteine, based on its enhancement on chemiluminescence (CL) emission of luminol oxidized by sodium persulphate in alkaline solution. The calibration graph was linear over the range 1.0 × 10–9–5.0 × 10–7 mol/L (r2 = 0.9992), with relative standard deviations (RSDs) in the range 1.1–2.3% (n = 4). The limit of detection (3σ blank) was 5.0 × 10–10 mol/L with a sample throughput of 120/h. The method was applied to pharmaceuticals and the results obtained were in reasonable agreement with the amount labelled. The proposed method was also applied to cysteine in synthetic amino acid mixtures. Calibration graphs of N‐acetylcysteine and glutathione over the range 1.0–50 × 10–8 and 0.5–7.5 × 10–7 mol/L were also established (r2 = 0.998 and 0.9986) with RSDs in the range 1.0–2.0% (n = 4), and the limits of detection (3σ blank) were 5.0 × 10–9 and 1.0 × 10–8 mol/L, respectively. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献