首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This work discloses two bona fide gates through which the CO ligand can leave the distal cavity of carboxy human cytoglobin, reaching the solvent. The investigation was based on molecular dynamics, aided by a minimal randomly‐oriented force applied to the ligand. The shortest pathway progresses toward the main gate, H81‐R84, in the open state, with the H81 imidazole moiety turned toward the solvent. A longer pathway develops toward the diametrically opposed W31‐W151 gate. In between, CO may be entrapped into binding cavities, either along the path toward the gates, or in a cul‐de‐sac, from which CO may even be incapable to escape. This behavior contrasts with carboxy myoglobin, where the corresponding H64 gate, when opened, is the sole used by CO to get to the solvent. These observations, which could hold also for other small ligands of biological interest, such as O2, NO, and NO$\rm{{_{3}^{-}}}$ , provide an answer to a neglected aspect of the mysterious six‐coordinated globins.  相似文献   

2.
In this work, an all atom model of the quinoprotein dehydrogenase PqqC in complex with the PQQ (=4,5‐dihydro‐4,5‐dioxo‐1H‐pyrrolo[2,3‐f]quinoline‐2,7,9‐tricarboxylic acid) cofactor and dioxygen (O2), solvated with TIP3 water in periodic boxes, was subjected to random‐acceleration molecular dynamics (RAMD). It was found that O2 leaves the active binding pocket, in front of PQQ, to get to the solvent, as easily as with a variety of other O2‐activating enzymes, O2 carriers, and gas‐sensing proteins. The shortest pathway, orthogonal to the center of the mean plane of PQQ, was largely preferred by O2 over pathways slightly deviating from this line. These observations challenge the interpretation of an impermeable active binding pocket of PqqC‐PQQ, as drawn from both X‐ray diffraction data of the crystal at low temperature and physiological experimentation.  相似文献   

3.
Abstract

Point mutations in the human prion protein gene, leading to amino acid substitutions in the human prion protein contribute to conversion of PrPC to PrPSc and amyloid formation, resulting in prion diseases such as familial Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler-Scheinker disease (GSS), and fatal familial insomnia. We have investigated impressions of prevalent mutations including Q217R, D202N, F198S, on the human prion protein and compared the mutant models with wild types. Structural analyses of models were performed with molecular modeling and molecular dynamics simulation methods. According to our results, frequently occurred mutations are observed in conserved and fully conserved sequences of human prion protein and the most fluctuation values occur in the Helix 1 around residues 144–152 and C-terminal end of the Helix 2. Our analysis of results obtained from MD simulation clearly shows that this long-range effect plays an important role in the conformational fluctuations in mutant structures of human prion protein. Results obtained from molecular modeling such as creation or elimination of some hydrogen bonds, increase or decrease of the accessible surface area and molecular surface, loss or accumulation of negative or positive charges on specific positions, and altering the polarity and pKa values, show that amino acid point mutations, though not urgently change the stability of PrP, might have some local impacts on the protein interactions which are required for oligomerization into fibrillar species.  相似文献   

4.
Activation of the first sphingosine‐1‐phosphate receptor (S1PR1) promotes permeability of the blood brain barrier, astrocyte and neuronal protection, and lymphocyte egress from secondary lymphoid tissues. Although an agonist often activates the S1PR1, the receptor exhibits high levels of basal activity. In this study, we performed long‐timescale molecular dynamics and accelerated molecular dynamics (aMD) simulations to investigate activation mechanisms of the ligand‐free (apo) S1PR1. In the aMD enhanced sampling simulations, we observed four independent events of activation, which is characterized by close interaction between Y3117.53 and Y2215.58 and increased distance between the intracellular ends of transmembrane (TM) helices 3 and 6. Although TM helices TM3, TM6, TM5 and, TM7 are associated with GPCR activation, we discovered that their movements are not necessarily correlated during activation. Instead, TM5 showed a decreased correlation with each of these regions during activation. During activation of the apo receptor, Y2215.58 and Y3117.53 became more solvated, because a water channel formed in the intracellular pocket. Additionally, a lipid molecule repeatedly entered the receptor between the extracellular ends of TM1 and TM7, providing important insights into the pathway of ligand entry into the S1PR1.  相似文献   

5.
Although 1-alkanols have long been known to act as penetration enhancers and anesthetics, the mode of operation is not yet understood. In this study, long-time molecular dynamics simulations have been performed to investigate the effect of 1-alkanols of various carbon chain lengths onto the structure and dynamics of dimyristoylphosphatidylcholine bilayers. The simulations were complemented by microcalorimetry, continuous bleaching and film balance experiments. In the simulations, all investigated 1-alkanols assembled inside the lipid bilayer within tens of nanoseconds. Their hydroxyl groups bound preferentially to the lipid carbonyl group and the hydrocarbon chains stretched into the hydrophobic core of the bilayer. Both molecular dynamics simulations and experiments showed that all 1-alkanols drastically affected the bilayer properties. Insertion of long-chain 1-alkanols decreased the area per lipid while increasing the thickness of the bilayer and the order of the lipids. The bilayer elasticity was reduced and the diffusive motion of the lipids within the bilayer plane was suppressed. On the other hand, integration of ethanol into the bilayer enlarged the area per lipid. The bilayer became softer and lipid diffusion was enhanced.  相似文献   

6.
H‐NOX (Heme Nitric Oxide/Oxygen) domain has widespread occurrence, either standalone or associated with functional proteins, sending signals for functions that span from modulating vasodilation and neurotransmission with humans to competition and symbiosis with bacteria. Understanding how H‐NOX works, and possibly intervening on degeneration for health purposes, needs first clarifying how diatomic gases are relocated through this protein in relation to the deeply buried heme. To this end, a biased form of molecular dynamics, i.e., Random Accelaration Molecular Dynamics (RAMD), is used by applying a randomly oriented tiny force to heme‐dissociated CO of Nostoc sp. H‐NOX, while changing randomly the direction of the force, if CO travels less than specified for the evaluated block. The result is that a large area of the protein, comprising amino acids from serine 44 to leucine 67 along two adjacent helices, offers a broad portal to CO from the surrounding medium to the deeply buried heme. Most traffic is concentrated through a channel lined by tyrosine 49, valine 52, and leucine 67. This modifies the picture drawn from mapping Xe cavities on pressurizing Nostoc sp. H‐NOX with Xe gas. What is the main pathway with Xe‐cavity mapping becomes a minor pathway with RAMD, and vice versa. The reason is that the fluctuating protein under MD creates clefts for CO slipping through, as it is expected to occur in nature.  相似文献   

7.
This work shows that a deep‐sea protein, 3LEZ, with known in vitro β‐lactamase activity, proved stable, substantially in the conformation detected by X‐ray diffraction of the crystal, when subjected to molecular‐dynamics (MD) simulations under conditions compatible with shallow seas. Docking simulations showed that the β‐lactamase active site S85 of 3LEZ (S70 in Ambler numbering) is the preferential binding pocket for not only β‐lactam antibiotics and inhibitors, but, surprisingly, also for a wide variety of other biologically active compounds in various chemical classes, including marine metabolites. In line with the in vitro β‐lactamase activity, a) affinities on docking β‐lactam antibiotics and inhibitors onto 3LEZ were found to roughly parallel published Km and Ki values, obtained from Michaelis? Menten kinetics under room conditions, and b) DFT calculations agreed with experiments that the irreversible reaction of the β‐lactamase inhibitor clavulanic acid with the whole S85 catalytic center of 3LEZ is spontaneous. These observations must be viewed in the light that a) the compounds in other chemical classes showed comparable affinities, and, in some cases, even higher than β‐lactams, for the S85 active site, b) Km and Ki data are not available at the high hydrostatic pressure of the deep sea, where 3LEZ is believed to have evolved, c) an inverse order of affinities for the β‐lactams, with respect to both experimentation and simulations at room conditions, was observed from comparative docking simulations with 3LEZ derived from MD under high hydrostatic pressure. Although MD requires a general assessment for high hydrostatic pressure before c) above is given the same weight as all other observations, this work questions the conclusion that the in vitro determined β‐lactamase activity represents the ecological role of 3LEZ.  相似文献   

8.
Salvianolic acid (SA) is known for improving blood circulation, scavenging hydroxyl radicals, and preventing platelet aggregation. The research explored whether SA can protect against cardiovascular disease induced by high glucose conditions. Our results indicate that SA significantly increases cells viability and nitric oxide levels while decreasing reactive oxygen species generation. SA upregulated the expression levels of Bcl‐2 and decreased the levels of Bax, cleaved caspase‐3, and cleaved caspase‐9. Furthermore, the expression levels of Sirtuin 1 (Sirt1) and p‐endothelial nitric oxide synthase (eNOS) were markedly increased in response to SA treatment. Moreover, exposure of human umbilical vein endothelial cells to Ex527 resulted in reducing expression of p‐eNOS. However, the beneficial effects of SA were abolished partially when Ex527 was added. These findings suggest that SA can be used as a potential therapeutic to protect against high glucose‐induced endothelial injury by modulating Sirt1‐eNOS pathway.  相似文献   

9.
Fourier-transformed infrared spectroscopy (FTIR) and molecular dynamics (MD) simulation results are presented to support our hypothesis that the conformation and the oligomeric state of the HIV-1 gp41 fusion domain or fusion peptide (gp41-FP) are determined by the membrane surface area per lipid (APL), which is affected by the membrane curvature. FTIR of the gp41-FP in the Aerosol-OT (AOT) reversed micellar system showed that as APL decreases from ∼ 50 to 35 Å2 by varying the AOT/water ratio, the FP changes from the monomeric α-helical to the oligomeric β-sheet structure. MD simulations in POPE lipid bilayer systems showed that as the APL decreases by applying a negative surface tension, helical monomers start to unfold into turn-like structures. Furthermore, an increase in the applied lateral pressure during nonequilibrium MD simulations favored the formation of β-sheet structure. These results provide better insight into the relationship between the structures of the gp41-FP and the membrane, which is essential in understanding the membrane fusion process. The implication of the results of this work on what is the fusogenic structure of the HIV-1 FP is discussed.  相似文献   

10.
Abstract

Huntington's disease is a neurodegenerative disorder caused by a polyglutamine (polyQ) expansion near the N-terminus of huntingtin. Previous studies have suggested that polyQ aggregation occurs only when the number of glutamine (Q) residues is more than 36-40, the disease threshold. However, the structural characteristics of polyQ nucleation in the very early stage of aggregation still remain elusive. In this study, we designed 18 simulation trials to determine the possible structural models for polyQ nucleation and aggregation with various shapes and sizes of initial β-helical structures, such as left-handed circular, right-handed rectangular, and left- and right-handed triangular. Our results show that the stability of these models significantly increases with increasing the number of rungs, while it is rather insensitive to the number of Qs in each rung. In particular, the 3-rung β-helical models are stable when they adopt the left-handed triangular and right-handed rectangular conformations due to the fact that they preserve high β-turn and β-sheet contents, respectively, during the simulation courses. Thus, we suggested that these two stable β-helical structures with at least 3 rungs might serve as the possible nucleation seeds for polyQ depending on how the structural elements of β-turn and β-sheet are sampled and preserved during the very early stage of aggregation.  相似文献   

11.
12.
Abstract

The structural and dynamical properties of the complete full-length structure of HIV-1 integrase were investigated using Molecular Dynamics approach. Simulations were carried out for the three systems, core domain only (CORE), full-length structure without (FULL) and with a Mg2+ (FULL+ION) in its active site, aimed to investigate the difference in the molecular properties of the full-length models due to their different construction procedures as well as the effects of the two ends, C- and N-terminal, on those properties in the core domain. The full-length structure was prepared from the two experimental structures of two-domain fragment. The following properties were observed to differ significantly from the previous reports: (i) relative topology formed by an angle between the three domains; (ii) the cavity size defined by the catalytic triad, Asp64, Asp116, and Glul52; (iii) distances and solvation of the Mg2+; and (iv) conformation of the catalytic residues. In addition, the presence of the two terminal domains decreases the mobility of the central core domain significantly.  相似文献   

13.
This work deals with a trimeric bacterial protein, RhCC, which, although belonging to the tautomerase superfamily, shows oxygenase activity. A model of the complex from RhCC and substrate 4‐hydroxyphenylenolpyruvate (4HPP), fitting the observation of extra electron densities from X‐ray diffraction of the crystal, could be built by autodocking. When subjected to molecular dynamics (MD) aided by an external random force applied to a O2 molecule placed above 4HPP, this model evolved with O2 egressing toward the bulk solvent from two nearly opposite gates. These were located between the nearly parallel helices 75 – 91 and 15 – 33 of either chain C (gate SE) or chain B (gate FL). Alternatively, with four O2 molecules in the bulk solvent, unbiased MD led to O2 entering the protein from gate SE and getting to 4HPP, while forming a stabilizing salt bridge between the 4HPP carboxylate and P1.C +NH2, thus providing scientific ground for a refined model of the complex.  相似文献   

14.
“Membraneless organelles,” also referred to as biomolecular condensates, perform a variety of cellular functions and their dysregulation is implicated in cancer and neurodegeneration. In the last two decades, liquid-liquid phase separation (LLPS) of intrinsically disordered and multidomain proteins has emerged as a plausible mechanism underlying the formation of various biomolecular condensates. Further, the occurrence of liquid-to-solid transitions within liquid-like condensates may give rise to amyloid structures, implying a biophysical link between phase separation and protein aggregation. Despite significant advances, uncovering the microscopic details of liquid-to-solid phase transitions using experiments remains a considerable challenge and presents an exciting opportunity for the development of computational models which provide valuable, complementary insights into the underlying phenomenon. In this review, we first highlight recent biophysical studies which provide new insights into the molecular mechanisms underlying liquid-to-solid (fibril) phase transitions of folded, disordered and multi-domain proteins. Next, we summarize the range of computational models used to study protein aggregation and phase separation. Finally, we discuss recent computational approaches which attempt to capture the underlying physics of liquid-to-solid transitions along with their merits and shortcomings.  相似文献   

15.
16.
Vascular endothelial growth factor (Vegf) was previously shown to be expressed specifically in the condylar cartilage of temporomandibular joint-osteoarthritis (TMJ-OA) model rats. Here we demonstrate for the first time that hypoxia-inducible factor-1α (Hif-1α) is activated in mature chondrocytes of temporomandibular joint-osteoarthritis (TMJ-OA) model rat by mechanical overload, and that activated Hif-1 in chondrocytes can induce osteoclastogenesis via repression of osteoprotegerin (Opg) expression.In rat TMJs, degeneration of the condylar cartilage became prominent in proportion to the duration of overloading. Hif-1α expression was observed specifically in mature and hypertrophic chondrocytes, and Hif-1α-positivity, level of Vegf expression, and tartrate-resistant acid phosphatase (TRAP)-positive cell numbers all increased in the same manner. When ATDC5 cells induced differentiation by insulin were cultured under hypoxia, Hif-1α induction was observed in mature stage, but not in immature stage. Inductions of Hif-1-target genes showed a similar expression pattern. In addition, expression of Opg decreased in hypoxia, and Hif-1α played a role, in part, in its regulation.  相似文献   

17.
利用透射电子显微镜(TEM)和原子力显微镜(AFM)观察流感病毒(H1N1),探讨AFM在病毒形态研究中的应用,为病毒形态学研究提供一种新型、简便、快捷的工具.TEM采用磷钨酸负染方法,AFM采用轻敲模式在大气常温下扫描成像,并对主要指标长度(直径)、Ra、Rq等进行测量.两种方法最终得到相似的形态学结果,流感病毒呈球状、丝状,并有一些形状介于两者之间.TEM提供了流感病毒二维图像,可见钉状突起,AFM则呈现了流感病毒三维图像,且可见病毒表面有凹凸不平的特征和边缘有齿轮状的突起,同时获得表面粗糙度等可以量化指标.与TEM观察相比,原子力显微镜是一种制样简单、观察直观的新型病毒形态学研究工具,其表征参数可以作为病毒形态学研究的量化指标.  相似文献   

18.
19.
Helix-helix interactions in the putative three-helix bundle formation of the gp41 transmembrane (TM) domain may contribute to the process of virus-cell membrane fusion in HIV-1 infection. In this study, molecular dynamics is used to analyze and compare the conformations of monomeric and trimeric forms of the TM domain in various solvent systems over the course of 4 to 23-ns simulations. The trimeric bundles of the TM domain were stable as helices and remained associated in a hydrated POPE lipid bilayer for the duration of the 23-ns simulation. Several stable inter-chain hydrogen bonds, mostly among the three deprotonated arginine residues located at the center of each of the three TM domains, formed in a right-handed bundle embedded in the lipid bilayer. No such bonds were observed when the bundle was left-handed or when the central arginine residue in each of the three TM helices was replaced with isoleucine (R_I mutant), suggesting that the central arginine residues may play an essential role in maintaining the integrity of the three-helix bundle. These observations suggest that formation of the three-helix bundle of the TM domain may play a role in the trimerization of gp41, thought to occur during the virus-cell membrane fusion process.  相似文献   

20.
Abstract

Mammalian defensins are crucial components of the innate immune system. They are characterized by three disulfide bridges and exhibit broad spectrum antibacterial activity. The spacing between the cysteines and disulfide connectivities in the two classes of defensins, the α- and β-forms, are different. The structural motif of 3 β-strands appears to be conserved in α and β-defensins despite differences in disulfide connectivities and spacing between cysteines. In this study, Molecular Dynamics Simulations (MDS) have been carried out to study the conformational behavior of α- and β-defensins with and without disulfide bridges. Our results indicate that β-strands in the C-terminal region of HBD-1 and HNP-3 do not unfold during the course of MDS. The segment adopting α-helix in HBD-1 unfolds early during the simulations. The backbone hydrogen bonds in HBD-1 and HNP-3 are broken during MDS. When the disulfide bonds are absent, the N-terminal β-strand unfolds by 20 ns but β-strands are observed in the C-terminal region of HNP-3. HBD-1, without disulfide bridges, unfolds to a greater extent during the course of the MDS. Examination of distances between sulfur atoms of cysteines without disulfide bridges during the simulations indicate that there is no specific preference for native disulfide bridges, which could be the reason for the experimental observation of non-native disulfide bridge formation during chemical synthesis of human α- and β-defensins. Since defensins with non-native disulfide bridges are biologically active, the exact three dimensional structures observed for native HBD-1 and HNP-3 does not appear to be essential for exhibiting antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号