首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
Many compounds entering clinical studies do not survive the numerous hurdles for a good pharmacological lead to a drug on the market. The reasons for attrition have been widely studied which resulted in more early attention to compound quality related to physical chemistry, drug metabolism and pharmacokinetics (DMPK), and toxicology/safety. This paper will briefly review current physicochemical in vitro assays and in silico predictions to support compound and library design through to lead optimization. The most important physicochemical properties include lipophilicity (log P/D), pKa, solubility, and permeability. These drive key ADMET properties such as absorption, cell penetration, access to the brain, volume of distribution, plasma protein binding, metabolism, and toxicity, as well as biopharmaceutical behavior. Much data are now available from medium‐ to high‐throughput physchem and ADMET in vitro assays, either in the public domain (see, e.g., PubChem, PubMed) or in drug companies' in‐house databases. Such data are increasingly being computer‐modelled and used in predictive chemistry. New pipelining technology makes it easier to build and update QSAR models so that such models can use the latest available data to produce robust local and global predictive in silico ADMET models.  相似文献   

2.
葡萄基因组中KUP蛋白的生物信息学分析   总被引:1,自引:0,他引:1  
植物钾(K+)转运体蛋白在K+的跨膜运输中起重要作用,进而维持植物体正常生长和代谢活动.本研究中,通过隐马尔科夫模型(HMM)和葡萄蛋白质库搜索,共找到18个葡萄钾转运体蛋白(VvKUPs).利用生物信息学方法,我们对葡萄家族12条KUP蛋白序列的系统发生和KUP基因组定位进行分析,然后对其氨基酸组成成分、理化性质以及二级结构进行预测和分析,同时还分析了葡萄与拟南芥、水稻和杨树的KUP基因家族之间的联系.基因组定位结果发现其分布在至少9条染色体上.二级结构预测结果发现不同成员间氨基酸数目、氨基酸序列间的疏水性存在一定的差异;α-螺旋和无规则卷曲为主要二级结构组成部分.基因结构分析表明,KUP基因家族成员分别含有7~10个内含子.葡萄KUP蛋白的亚细胞定位分析表明VvKUP主要定位于膜结构上.电子表达图谱分析结果表明:12条KUP基因有对应的EST序列,其中的11条KUP有相应的电子表达谱,并主要在花、果实、花序和花蕾等组织部位表达.  相似文献   

3.
4.
Genotoxicity is one of the important endpoints for risk assessment of environmental chemicals. Many short-term assays to evaluate genotoxicity have been developed and some of them are being used routinely. Although these assays can generally be completed within a short period, their throughput is not sufficient to assess the huge number of chemicals, which exist in our living environment without information on their safety. We have evaluated three commercially available in silico systems, i.e., DEREK, MultiCASE, and ADMEWorks, to assess chemical genotoxicity. We applied these systems to the 703 chemicals that had been evaluated by the Salmonella/microsome assay from CGX database published by Kirkland et al. [1]. We also applied these systems to the 206 existing chemicals in Japan that were recently evaluated using the Salmonella/microsome assay under GLP compliance (ECJ database). Sensitivity (the proportion of the positive in Salmonella/microsome assay correctly identified by the in silico system), specificity (the proportion of the negative in Salmonella/microsome assay correctly identified) and concordance (the proportion of correct identifications of the positive and the negative in Salmonella/microsome assay) were increased when we combined the three in silico systems to make a final decision in mutagenicity, and accordingly we concluded that in silico evaluation could be optimized by combining the evaluations from different systems. We also investigated whether there was any correlation between the Salmonella/microsome assay result and the molecular weight of the chemicals: high molecular weight (>3000) chemicals tended to give negative results. We propose a decision tree to assess chemical genotoxicity using a combination of the three in silico systems after pre-selection according to their molecular weight.  相似文献   

5.
Reduction, catalyzed by the bacterial nitroreductases, is the quintessential first step in the biodegradation of a variety of nitroaromatic compounds from contaminated waters and soil. The Enterobacter cloacae nitroreductase (EcNR) enzyme is considered as a prospective biotechnological tool for bioremediation of hazardous nitroaromatic compounds. Using diverse computational methods, we obtain insights into the structural basis of activity and mechanism of its function. We have performed molecular dynamics simulation of EcNR in three different states (free EcNR in oxidized form, fully reduced EcNR with benzoate inhibitor and fully reduced EcNR with nitrobenzene) in explicit solvent and with full electrostatics. Principal Component Analysis (PCA) of the variance‐covariance matrix showed that the complexed nitroreductase becomes more flexible overall upon complexation, particularly helix H6, in the vicinity of the binding site. A multiple sequence alignment was also constructed in order to examine positional constraints on substitution in EcNR. Five regions which are highly conserved within the flavin mononucleotide (FMN) binding site were identified. Obtained results and their implications for EcNR functioning are discussed, and new plausible mechanism has been proposed. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
The conversion of 1-deoxy-D-xylulose-5-phosphate (DOXP) to 2-C-methyl-D-erythritol-4-phosphate (MEP) is effectively blocked by 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr) inhibitors such as the natural antibiotic fosmidomycin. Prediction of binding affinities for closely related Dxr ligands as well as estimation of the affinities of structurally more distinct inhibitors within this class of non-hydrolyzable phosphate mimics relies on the synthesis of fosmidomycin derivatives with a broad range of target affinity. Maintaining the phosphonic acid moiety, linear modifications of the lead structure were carried out in an effort to expand the SAR of this physicochemically challenging class of compounds. Synthetic access to a set of phosphonic acids with inhibitory activity (IC(50)) in the range from 1 to >30 microM vs. E. coli Dxr and 0.4 to 20 microM against P. falciparum Dxr is reported.  相似文献   

8.
9.
10.
11.
Due to the rising incidence and lack of effective treatments, malignant melanoma is the most dangerous form of skin cancer, so that new treatment strategies are urgently needed. Several recent developments indicate that the V600E mutant BRAF (BRAFV600E) is a validated target for antimelanoma‐drug development. Based on in silico screening results, a series of novel pyrazole derivatives has been designed, synthesized, and evaluated in vitro for their inhibitory activities against BRAFV600E melanoma cells. Compound 3d exhibited the most potent inhibitory activity with an IC50 value of 0.63 μM for BRAFV600E and a GI50 value of 0.61 μM for mutant BRAF‐dependent cells. Furthermore, the QSAR modeling and the docking simulation of inhibitor analogs provide important pharmacophore clues for further structural optimization.  相似文献   

12.
A series of new acetohydrazone‐containing 1,2,4‐triazolo[1,5‐a]pyrimidine derivatives were designed and synthesized for the purpose of searching for novel agrochemicals with higher fungicidal activity. Their in vitro fungicidal activities against Rhizoctonia solani were evaluated, and the most promising compound, 2‐[(5,7‐dimethyl[1,2,4]triazolo[1,5‐a]pyrimidin‐2‐yl)sulfanyl]‐2′‐[(2‐hydroxyphenyl)methylidene]acetohydrazide ( 2‐17 ), showed a lower EC50 value (5.34 μg ml?1) than that of commercial carbendazim (EC50=7.62 μg ml?1). Additionally, compound 2‐17 was also found to display broad‐spectrum fungicidal activities, and its EC50 value (4.56 μg ml?1) against Botrytis cinereapers was very similar to that of carbendazim. Qualitative structure–activity relationships (QSARs) of the synthesized compounds were also discussed.  相似文献   

13.
14.
MicroRNA(miRNA)是一类长度约为21 nt的非编码RNA,在动植物中发挥着重要而广泛的转录后调控作用. 现有的计算预测方法通常不能很好地识别具有多分枝茎环二级结构的pre miRNA.为进一步提高对pre miRNA的预测精度,本文在以往研究的基础上,新引用了一类多茎环生物学特征,将遗传算法(GA)与支持向量机(SVM)结合以进行特征选择,同时优化SVM分类器模型参数(c,g),并对数据集的不平衡性进行处理,构造出新的分类器.本文采用人类pre miRNA作为研究数据集,通过5折交叉验证,实验结果显示,新的分类器能够有效地提高预测精度.  相似文献   

15.
An Aedes aegypti larval toxicity bioassay was performed on compounds representing many classes of natural compounds including polyacetylenes, phytosterols, flavonoids, sesquiterpenoids, and triterpenoids. Among these compounds, two eudesmanolides, alantolactone, and isoalantolactone showed larvicidal activities against Ae. aegypti and, therefore, were chosen for further structure–activity relationship study. In this study, structural modifications were performed on both alantolactone and isoalantolactone in an effort to understand the functional groups necessary for maintaining and/or increasing its activity, and to possibly lead to more effective insect‐control agents. All parent compounds and synthetic modification reaction products were evaluated for their toxic activities against Ae. aegypti larvae and adults. Structure modifications included epoxidations, reductions, catalytic hydrogenations, and Michael additions to the α,β‐unsaturated lactones. None of the synthetic isomers synthesized and screened against Ae. aegypti larvae were more active than isoalantolactone itself which had an LC50 value of 10.0 μg/ml. This was not the case for analogs of alantolactone for which many of the analogs had larvicidal activities ranging from 12.4 to 69.9 μg/ml. In general, activity trends observed from Ae. aegypti larval screening were not consistent with observations from adulticidal screening. The propylamine Michael addition analog of alantolactone was the most active adulticide synthesized with an LC50 value of 1.07 μg/mosquito. In addition, the crystal structures of both alantolactone and isoalantolactone were determined using CuKα radiation, which allowed their absolute configurations to be determined based on resonant scattering of the light atoms.  相似文献   

16.
7α‐Hydroxyfrullanolide ( 1 ), a known sesquiterpenoid, was isolated from Sphaeranthus indicus using an antibacterial‐activity‐directed fractionation method. This compound had exhibited a significant antibacterial activity against Gram‐positive bacteria. Chemical and microbial reactions were performed to prepare eight different analogues of compound 1 in order to evaluate these newly synthesized compounds for antibacterial activity. These compounds were 1β,7α‐dihydroxyfrullanolide ( 2 ), 7α‐hydroxy‐1‐oxofrullanolide ( 3 ), 4,5‐dihydro‐7α‐hydroxyfrullanolide ( 4 ), 11,13‐dihydro‐7α‐hydroxyfrullanolide ( 5 ), 13‐acetyl‐7α‐hydroxyfrullanolide ( 6 ), 2α,7α‐dihydroxysphaerantholide ( 7 ), 4α,5α‐epoxy‐7α‐hydroxyfrullanolide ( 8 ), and 4β,5β‐epoxy‐7α‐hydroxyfrullanolide ( 9 ). Microbial reactions on 1 using whole‐cell cultures of Cunninghamella echinulata and Curvularia lunata yielded compounds 2 – 4 . Incubation of compound 1 with the liquid cultures of Apsergillus niger and Rhizopus circinans yielded metabolites 5 – 7 , while 8 and 9 were prepared by carrying out an epoxidation reaction on 1 using meta‐chloroperbenzoic acid (mCPBA). Structures of compounds 2 – 9 were elucidated with the aid of extensive NMR spectral studies. Compounds 2 – 4 were found to be new metabolites. Compounds 1 – 9 were evaluated for antibacterial activity and found to exhibit a wide range of bioactivities. Antibacterial‐activity data of 1 – 9 suggested that the bioactivity of 1 is largely due to the presence of C(4)?C(5), C(11)?C(13), and a γ‐lactone moiety.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号