首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterologous proteins are often poorly expressed in Escherichia coli and especially small peptides are prone to degradation. Npro autoprotease fusion proteins, deposited as inclusion bodies in E. coli, are a versatile tool for peptide and protein overexpression and generate an authentic N terminus at the target molecule. Autoproteolytic cleavage and subsequent release of the fusion partner are initiated upon refolding. Fusion proteins with the Npro mutant EDDIE follow a monomolecular reaction. The reaction rate was only dependent on chaotrope concentration, decreasing exponentially by a factor of 1.2–1.5 for urea and by a factor of 2.1–5.3 for GuHCl. The first amino acid of the target peptide had a major impact on the reaction rate studying a set of model peptides. Reaction rates were in the range of 2.2 × 10?4 to 7.3 × 10?5 s?1 and could be increased up to fivefold by exchanging the first amino acid of the target peptide. A panel of biophysical methods was used to assess EDDIE secondary and tertiary structure. Immediate formation of secondary structure and slight increase in β-sheet content of approximately 5% over the course of the cleavage reaction was observed and interpreted as aggregation. Aggregation and cleavage occurred simultaneously. EDDIE has a relatively loose structure with the cleavage site exhibiting the lowest solvent exposure. We hypothesize that this is the mechanism for establishing a spatial proximity between cleavage site and the catalytic centre of the autoprotease. Fluorescence measurements revealed that further structural changes did not occur after the initial hydrophobic collapse. Thus, the overall reaction is predominantly controlled by cleavage kinetics and refolding kinetics does not play a major role.  相似文献   

2.
Antimicrobial peptide CM4 is a small cationic peptide with broad-spectrum activities against bacteria, fungi, and tumor cells. Different strategies have been developed to produce small antibacterial peptides using recombinant techniques. To date, no efforts to obtain large quantities of active recombinant CM4 have been reported. In order to establish a bacterium-based CM4 production system, CM4 was cloned into pET28a and expressed with Npro mutant (EDDIE) fusion. CM4 expressed as EDDIE are deposited as inclusion bodies. On in vitro refolding by switching from chemotropic to kosmotropic conditions, the fusion partner is released from the C-terminal end of the autoprotease by self-cleavage, leaving CM4 protein with an authentic N terminus. Purified CM4 was separated on Ni2+-chelating chromatography column and cation-exchange chromatography column. Mass spectroscopic analysis indicated the protein to be 4132.56 Dalton, which equalled the theoretically expected mass. N-terminal sequencing of CM4 showed the sequence corresponded to the native protein. The recombinant CM4 exhibited the same antimicrobial and anti-tumor activity as reported previously. The expression strategy presented in this study allows convenient high yield and easy purification of recombinant CM4 with native sequences.  相似文献   

3.
4.
Npro is a multifunctional autoprotease unique to pestiviruses. The interacting partners of the Npro protein of classical swine fever virus (CSFV), a swine pestivirus, have been insufficiently defined. Using a yeast two-hybrid screen, we identified poly(C)-binding protein 1 (PCBP1) as a novel interacting partner of the CSFV Npro protein and confirmed this by coimmunoprecipitation, glutathione S-transferase (GST) pulldown, and confocal assays. Knockdown of PCBP1 by small interfering RNA suppressed CSFV growth, while overexpression of PCBP1 promoted CSFV growth. Furthermore, we showed that type I interferon was downregulated by PCBP1, as well as Npro. Our results suggest that cellular PCBP1 positively modulates CSFV growth.  相似文献   

5.
We describe a prokaryotic expression system using the autoproteolytic function of N(pro) from classical swine fever virus. Proteins or peptides expressed as N(pro) fusions are deposited as inclusion bodies. On in vitro refolding by switching from chaotropic to kosmotropic conditions, the fusion partner is released from the C-terminal end of the autoprotease by self-cleavage, leaving the target protein with an authentic N terminus. A tailor-made N(pro) mutant called EDDIE, with increased in vitro and decreased in vivo cleavage rates, has enabled us to express proinsulin, domain-D of staphylococcal protein A, hepcidin, interferon-alpha1, keratin-associated protein 10-4, green fluorescent protein, inhibitorial peptide of senescence-evasion-factor, monocyte chemoattractant protein-1 and toxic gyrase inhibitor, among others. This N(pro) expression system can be used as a generic tool for the high-level production of recombinant toxic peptides and proteins (up to 12 g/l) in Escherichia coli without the need for chemical or enzymatic removal of the fusion tag.  相似文献   

6.
《Process Biochemistry》2014,49(7):1113-1121
Screening for optimal refolding conditions for recombinant protein overexpressed in Escherichia coli as inclusion bodies is often carried out on micro-scale in non-agitated reactors. Currently, scale up of refolding of Npro fusion proteins is based on geometric similarity and constant Re number. Refolding/cleavage kinetics is recorded offline by HPLC and via fluorescence intensity. We show that the results for refolding obtained on the micro-scale can be transferred to the laboratory scale stirred tank reactor, with increases in scale up to a factor of 5000, with high agreement of kinetic constants and yield. Progress of refolding kinetics on the laboratory scale is monitored inline by attenuated total reflectance – Fourier transform infrared spectroscopy (ATR-FTIR). Addressing the demands for better process understanding, we demonstrate that ATR-FTIR enables the inline monitoring of refolding processes on the laboratory scale, replacing offline analysis which delivers the results with a time delay. Implementing inline monitoring will allow the integration of process control, thereby resulting in a more efficient and knowledge based production process.  相似文献   

7.
The refolding kinetics of horse cyanometmyoglobin induced by concentration jump of urea was investigated by five optical probe stopped-flow methods: absorption at 422 nm, tryptophyl fluorescence at around 340 nm, circular dichroism (CD) at 222 nm, CD at 260 nm, and CD at 422 nm. In the refolding process, we detected three phases with rate constants of > 1 × 102 s?1, (4.5–9.3) S?1, and (2–5) × 10?3 s?1. In the fastest phase, a substantial amount of secondary structure (40%) is formed within the dead time of the CD stopped-flow apparatus (10.7 ms). The kinetic intermediate populated in the fastest phase is shown to capture a hemindicyanide, suggesting that a “heme pocket precursor” recognized by hemindicyanide must be constructed within the dead time. In the middle phase, most of secondary and tertiary structures, especially around the captured hemindicyanide, have been constructed. In the slowest phase, we detected a minor structural rearrangement accompanying the ligand-exchange reaction in the fifth coordination of ferric iron. We present a possible model for the refolding process of myoglobin in the presence of the heme group. © 1994 Wiley-Liss, Inc.  相似文献   

8.
We cloned, expressed, purified, and determined the kinetic constants of the recombinant α-carbonic anhydrase (rec-MgaCA) identified in the mantle tissue of the bivalve Mediterranean mussel, Mytilus galloprovincialis. In metazoans, the α-CA family is largely represented and plays a pivotal role in the deposition of calcium carbonate biominerals. Our results demonstrated that rec-MgaCA was a monomer with an apparent molecular weight of about 32?kDa. Moreover, the determined kinetic parameters for the CO2 hydration reaction were kcat?=??4.2?×?105?s?1 and kcat/Km of 3.5?×?107?M?1 ×s?1. Curiously, the rec-MgaCA showed a very similar kinetic and acetazolamide inhibition features when compared to those of the native enzyme (MgaCA), which has a molecular weight of 50?kDa. Analysing the SDS-PAGE, the protonography, and the kinetic analysis performed on the native and recombinant enzyme, we hypothesised that probably the native MgaCA is a multidomain protein with a single CA domain at the N-terminus of the protein. This hypothesis is corroborated by the existence in mollusks of multidomain proteins with a hydratase activity. Among these proteins, nacrein is an example of α-CA multidomain proteins characterised by a single CA domain at the N-terminus part of the entire protein.  相似文献   

9.

Background

To facilitate the screening of large quantities of new antimicrobial peptides (AMPs), we describe a cost-effective method for high throughput prokaryotic expression of AMPs. EDDIE, an autoproteolytic mutant of the N-terminal autoprotease, Npro, from classical swine fever virus, was selected as a fusion protein partner. The expression system was used for high-level expression of six antimicrobial peptides with different sizes: Bombinin-like peptide 7, Temporin G, hexapeptide, Combi-1, human Histatin 9, and human Histatin 6. These expressed AMPs were purified and evaluated for antimicrobial activity.

Results

Two or four primers were used to synthesize each AMP gene in a single step PCR. Each synthetic gene was then cloned into the pET30a/His-EDDIE-GFP vector via an in vivo recombination strategy. Each AMP was then expressed as an Npro fusion protein in Escherichia coli. The expressed fusion proteins existed as inclusion bodies in the cytoplasm and the expression levels of the six AMPs reached up to 40% of the total cell protein content. On in vitro refolding, the fusion AMPs was released from the C-terminal end of the autoprotease by self-cleavage, leaving AMPs with an authentic N terminus. The released fusion partner was easily purified by Ni-NTA chromatography. All recombinant AMPs displayed expected antimicrobial activity against E. coli, Micrococcus luteus and S. cerevisia.

Conclusions

The method described in this report allows the fast synthesis of genes that are optimized for over-expression in E. coli and for the production of sufficiently large amounts of peptides for functional and structural characterization. The Npro partner system, without the need for chemical or enzymatic removal of the fusion tag, is a low-cost, efficient way of producing AMPs for characterization. The cloning method, combined with bioinformatic analyses from genome and EST sequence data, will also be useful for screening new AMPs. Plasmid pET30a/His-EDDIE-GFP also provides green/white colony selection for high-throughput recombinant AMP cloning.  相似文献   

10.
Hepatitis C Virus NS2-NS3 cleavage is mediated by NS2 autoprotease (NS2pro) and this cleavage is important for genome replication and virus assembly. Efficient NS2-NS3 cleavage relies on the stimulation of an intrinsic NS2pro activity by the NS3 protease domain. NS2pro activation depends on conserved hydrophobic NS3 surface residues and yet unknown NS2-NS3 surface interactions. Guided by an in silico NS2-NS3 precursor model, we experimentally identified two NS2 surface residues, F103 and L144, that are important for NS2pro activation by NS3. When analyzed in the absence of NS3, a combination of defined amino acid exchanges, namely F103A and L144I, acts together to increase intrinsic NS2pro activity. This effect is conserved between different HCV genotypes. For mutation L144I its stimulatory effect on NS2pro could be also demonstrated for two other mammalian hepaciviruses, highlighting the functional significance of this finding. We hypothesize that the two exchanges stimulating the intrinsic NS2pro activity mimic structural changes occurring during NS3-mediated NS2pro activation. Introducing these activating NS2pro mutations into a NS2-NS5B replicon reduced NS2-NS3 cleavage and RNA replication, indicating their interference with NS2-NS3 surface interactions pivotal for NS2pro activation by NS3. Data from chimeric hepaciviral NS2-NS3 precursor constructs, suggest that NS2 F103 is involved in the reception or transfer of the NS3 stimulus by NS3 P115. Accordingly, fine-tuned NS2-NS3 surface interactions are a salient feature of HCV NS2-NS3 cleavage. Together, these novel insights provide an exciting basis to dissect molecular mechanisms of NS2pro activation by NS3.  相似文献   

11.
It is demonstrated that cyanobacteria (both azotrophic and non‐azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite ‘dismutase’, Cld). Beside the water‐splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen–oxygen bond. All cyanobacterial Clds have a truncated N‐terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in Escherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [kcat 1144 ± 23.8 s?1, KM 162 ± 10.0 μM, catalytic efficiency (7.1 ± 0.6) × 106 M?1 s?1]. The resting ferric high‐spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of ?126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low‐spin complex with kon = (1.6 ± 0.1) × 105 M?1 s?1 and koff = 1.4 ± 2.9 s?1 (KD ~ 8.6 μM). Both, thermal and chemical unfolding follows a non‐two‐state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure–function relationships of Clds. We ask for the physiological substrate and putative function of these O2‐producing proteins in (nitrogen‐fixing) cyanobacteria.  相似文献   

12.
13.
The effect of sulfhydryl oxidase on the rate of disulfide bond formation and polypeptide chain folding in reductively denatured chymotrypsinogen A has been investigated using an immobilized zymogen preparation and a cylindrical quartz flow-through fluorescence cell. Enzymatic oxidation of the 10 sulfhydryl groups in reduced chymotrypsinogen followed first order kinetics at pH 7.0 with an apparent first order rate constant governing sulfhydryl group disappearance of 4.2 × 10?2 min?1. This provides a t12 of 16.3 min for the sulfhydryl oxidase-catalyzed oxidation, whereas 165 min are required for nonenzymatic aerobic oxidation of one-half the sulfhydryl groups. Refolding of the reductively denatured polypeptide chains, monitored by changes in protein fluorescence, did not follow first order kinetics characteristic of a simple two-state mechanism, nor did the return of trypsin activatability. It appears that at least one intermediate must exist in such refolding, in both the uncatalyzed and sulfhydryl oxidase-catalyzed processes. Estimation of the rate constants governing refolding, assuming a single intermediate between the denatured and native states, provided values of 3 × 10?2 min?1 and 7 × 10?3 min?1 for uncatalyzed autoxidation and 4 × 10?2 min?1 and 1.1 × 10?2 min?1 for the sulfhydryl oxidase-catalyzed transition. Thus, enzymic catalysis of disulfide bond formation can lead to apparent catalysis of protein refolding as monitored both by fluorescence and by acquisition of biological function.  相似文献   

14.
Antimicrobial peptides are active against a diverse spectrum of microorganisms. Using a bioinformatics method, six potential novel antimicrobial peptides, A1, C1, A2, A3, C2 and A4, were identified in the C8α complement component. The corresponding genes were then cloned into a new vector as fusions with the self-cleavage protein Npro protein mutant EDDIE gene. The expressed or synthetic peptides, A1, A2, A3 and A4, showed antimicrobial activities against several bacteria, while peptides C1 and C2 did not. Peptides A1 to A4 showed no hemolytic activities over 3 h when at 500 μg/ml. Thus, A1, A2, A3 and A4, derived from the C8α complement system, are novel antimicrobial peptides.  相似文献   

15.
Bovine viral diarrhoea virus (BVDV) is an economically important pathogen of cattle and sheep belonging to the genus Pestivirus of the family Flaviviridae. Although the BVDV non-structural N-terminal protease (Npro) acts as an interferon antagonist and subverts the host innate immunity, little is known about its immunogenicity. Hence, we expressed a recombinant BVDV Npro-His fusion protein (28 kDa) in E. coli and determined the humoral immune response generated by it in rabbits. The antigenicity of the Npro protein was confirmed by western blot using anti-BVDV hyperimmune cattle, sheep and goat serum, and anti-Npro rabbit serum. When rabbits were immunized with the Npro protein, a humoral immune response was evident by 4 weeks and persisted till 10 weeks post immunization as detected by ELISA and western blot. Despite Npro-specific antibodies remaining undetectable in 80 serum samples from BVDV-infected sheep and goats, BVDV hyperimmune sera along with some of the field cattle, sheep and goat sera with high BVDV neutralizing antibody titres were found positive for Npro antibodies. Our results provide evidence that despite the low immunogenicity of the BVDV Npro protein, a humoral immune response is induced in cattle, sheep and goats only with repeated BVDV exposure.  相似文献   

16.
The protein from Arabidopsis thaliana gene locus At1g79260.1 is comprised of 166‐residues and is of previously unknown function. Initial structural studies by the Center for Eukaryotic Structural Genomics (CESG) suggested that this protein might bind heme, and consequently, the crystal structures of apo and heme‐bound forms were solved to near atomic resolution of 1.32 Å and 1.36 Å, respectively. The rate of hemin loss from the protein was measured to be 3.6 × 10?5 s?1, demonstrating that it binds heme specifically and with high affinity. The protein forms a compact 10‐stranded β‐barrel that is structurally similar to the lipocalins and fatty acid binding proteins (FABPs). One group of lipocalins, the nitrophorins (NP), are heme proteins involved in nitric oxide (NO) transport and show both sequence and structural similarity to the protein from At1g79260.1 and two human homologues, all of which contain a proximal histidine capable of coordinating a heme iron. Rapid‐mixing and laser photolysis techniques were used to determine the rate constants for carbon monoxide (CO) binding to the ferrous form of the protein (k′CO = 0.23 μM?1 s?1, kCO = 0.050 s?1) and NO binding to the ferric form (k′NO = 1.2 μM–1 s–1, kNO = 73 s?1). Based on both structural and functional similarity to the nitrophorins, we have named the protein nitrobindin and hypothesized that it plays a role in NO transport. However, one of the two human homologs of nitrobindin contains a THAP domain, implying a possible role in apoptosis. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
Ubiquitin-like protease 1 (Ulp1) of Saccharomyces cerevisiae emerges as a fundamental tool to obtain the natural N-terminal target protein by cleavage of the small ubiquitin-related modifier (SUMO) fusion protein. However, the costly commercial Ulp1 and its complicated procedures limit its application in the preparation of the target protein with natural N-terminal sequence. Here, we describe the preparation of bioactive codon-optimized recombinant truncated Ulp1 (Leu403-Lys621) (rtUlp1) of S. cerevisiae in Escherichia coli using only one-step with Ni–NTA affinity chromatograph, and the application of rtUlp1 to cleave the SUMO fusion protein by simply mixing the purified rtUlp1, SUMO fusion protein and DL-Dithiothreitol in Tris–HCl buffer. The optimal expression level of non-fusion protein rtUlp1 accounts for approximately 50 % of the total cellular protein and 36 % of the soluble form by addition of isopropyl β-D-l-thiogalactopyranoside at a final concentration of 0.4 mM at 18 °C for 20 h. The purification of target protein rtUlp1 was conducted by Ni–NTA affinity chromatography. The final yield of rtUlp1 was 45 mg/l in flask fermentation with a purity up to 95 %. Furthermore, the high purity of rtUlp1 could effectively cleave the SUMO-tTβRII fusion protein (SUMO gene fused to truncated transforming growth factor-beta receptor type II gene) with the above simplified approach, and the specific activity of the rtUlp1 reached up to 2.8 × 104 U/mg, which is comparable to the commercial Ulp1. The preparation and application strategy of the rtUlp1 with commonly available laboratory resources in this study will be convenient to the cleavage of the SUMO fusion protein to obtain the natural N-terminal target protein, which can be implemented in difficult-to-express protein functional analysis.  相似文献   

18.
Enterovirus (EV) infection has been shown to cause a marked shutoff of host protein synthesis, an event mainly achieved through the cleavages of eukaryotic translation initiation factors eIF4GI and eIF4GII that are mediated by viral 2A protease (2Apro). Using fluorescence resonance energy transfer (FRET), we developed genetically encoded and FRET‐based biosensors to visualize and quantify the specific proteolytic process in intact cells. This was accomplished by stable expression of a fusion substrate construct composed of the green fluorescent protein 2 (GFP2) and red fluorescent protein 2 (DsRed2), with a cleavage motif on eIF4GI or eIF4GII connected in between. The FRET biosensor showed a real‐time and quantifiable impairment of FRET upon EV infection. Levels of the reduced FRET closely correlated with the cleavage kinetics of the endogenous eIF4Gs isoforms. The FRET impairments were solely attributed to 2Apro catalytic activity, irrespective of other viral‐encoded protease, the activated caspases or general inhibition of protein synthesis in the EV‐infected cells. The FRET biosensors appeared to be a universal platform for several related EVs. The spatiotemporal and quantitative imaging enabled by FRET can shed light on the protease–substrate behaviors in their normal milieu, permitting investigation into the molecular mechanism underlying virus‐induced host translation inhibition. Biotechnol. Bioeng. 2009; 104: 1142–1152. © 2009 Wiley Periodicals, Inc.  相似文献   

19.
The kinetics of the reaction of Helix pomatia haemocyanin with oxygen have been studied under conditions where ligand binding is co-operative (n = 4.5). The dissociation of oxygen from oxyhaemocyanin in the presence of sodium dithionite and the combination of deoxyhaemocyanin with oxygen were studied by the stopped-flow technique. The combination with oxygen, as well as the dissociation of oxyhaemocyanin, are clearly autocatalytic. The initial rate constant for oxygen combination to the fully deoxygenated state is 0.2 to 0.3 × 106m?1 s?1; during the course of the reaction the rate constant increases to a value higher than 106m?1s?1.The initial rate of oxygen dissociation from fully saturated haemocyanin is 10 s?1, increasing to about 30 s?1 as the reaction proceeds. Thus, both the combination and the dissociation rate constants contribute to the co-operativity of oxygen binding.Temperature-jump relaxation experiments were carried out at fractional oxygen saturations larger than 0.7. The dependence of the relaxation rate upon the concentration of the reactants indicates the presence of one principal bimolecular process. The calculated combination and dissociation rate constants for this process are: 3.8 × 106m?1 s?1 and 10 s?1, respectively. Evidence is presented which shows that the transition from the T-state to the R-state of the protein is relatively slow. Both the T and R-state seem to be largely stabilized at the expense of intermediate states.Under other conditions, where oxygen binding is non-co-operative, temperature-jump and stopped-flow experiments reveal considerable kinetic heterogeneity.  相似文献   

20.
Activation and mechanism of Clostridium septicum alpha toxin   总被引:5,自引:0,他引:5  
Clostridium septicum produces a single lethal factor, alpha toxin (AT), which is a cytolytic protein with a molecular mass of approximately 48kDa. The 48kDa toxin was found to be an inactive protoxin (ATpro) which could be activated via a carboxy-terminal cleavage with trypsin. The cleavage site was located approximately 4kDa from the carboxy-terminus. Proteolytically activated ATpro had a specific activity of approximately 1.5 × 106 haemolytic units mg-1. The trypsin-activated toxin (ATact) was haemolytic, stimulated a prelytic release of potassium ions from erythrocytes which was followed by haemoglobin release, induced channel formation in planar membranes and aggregated into a complex of Mr >210000 on erythrocyte membranes. ATpro did not exhibit these properties. ATact formed pores with a diameter of at least 1.3-1.6 nm. We suggest that pore formation on target cell membranes is responsible for the cytolytic activity of alpha toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号