首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The limb forms from a bud of mesoderm encased in a hull of ectoderm that grows out from the flank of the embryo. Coordinated signaling between the limb mesoderm and ectoderm is critical for normal limb outgrowth and patterning. The apical ectodermal ridge (AER), found at the distal tip, is a rich source of signaling molecules and has been proposed to specify distal structures and maintain the survival of cells in the underlying distal mesoderm. The dorsal and ventral non-AER ectoderm is also a source of signaling molecules and is important for dorsal–ventral patterning of the limb bud. Here we determine if this ectoderm provides cell survival signals by surgically removing the dorsal or ventral ectoderm during early chicken limb bud development and assaying for programmed cell death. We find that, similar to the AER, removal of the dorsal or ventral non-AER ectoderm results in massive cell death in the underlying mesoderm. In addition, although a re-epithelialization occurs, we find perturbations in the timing of Shh expression and, for the case of the dorsal ectoderm removal, defects in soft tissue and skeletal development along the proximal–distal axis. Furthermore, ectoderm substitution experiments show that the survival signal produced by the dorsal limb ectoderm is specific. Thus, our results argue that the non-AER ectoderm, like the AER, provides a specific survival signal to the underlying mesoderm that is necessary for normal limb development and conclusions drawn from experiments in which the non-AER ectoderm is removed, need to take into consideration this observation.  相似文献   

2.
In the early chick embryo, the dorsal–ventral (DV) boundary organizes the apical ectodermal ridge (AER) structure in the limb bud field. Here it is reported that Engrailed-1 ( En-1 ), a homolog of the Drosophila segment polarity gene engrailed expressed in the ventral limb ectoderm, participates in AER formation at the DV boundary of the limb bud. Restricted ectopic expression of En-1 in the dorsal side of the limb bud by transplantation of En-1 -overexpressing ectoderm induces ectopic AER at the boundary of En-1 -positive and -negative cells. The results suggest that En-1 is involved in AER formation at the DV boundary of the limb bud.  相似文献   

3.
The limb bud has a thickened epithelium at the dorsal-ventral boundary, the apical ectodermal ridge (AER), which sustains limb outgrowth and patterning. A secreted molecule fibroblast growth factor (FGF)10 is involved in inducing Fgf8 expression in the prospective AER and mutual interaction between mesenchymal FGF10 and FGF8 in the AER is essential for limb outgrowth. A secreted factor Wnt7a and a homeobox protein Lmx1 are involved in the dorsal patterning of the limb, whereas a homeobox protein Engrailed 1 (En1) is involved in the dorsal-ventral patterning as well as AER formation. Radical fringe (R-fng), a vertebrate homolog of Drosophila fringe was also found to elaborate AER formation in chicks. However, little is known about the molecular interactions between these factors during AER formation. The present study clarified the relationship between FGF10, Wnt7a, Lmx1, R-fng and En1 during limb development using a foil-barrier insertion experiment. It was found that a foil-barrier inserted into the chick prospective wing mesenchyme lateral to the mesonephric duct blocks AER induction. This experiment was expanded by implanting Fgf10-expressing cells lateral to the barrier and examined whether FGF10 could rescue the expression of the limb-patterning genes reported in AER formation. It was found that FGF10 is sufficient to induce Fgf8 expression in the ectoderm of the foil-inserted limb bud, concomitantly with R-fng and En1 expression. However, FGF10 could not rescue the expression of the dorsal marker genes, Wnt7a or Lmx1. Thus, it is suggested that epithelial factors of En1 and R-fng can induce Fgf8 expression in the limb ectoderm in cooperation with a mesenchymal factor FGF10. Some factor(s) other than FGF10, possibly from the paraxial structures medial to the limb mesoderm, is responsible for the initial dorsal-ventral specification of the limb bud.  相似文献   

4.
Limb congenital defects afflict approximately 0.6:1000 live births. In addition to genetic factors, prenatal exposure to drugs and environmental toxicants, represents a major contributing factor to limb defects. Examples of well‐recognized limb teratogenic agents include thalidomide, warfarin, valproic acid, misoprostol, and phenytoin. While the mechanism by which these agents cause dymorphogenesis is increasingly clear, prediction of the limb teratogenicity of many thousands of as yet uncharacterized environmental factors (pollutants) remains inexact. This is limited by the insufficiencies of currently available models. Specifically, in vivo approaches using guideline animal models have inherently deficient predictive power due to genomic and anatomic differences that complicate mechanistic comparisons. On the other hand, in vitro two‐dimensional (2D) cell cultures, while accessible for cellular and molecular experimentation, do not reflect the three‐dimensional (3D) morphogenetic events in vivo nor systemic influences. More robust and accessible models based on human cells that accurately replicate specific processes of embryonic limb development are needed to enhance limb teratogenesis prediction and to permit mechanistic analysis of the adverse outcome pathways. Recent advances in elucidating mechanisms of normal development will aid in the development of process‐specific 3D cell cultures within specialized bioreactors to support multicellular microtissues or organoid constructs that will lead to increased understanding of cell functions, cell‐to‐cell signaling, pathway networks, and mechanisms of toxicity. The promise is prompting researchers to look to such 3D microphysiological systems to help sort out complex and often subtle interactions relevant to developmental malformations that would not be evident by standard 2D cell culture testing. Birth Defects Research (Part C) 108:243–273, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
A spatiotemporal pattern of cell death occurred in the chick wing and leg bud mesoderm after removal of apical ectodermal ridge at stages 18–20. Cells died in a region extending from the limb bud distal surface to 150–200 μm into the mesoderm. Limb buds from which ridge was removed at later stages in development did not exhibit a spatiotemporal pattern of cell death. In control experiments in which dorsal ectoderm was removed, a pattern of cell death did not occur. Removal of the ridge and part of the 150- to 200-μm zone of prospective cell death resulted in cell death in an area approximately equal to the amount of the zone remaining. After removal of all of the prospective zone of cell death plus the apical ridge, cell death was observed in the remaining limb bud mesoderm. In these limb buds, cell death occurred in a region in which it had not been seen in limb bud with apical ridge alone removed. We conclude that at stages 18–20 the mesodermal cells 150–200 μm beneath the ridge require the apical ridge to survive. More proximal mesodermal cells do not die after ridge removal alone, but apparently require the presence of the more distal mesoderm to survive. Whether this is a requirement for something intrinsic to the distal mesoderm or something it possesses by way of the ridge is unknown. After stage 23, the limb mesoderm cells do not die when the apical ridge is removed. Nevertheless, at the later stages, ridge continues to be required for limb bud proximal-distal elongation and the differentiation of distal limb elements.  相似文献   

6.
The development of the fin and limb buds involves a balance of centrifugal (active) and centripetal (passive) mechanical forces, the first of which acts to move the walls of these structures away from each other and the second of which holds them together. When the volume of the mesodermal core increases, the generated force meets with the resistance of the basal membrane, and as a result, the limb bud has a tendency to acquire a cylindrical shape. Collagen fibers, individual mesenchymal cells, and their groups hold together the dorsal and the ventral wall of the limb bud, prevent the movement of these walls away from each other, and in this way direct bud growth along the proximodistal and the anteroposterior axes. The balance of the forces which stretch the ectodermal layer and those which constrain it has also been observed in the development of other body parts.  相似文献   

7.
A long-term experiment using beagle dogs to investigate the absorption of cadmium was conducted. The dogs in the experimental groups were given a commercial diet and pelleted food containing 1, 3, 10, 50, and 100 mg of cadmium per day. The cadmium concentration in the blood increased continuously, gradually reaching a steady state following the administration of cadmium. The cadmium excreted daily in urine increased continuously. The cumulative excreted amount of cadmium in urine was calculated by using the trapezoidal rule based on the data of excretion of cadmium in urine. Then the absorbed fraction of administered cadmium was estimated on the basis of the relationship between the cumulative excreted amount of cadmium in urine and the cumulative administered dose of cadmium after the cadmium concentration in blood reached a steady state. The absorbed fraction of cadmium decreased with an increase in the administered dose of cadmium. A dose-dependent increase between the absorbed amount and the administered dose was observed.  相似文献   

8.
The mammalian face is assembled in utero in a series of complex and interdependent molecular, cell and tissue processes. The orofacial complex appears to be exquisitely sensitive to genetic and environmental influence and this explains why clefts of the lip and palate are the most common congenital anomaly in humans (one in 700 live births). In this study, microarray technology was used to identify genes that may play pivotal roles in normal murine palatogenesis. mRNA was isolated from murine embryonic palatal shelves oriented vertically (before elevation), horizontally (following elevation, before contact), and following fusion. Changes in gene expression between the three different stages were analyzed with GeneChip microarrays. A number of genes were upregulated or downregulated, and large changes were seen in the expression of loricrin, glutamate decarboxylase, gamma-amino butyric acid type A receptor beta3 subunit, frizzled, Wnt-5a, metallothionein, annexin VIII, LIM proteins, Sox1, plakophilin1, cathepsin K and creatine kinase. In this paper, the changes in genetic profile of the developing murine palate are presented, and the possible role individual genes/proteins may play during normal palate development are discussed. Candidate genes with a putative role in cleft palate are also highlighted.  相似文献   

9.
We investigated the biological half-life of the urinary cadmium concentration (U-Cd) based on a 24-year follow-up study after cessation of cadmium exposure in a cadmium-polluted area. Spot urine samples were obtained from all inhabitants in this area in 1979, 1986, 1991, 1999 and 2003. Biological half-life was calculated in the inhabitants whose U-Cd was more than 5 μg?l?1 (9 men and 12 women) or 5 μg?g?1 creatinine (9 men and 19 women) using a one-compartment model. The estimated half-life and 95% confidence intervals were 13.6 years (9.0–28.2 years) and 13.9 years (9.6–25.6 years) for unadjusted U-Cd in men and women, respectively. For creatinine-adjusted U-Cd, they were 14.2 years (11.2–19.4 years) and 23.5 years (17.7–35.0 years) in men and women, respectively. The biological half-lives of U-Cd obtained in this study were identical with the values of total body burden determined by a different method.  相似文献   

10.
11.
Limb bud outgrowth in chicken embryos is initiated during the third day of development by Fibroblast Growth Factor 8 (FGF8) produced by the newly formed apical ectodermal ridge (AER). One of the earliest effects of this induction is a change in the properties of the limb field mesoderm leading to bulging of the limb buds from the body wall. Heintzelman et al. [Heintzelman, K.F., Phillips, H.M., Davis, G.S., 1978. Liquid-tissue behavior and differential cohesiveness during chick limb budding. J. Embryol. Exp. Morphol. 47, 1–15.] suggested that budding of the limbs is caused by a higher liquid-like cohesivity of limb bud tissue compared with flank. We sought additional evidence relevant to this hypothesis by performing direct measurements of the effective surface tension, a measure of relative tissue cohesivity, of 4-day embryonic chicken wing and leg bud mesenchymal tissue, and adjacent flank mesoderm. As predicted, the two types of limb tissues were 1.5- to 2-fold more cohesive than the flank tissue. These differences paralleled cell number and volume density differences: 4-day limb buds had 2- to 2.5-fold as many cells per unit area of tissue as surrounding flank, a difference also seen at 3 days, when limb budding begins. Exposure of flank tissue to exogenous FGF8 for 24 h increased its cell number and raised its cohesivity to limb-like values. Four-day flank tissue exhibited a novel and unique active rebound response to compression, which was suppressed by the drug latrunculin and therefore dependent on an intact actin cytoskeleton. Correspondingly, flank at this stage expressed high levels of α-smooth muscle actin (SMA) mRNA and protein and a dense network of microfilaments. Treatment of flank with FGF8 eliminated the rebound response. We term material properties of tissues, such as cohesivity and mechanical excitability, the “physical phenotype”, and propose that changes thereof are driving forces of morphogenesis. Our results indicate that two independent aspects of the physical phenotype of flank mesoderm can be converted to a limb-like state in response to treatment with FGF8. The higher tissue cohesivity induced by this effect will cause the incipient limb bud to phase separate from the surrounding flank, while the active mechanical response of the flank could help ensure that the limb bud bulges out from, rather than becoming engulfed by, this less cohesive tissue.  相似文献   

12.
DNA微阵列(或芯片)技术原理及应用   总被引:13,自引:0,他引:13  
DNA微阵列或芯片(DNA microarray or chip)技术是近年发展起来的又一新的分子生物学研究工具.它是利用光导化学合成、照相平板印刷以及固相表面化学合成等技术,在固相表面合成成千上万个寡核苷酸探针,或将液相合成的探针由微阵列器或机器人点样于尼龙膜或硅片上,再与放射性同位素或荧光物标记的DNA或cDNA杂交,用于分析DNA突变及多态性、DNA测序、监测同一组织细胞在不同状态下或同一状态下多种组织细胞基因表达水平的差异、发现新的致病基因或疾病相关基因等多个研究领域.  相似文献   

13.
14.
Effects of chronic exposure to cadmium on prostate lipids and morphology   总被引:1,自引:0,他引:1  
Cadmium is an environmental toxic metal implicated in human prostate carcinogenesis. The mechanism of its toxicity is not fully understood. Previously, we showed that cadmium exposure induces oxidative stress, especially lipid peroxidation. This study evaluates the effect of chronic exposure to 0.886 mM of cadmium (Cd) per liter in the drinking water on prostate lipid content and metabolism in Wistar rats. We determined the lipid profile and measured the expression of lipogenic enzymes: FAS, GPAT, LPL, DGAT-1, DGAT-2, ACO, CPT-1 and CT, and of certain factors involved in lipid regulation and fatty acid transporters: FAT/CD36, E-FABP, SREBP-2, PPAR-γ and PPAR-α by RT-PCR. Ultrastructure was analyzed by electron microscopy and, as prostate is an androgen controlled gland, AR expression was measured by RT-PCR and Western blot. Cd altered the prostatic lipid profile. Triglycerides (TG) and esterified cholesterol (EC) decreased, free cholesterol (FC) and phospholipids (PL) increased and total cholesterol (TC) did not change. FAS, MDH and IDH activities did not vary but G6PDH decreased significantly in Cd group. Regarding TG synthesis, DGAT-1 decreased while GPAT increased and FAS, LPL and DGAT-2 remained unchanged. Regarding beta oxidation, CPT-1 increased while ACO expression decreased in Cd group. In the PL pathway, CT expression was increased. All these results would justify the decrease of TG in Cd group when compared to control. In the cholesterol metabolic pathway, HMGCoAR and SREBP-2 increased. PPAR-α increased but PPAR-γ did not change. Regarding fatty acid transporters, FAT/CD36 decreased, while E-FABP increased. AR mRNA and protein expression decreased. Ultrastructural analysis showed a decrease in lipid droplets and signs of cellular damage in the Cd group. Cadmium exposure induces important changes in prostatic lipid profile and metabolism, confirmed by the morphology analyses, which also showed signs of cellular damage. These results could be important to further understanding the complex mechanism of cadmium toxicity in prostate and in the development of better treatments for people and animals exposed to the heavy metal. Fellowship from the National Council of Scientific and Technical Investigations (CONICET) – Argentina. Career Scientific Investigator. National Council of Scientific and Technical Investigations (CONICET) – Argentina.  相似文献   

15.
The influence of cells of the polarizing zone mesoderm on the morphogenesis of recombinant chick limbs was studied. The recombinant buds were composed of leg bud ectoderm and different regions of the wing bud mesoderm, which had been dissociated and reaggregated. In any case where the polarizing zone mesoderm was coaggregated with the wing mesoderm the morphogenetic capabilities of the recombinant were reduced. This was the case with postaxial mesoderm, preaxial mesoderm plus polarizing tissue, and postaxial mesoderm from which a piece of the nonpolarizing mesoderm (comparable in size to the polarizing zone) had been removed. All of these gave outgrowths with digits in only a very low percentage of cases. In contrast, those recombinants without polarizing mesoderm developed outgrowths with digits in a high percentage of cases, indicating good morphogenesis. Finally, if the polarizing zone were removed prior to dissociation, the recombinant limb, composed of the total remaining wing bud mesoderm plus leg bud ectoderm, exhibited a higher percentage of complete morphogenesis than if the polarizing zone had been part of the recombinant.It is clear that cells of the polarizing zone, when dissociated, and coaggregated with wing mesoderm, are inhibitory to the morphogenetic performance of that mesoderm in the recombinant limb situation.  相似文献   

16.
17.
Abstract

The physiological responses of peanut seedlings exposed to low (5 µM) or high (200 µM) cadmium (Cd) concentration and the ability of sodium nitroprusside (SNP, a donor of NO) to reverse the harmful effects of Cd on peanut (Arachis hypogaea L.) were studied. Changes in plant growth parameters, chlorophyll content, antioxidant system, nutrient contents and Cd accumulation were investigated. The results showed that SNP and 5 µM Cd improved plant growth and chlorophyll content. Furthermore, antioxidative system was up-regulated, and as a result, the production rate of superoxide radical (O2??) was reduced. Moreover, the absorption of nutrient elements was not impacted, and Cd toxicity was not observed. However, 200 µM Cd had negative effects on the above measured parameters and dramatically increased the accumulation of Cd in all the plant organs. In the 200 µM Cd treatment, addition of 250 µM SNP stimulated plant growth and increased chlorophyll content. It also enhanced the regulation of antioxidative system and reduced the production rate of O2?? and malondialdehyde (MDA) content. Besides, SNP supply enhanced the absorption of nutrient elements and restrained the absorption and transport of Cd.  相似文献   

18.
The detrimental effects of spaceflight and simulated microgravity on the immune system have been extensively documented. We report here microarray gene expression analysis, in concert with quantitative RT‐PCR, in young adult C57BL/6NTac mice at 8 weeks of age after exposure to spaceflight aboard the space shuttle (STS‐118) for a period of 13 days. Upon conclusion of the mission, thymus lobes were extracted from space flown mice (FLT) as well as age‐ and sex‐matched ground control mice similarly housed in animal enclosure modules (AEM). mRNA was extracted and an automated array analysis for gene expression was performed. Examination of the microarray data revealed 970 individual probes that had a 1.5‐fold or greater change. When these data were averaged (n = 4), we identified 12 genes that were significantly up‐ or down‐regulated by at least 1.5‐fold after spaceflight (P ≤ 0.05). The genes that significantly differed from the AEM controls and that were also confirmed via QRT‐PCR were as follows: Rbm3 (up‐regulated) and Hsph110, Hsp90aa1, Cxcl10, Stip1, Fkbp4 (down‐regulated). QRT‐PCR confirmed the microarray results and demonstrated additional gene expression alteration in other T cell related genes, including: Ctla‐4, IFN‐α2a (up‐regulated) and CD44 (down‐regulated). Together, these data demonstrate that spaceflight induces significant changes in the thymic mRNA expression of genes that regulate stress, glucocorticoid receptor metabolism, and T cell signaling activity. These data explain, in part, the reported systemic compromise of the immune system after exposure to the microgravity of space. J. Cell. Biochem. 110: 372–381, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
BACKGROUND: Ethylnitrosourea (ENU), a monofunctional alkylating agent, induces apoptosis and cell cycle arrest in neuroepithelial cells, neural stem cells in the fetal central nervous system (CNS). These effects occur immediately after the administration of ENU to pregnant animals resulting in fetal brain anomalies and long-term effects include brain tumors in the offspring. METHODS: Changes in gene expression were investigated in the fetal CNS after ENU administration to pregnant rats using microarray to identify the genes involved in the injury and recovery of the fetal CNS. RESULTS: The up-regulation of 21 genes in injury and 15 genes in recovery phases and down-regulation of 5 genes in injury and 3 genes in recovery phases were identified. The genes up-regulated in the injury phase contained p53-target genes that mediate apoptosis and cell cycle arrest, and those in the recovery phase contained cell proliferation-promoting genes. The genes down-regulated in the injury phase contained cholesterol biosynthesis-related genes. In addition, there were some genes that have not been identified to be involved in the CNS injury and recovery. CONCLUSIONS: The present study will provide a better understanding of the mechanisms of development, regeneration and carcinogenesis of the CNS as well as the mechanisms of ENU-induced fetal CNS injury and recovery.  相似文献   

20.
Heparan sulfate (HS) interacts with numerous growth factors, morphogens, receptors, and extracellular matrix proteins. Disruption of HS synthetic enzymes causes perturbation of growth factor signaling and malformation in vertebrate and invertebrate development. Our previous studies show that the O‐sulfation patterns of HS are essential for the specific binding of growth factors to HS chains, and that depletion of O‐sulfotransferases results in remarkable developmental defects in Drosophila, zebrafish, chick, and mouse. Here, we show that inhibition of chick HS‐6‐O‐sulfotransferases (HS6ST‐1 and HS6ST‐2) in the prospective limb region by RNA interference (RNAi) resulted in the truncation of limb buds and reduced Fgf‐8 and Fgf‐10 expressions in the apical ectodermal ridge and in the underlying mesenchyme, respectively. HS6ST‐2 RNAi resulted in a higher frequency of limb truncation and a more marked change in both Fgf‐8 and Fgf‐10 expressions than that achieved with HS6ST‐1 RNAi. HS6ST‐1 RNAi and HS6ST‐2 RNAi caused a significant but distinct reduction in the levels of different 6‐O‐sulfation in HS, possibly as a result of their different substrate specificities. Our data support a model where proper levels and patterns of 6‐O‐sulfation of HS play essential roles in chick limb bud development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号