首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
The increasing prevalence of cartilage destruction during arthritis has entailed an intensified amount for in vitro cartilage models to analyze pathophysiological processes and to screen for antirheumatic drugs. Tissue engineering offers the opportunity to establish highly organized 3D cell cultures facilitating the formation of in vitro models that reflect the human situation. We report the comparison of porcine chondrocyte pellet and alginate bead cultures as model systems for human cartilage and the further development into a human system that was applied in an arthritis model. In porcine pellet and alginate cultures, formation of cartilage matrix similar to human matrix was verified by histology and PCR. As alginate beads could be cultivated batch‐wise in one well of a multiwell plate, we further developed this setting into a human system. In contrast, each pellet had to be cultivated individually in one well of a multiwell plate, which is time consuming. Following stimulation of human chondrocyte alginate cultures with conditioned media from human synovial fibroblasts derived from arthritis patients, microarray analysis verified the induction of genes related to cartilage destruction (like MMP10, ?12) and inflammation (like IL6, ?8 and chemokines). Several genes are coding for proteins that are members of inflammatory and catabolic pathways. Belonging to the most affected pathways, we identified the focal adhesion, cytokine–cytokine receptor interaction, ECM‐receptor signalling, Jak‐STAT signalling, and toll‐like receptor signalling pathways, all relevant in arthritis. Therefore, we demonstrate that engineered cartilage of porcine and human origin represents a powerful in vitro model for cartilage in vivo. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

2.
The use of bioreactors for cartilage tissue engineering has become increasingly important as traditional batch‐fed culture is not optimal for in vitro tissue growth. Most tissue engineering bioreactors rely on convection as the primary means to provide mass transfer; however, convective transport can also impart potentially unwanted and/or uncontrollable mechanical stimuli to the cells resident in the construct. The reliance on diffusive transport may not necessarily be ineffectual as previous studies have observed improved cartilaginous tissue growth when the constructs were cultured in elevated volumes of media. In this study, to approximate an infinite reservoir of media, we investigated the effect of continuous culture on cartilaginous tissue growth in vitro. Isolated bovine articular chondrocytes were seeded in high density, 3D culture on Millicell? filters. After two weeks of preculture, the constructs were cultivated with or without continuous media flow (5–10 μL/min) for a period of one week. Tissue engineered cartilage constructs grown under continuous media flow significantly accumulated more collagen and proteoglycans (increased by 50–70%). These changes were similar in magnitude to the reported effect of through‐thickness perfusion without the need for large volumetric flow rates (5–10μL/min as opposed to 240–800 μL/min). Additionally, tissues grown in the reactor displayed some evidence of the stratified morphology of native cartilage as well as containing stores of intracellular glycogen. Future studies will investigate the effect of long‐term continuous culture in terms of extracellular matrix accumulation and subsequent changes in mechanical function. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
In this study, we analyzed the physicochemical and biophysical properties of three‐dimensional scaffolds modified using polyethyleneimine (PEI) and applied these scaffolds to the cultivation of bovine knee chondrocytes (BKCs). PEI was crosslinked in the bulk or on the surface of the ternary scaffolds comprising polyethylene oxide, chitin and chitosan. The results revealed that when the concentration of PEI was less than 300 μg/mL, the cytotoxicity of a scaffold was on the same order in the two method of modification. An increase in the concentration of PEI favored the adhesion of BKCs. When the amount of PEI in scaffolds is fixed, the surface‐modified scaffolds exhibited a higher adhesion efficiency of BKCs than the bulk‐modified scaffolds. For the regeneration of cartilaginous components, a higher amount of PEI in a scaffold yielded larger amounts of proliferated BKCs, secreted glycosaminoglycans, and produced collagen. In addition, the formation of neocartilage in the surface‐modified scaffolds was more effective than that in the bulk‐modified scaffolds. These tissue‐engineered scaffolds, modified by an appropriate concentration of PEI, can be potentially applied to cartilage repair in clinical trials. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
Scaffold‐based tissue engineering is considered as a promising approach in the regenerative medicine. Graft instability of collagen, by causing poor mechanical properties and rapid degradation, and their hard handling remains major challenges to be addressed. In this research, a composite structured nano‐/microfibrous scaffold, made from a mixture of chitosan–ß‐glycerol phosphate–gelatin (chitosan–GP–gelatin) using a standard electrospinning set‐up was developed. Gelatin–acid acetic and chitosan ß‐glycerol phosphate–HCL solutions were prepared at ratios of 30/70, 50/50, 70/30 (w/w) and their mechanical and biological properties were engineered. Furthermore, the pore structure of the fabricated nanofibrous scaffolds was investigated and predicted using a theoretical model. Higher gelatin concentrations in the polymer blend resulted in significant increase in mean pore size and its distribution. Interaction between the scaffold and the contained cells was also monitored and compared in the test and control groups. Scaffolds with higher chitosan concentrations showed higher rate of cell attachment with better proliferation property, compared with gelatin‐only scaffolds. The fabricated scaffolds, unlike many other natural polymers, also exhibit non‐toxic and biodegradable properties in the grafted tissues. In conclusion, the data clearly showed that the fabricated biomaterial is a biologically compatible scaffold with potential to serve as a proper platform for retaining the cultured cells for further application in cell‐based tissue engineering, especially in wound healing practices. These results suggested the potential of using mesoporous composite chitosan–GP–gelatin fibrous scaffolds for engineering three‐dimensional tissues with different inherent cell characteristics. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 163–175, 2016.  相似文献   

5.
Loss of cartilaginous phenotype during in vitro expansion culture of chondrocytes is a major barrier to the application of chondrocytes for tissue engineering. In previous study, we showed that dedifferentiation of chondrocytes during the passage culture was delayed by matrices formed by primary chondrocytes (P0‐ECM). In this study, we investigated bovine chondrocyte functions when being cultured on isolated extracellular matrix (ECM) protein‐coated substrata and P0‐ECM. Low chondrocyte attachment was observed on aggrecan‐coated substratum and P0‐ECM. Cell proliferation on aggrecan‐ and type II collagen/aggrecan‐coated substrata and P0‐ECM was lower than that on the other ECM protein (type I collagen and type II collagen)‐coated substrata. When chondrocytes were subcultured on aggrecan‐coated substratum, decline of cartilaginous gene expression was delayed, which was similar to the cells subcultured on P0‐ECM. These results indicate that aggrecan plays an important role in the regulation of chondrocyte functions and P0‐ECM may be a good experimental control for investigating the role of each ECM protein in cartilage ECM. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1331–1336, 2013  相似文献   

6.
To engineer reliable in vitro liver tissue equivalents expressing differentiated hepatic functions at a high level and over a long period of time, it appears necessary to have liver cells organized into a three‐dimensional (3D) multicellular structure closely resembling in vivo liver cytoarchitecture and promoting both homotypic and heterotypic cell–cell contacts. In addition, such high density 3D hepatocyte cultures should be adequately supplied with nutrients and particularly with oxygen since it is one of the most limiting nutrients in hepatocyte cultures. Here we propose a novel but simple hepatocyte culture system in a microplate‐based format, enabling high density hepatocyte culture as a stable 3D‐multilayer. Multilayered co‐cultures of hepatocytes and 3T3 fibroblasts were engineered on collagen‐conjugated thin polydimethylsiloxane (PDMS) membranes which were assembled on bottomless frames to enable oxygen diffusion through the membrane. To achieve high density multilayered co‐cultures, primary rat hepatocytes were seeded in large excess what was rendered possible due to the removal of oxygen shortage generally encountered in microplate‐based hepatocyte cultures. Hepatocyte/3T3 fibroblasts multilayered co‐cultures were maintained for at least 1 week; the so‐cultured cells were normoxic and sustained differentiated metabolic functions like albumin and urea synthesis at higher levels than hepatocytes monocultures. Such a microplate‐based cell culture system appears suitable for engineering in vitro miniature liver tissues for implantation, bioartificial liver (BAL) development, or chemical/drug screening. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011.  相似文献   

7.
Different types of biomaterials, processed into different shapes, have been proposed as temporary support for cells in tissue engineering (TE) strategies. The manufacturing methods used in the production of particles in drug delivery strategies have been adapted for the development of microparticles in the fields of TE and regenerative medicine (RM). Microparticles have been applied as building blocks and matrices for the delivery of soluble factors, aiming for the construction of TE scaffolds, either by fusion giving rise to porous scaffolds or as injectable systems for in situ scaffold formation, avoiding complicated surgery procedures. More recently, organ printing strategies have been developed by the fusion of hydrogel particles with encapsulated cells, aiming the production of organs in in vitro conditions. Mesoscale self‐assembly of hydrogel microblocks and the use of leachable particles in three‐dimensional (3D) layer‐by‐layer (LbL) techniques have been suggested as well in recent works. Along with innovative applications, new perspectives are open for the use of these versatile structures, and different directions can still be followed to use all the potential that such systems can bring. This review focuses on polymeric microparticle processing techniques and overviews several examples and general concepts related to the use of these systems in TE and RE applications. The use of materials in the development of microparticles from research to clinical applications is also discussed. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

8.
A cell leakproof porous poly(DL ‐lactic‐co‐glycolic acid) (PLGA)‐collagen hybrid scaffold was prepared by wrapping the surfaces of a collagen sponge except the top surface for cell seeding with a bi‐layered PLGA mesh. The PLGA‐collagen hybrid scaffold had a structure consisting of a central collagen sponge formed inside a bi‐layered PLGA mesh cup. The hybrid scaffold showed high mechanical strength. The cell seeding efficiency was 90.0% when human mesenchymal stem cells (MSCs) were seeded in the hybrid scaffold. The central collagen sponge provided enough space for cell loading and supported cell adhesion, while the bi‐layered PLGA mesh cup protected against cell leakage and provided high mechanical strength for the collagen sponge to maintain its shape during cell culture. The MSCs in the hybrid scaffolds showed round cell morphology after 4 weeks culture in chondrogenic induction medium. Immunostaining demonstrated that type II collagen and cartilaginous proteoglycan were detected in the extracellular matrices. Gene expression analyses by real‐time PCR showed that the genes encoding type II collagen, aggrecan, and SOX9 were upregulated. These results indicated that the MSCs differentiated and formed cartilage‐like tissue when being cultured in the cell leakproof PLGA‐collagen hybrid scaffold. The cell leakproof PLGA‐collagen hybrid scaffolds should be useful for applications in cartilage tissue engineering. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号