首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The needle‐terpene profiles of two natural Pinus peuce populations from the Scardo‐Pindic mountain system (Mt. O?ljak and Mt. Pelister) were analyzed. Among the 90 detected compounds, 87 were identified. The dominant constituents were α‐pinene (45.5%), germacrene D (11.1%), β‐pinene (10.8%), and camphene (10.3%). The following eight additional components were found to be present in medium‐to‐high amounts (0.5–10%): bornyl acetate (5.0%), β‐phellandrene (3.4%), β‐caryophyllene (2.9%), β‐myrcene (0.9%), germacrene D‐4‐ol (0.9%), tricyclene (0.7%), (E)‐hex‐2‐enal (0.7%), and bicyclogermacrene (0.6%). Although the general needle‐terpene profiles of the populations from Mt. O?ljak and Mt. Pelister were found to be similar to those of the populations from Zeletin, Sjekirica, and Mokra Gora (Dinaric Alps), principle component analysis (PCA) of eight terpenes (α‐pinene, β‐myrcene, α‐terpinolene, bornyl acetate, α‐terpinyl acetate, β‐caryophyllene, transβ‐farnesene, and germacrene D) in 139 tree samples suggested a divergence between the two population groups, i.e., the samples from the Scardo‐Pindic mountain system and those from the Dinaric Alps. Genetic analysis of the β‐pinene content demonstrated a partial divergence between the two geographical groups. The profiles of both population groups differed from those published for populations from the Balkan‐Rhodope mountains system (literature results), which were characterized by high contents of bornyl acetate and citronellol (Greek populations) or δ‐car‐3‐ene (Bulgarian populations).  相似文献   

2.
This is the first report of population variability of the contents of n‐alkanes and nonacosan‐10‐ol in the needle epicuticular waxes of Serbian spruce (Picea omorika). The hexane extracts of needle samples originated from three natural populations in Serbia (Vranjak, Zmajeva?ki potok, and Mile?evka Canyon) were investigated by GC and GC/MS analyses. The amount of nonacosan‐10‐ol varied individually from 50.05 to 74.42% (65.74% in average), but the differences between the three investigated populations were not statistically confirmed. The results exhibited variability of the composition of n‐alkanes in the epicuticular waxes with their size ranging from C18 to C35. The most abundant n‐alkanes were C29, C31, and C27 (35.22, 13.77, and 12.28% in average, resp.). The carbon preference index of all the n‐alkanes (CPItotal) of the P. omorika populations (average of populations IIII) ranged from 3.3 to 11.5 (mean of 5.9), while the average chain length (ACL) ranged from 26.6 to 29.2. The principal component and cluster analyses of the contents of nine n‐alkanes showed the greatest difference for the population growing in the Mile?evka Canyon. The obtained results were compared with previous literature data given for other Picea species, and this comparison was briefly discussed.  相似文献   

3.
Essential oils of 25 indigenous populations of Dalmatian sage (Salvia officinalis L.) that represent nearly half of native distribution area of the species were analyzed. Plantlets collected from wild populations were grown in the same field under the same environmental conditions and then sampled for essential‐oil analysis. The yield of essential oil ranged from 1.93 to 3.70% with average of 2.83%. Among the 62 compounds detected, eight (cis‐thujone, camphor, trans‐thujone, 1,8‐cineole, β‐pinene, camphene, borneol, and bornyl acetate) formed 78.13–87.33% of essential oils of individual populations. Strong positive correlations were observed between camphor and β‐pinene, β‐pinene and borneol, as well as between borneol and bornyl acetate. The strongest negative correlation was detected between camphor and trans‐thujone. Principal component analysis (PCA) on the basis of eight main compounds showed that first main component separated populations with high thujone content, from those rich in camphor, while the second component separated populations rich in cis‐thujone from those rich in trans‐thujone. Cluster analysis (CA) led to the identification of three chemotypes of S. officinalis populations: cis‐thujone; trans‐tujone, and camphor/β‐pinene/borneol/bornyl acetate. We propose that differences in essential oils of 25 populations are mostly genetically controlled, since potential environmental factors were controlled in this study.  相似文献   

4.
The essential oils from needles, twigs, bark, wood, cones and young shoots of Pinus mugo were analyzed by GC, GC/MS, and 1H‐NMR spectroscopy. More than 130 compounds were identified. The oils differed in the quantitative composition. The principal components of the oil from twigs with needles were 3‐carene (23.8 %), myrcene (22.3 %), and α‐pinene (10.3 %). The needle oil contained mainly α‐pinene (18.6 %), 3‐carene (11.3 %), and bornyl acetate (8.3 %). The oils from twigs without needles, young shoots, bark, and wood were dominated by 3‐carene (28.6 %, 15.0 %, 18.5 %, and 34.6 %, respectively) and myrcene (23.4 %, 24.0 %, 24.6 %, and 9.4 %, respectively). In the cone oil (E)‐β‐caryophyllene was the main constituent (24.0 %).  相似文献   

5.
Headspace solid‐phase microextraction (HS‐SPME) coupled to GC/MS analysis was used to identify the constituents of pine‐needle volatiles differentiating three closely‐related pine species within the Pinus mugo complex, i.e., P. uncinata Ramond ex DC., P. uliginosa G.E.Neumann ex Wimm ., and P. mugo Turra . Moreover, chemosystematic markers were proposed for the three analyzed pine species. The major constituents of the pine‐needle volatiles were α‐pinene (28.4%) and bornyl acetate (10.8%) for P. uncinata, δ‐car‐3‐ene (21.5%) and α‐pinene (16.1%) for P. uliginosa, and α‐pinene (20%) and δ‐car‐3‐ene (18.1%) for P. mugo. This study is the first report on the application of the composition of pine‐needle volatiles for the reliable identification of closely‐related pine species within the Pinus mugo complex.  相似文献   

6.
Salvia tomentosa essential oils from Greece were studied for the first time here. The oils from five populations growing in Mediterranean pine forests on the island of Thassos (northern Aegean Sea) and from 14 populations situated in deciduous forests in Thrace (northeastern Greek mainland) were investigated. Their essential‐oil contents ranged from 1.1 to 3.3% (v/w, based on the dry weight of the plant material). The populations from Thassos had high contents of α‐pinene (18.0±2.9%), 1,8‐cineole (14.7±3.0%), cis‐thujone (14.0±6.9%), and borneol (12.8±2.2%) and smaller amounts of camphene, camphor, and β‐pinene, whereas the populations from Thrace showed high α‐pinene (16.7±4.0%), β‐pinene (22.8±4.5%), camphor (18.3±4.3%), and camphene (10.3±2.4%) contents, much lower 1,8‐cineole and borneol amounts, while cis‐thujone was completely lacking. The comparison of the present results with published data showed that oils having cis‐thujone as one of the main compounds were reported for the first time here. Multivariate statistical analyses indicate that the observed essential‐oil variation was related to geographical and environmental factors.  相似文献   

7.
Essential oil (EO) composition, phenolic content, and antioxidant activity were investigated in 17 P. abrotanoides populations collected from different geographical regions in Iran. The highest (3.61%) and lowest (1.25%) essential oil yields were measured in populations from Semnan Province (PSESM2) and PISKS from Isfahan Province, respectively. GC/MS analysis identified camphor (4.05 – 35.94%), 1,8‐cineole (7.15 – 24.34%), borneol (0 – 21.75%), and α‐pinene (2.05 – 10.33%) as the main constituents of Perovskia essential oil. Cluster analysis classified the studied populations into four different groups: (I) high camphene, (II) high camphor/1,8‐cineole, (III) high borneol/δ‐3‐carene, and (IV) high α‐cadinol/trans‐caryophyllene. The highest flavonoid and phenolic contents were detected in PISAK from Isfahan Province (4.09 ± 0.05 mgQE/gDW, 58.51 ± 1.63 mgGAE/gDW) and PKRGS from Khorasan Province (3.80 ± 0.002 mgQE/gDW, 66.86 ± 0.002 mgGAE/gDW). DPPH and reducing power activity model systems identified PMASA and PKRKL as the populations with the highest antioxidant activity. Finally, the data obtained represented valuable information for introducing elite populations with EO components favorable to pharmaceutical and industrial applications.  相似文献   

8.
The essential oils (EOs) of two populations of Azorella cryptantha (Clos) Reiche , a native species from San Juan Province, were obtained by hydrodistillation in a Clevenger‐type apparatus and characterized by GC‐FID and GC/MS analyses. The compounds identified amounted to 92.3 and 88.7% of the total oil composition for A. cryptantha from Bauchaceta (Ac‐BAU) and Agua Negra (Ac‐AN), respectively. The EO composition for the two populations was similar, although with differences in the identity and content of the main compounds and also in the identity of minor components. The main compounds of the Ac‐BAU EO were α‐pinene, α‐thujene, sabinene, δ‐cadinene, δ‐cadinol, transβ‐guaiene, and τ‐muurolol, while α‐pinene, α‐thujene, β‐pinene, γ‐cadinene, τ‐cadinol, δ‐cadinene, τ‐muurolol, and a not identified compound were the main constituents of the Ac‐AN EO, which also contained 3.0% of oxygenated monoterpenes. The repellent activity on Triatoma infestans nymphs was 100 and 92% for the Ac‐AN and Ac‐BAU EOs, respectively. Regarding the toxic effects on Ceratitis capitata, the EOs were very active with LD50 values lower than 11 μg/fly. The dermatophytes Microsporum gypseum, Trichophyton rubrum, and T. mentagrophytes and the bacterial strains Escherichia coli LM1, E. coli LM2, and Yersinia enterocolitica PI were more sensitive toward the Ac‐AN EO (MIC 125 μg/ml) than toward the Ac‐BAU EO. This is the first report on the composition of A. cryptantha EO and its anti‐insect and antimicrobial properties.  相似文献   

9.
The chemical composition of 50 samples of leaf oil isolated from Algerian Juniperus phoenicea var. turbinata L. harvested in eight locations (littoral zone and highlands) was investigated by GC‐FID (in combination with retention indices), GC/MS, and 13C‐NMR analyses. The composition of the J. phoenicea var. turbinata leaf oils was dominated by monoterpenes. Hierarchical cluster and principal component analyses confirmed the chemical variability of the leaf oil of this species. Indeed, three clusters were distinguished on the basis of the α‐pinene, α‐terpinyl acetate, β‐phellandrene, and germacrene D contents. In most oil samples, α‐pinene (30.2–76.7%) was the major compound, associated with β‐phellandrene (up to 22.5%) and α‐terpinyl acetate (up to 13.4%). However, five out of the 50 samples exhibited an atypical composition characterized by the predominance of germacrene D (16.7–22.7%), α‐pinene (15.8–20.4%), and α‐terpinyl acetate (6.1–22.6%).  相似文献   

10.
The composition of the essential oils isolated from twigs of ten Juniperus deltoides R.P . Adams populations from the east Adriatic coast was determined by GC‐FID and GC/MS analyses. Altogether, 169 compounds were identified, representing 95.6–98.4% of the total oil composition. The oils were dominated by monoterpenes (average content of 61.6%), which are characteristic oil components of species of the Juniperus section. Two monoterpenes, α‐pinene and limonene, were the dominant constituents, comprising on average 46.78% of the essential oils. Statistical methods were deployed to determine the diversity of the terpene classes and the common terpenes between the investigated populations. These statistical analyses revealed the existence of three chemotypes within all populations, i.e., a α‐pinene, limonene, and limonene/α‐pinene type.  相似文献   

11.
The essential oils from the leaves and rhizomes of Alpinia pahangensis Ridl ., collected from Pahang, Peninsular Malaysia, were obtained by hydrodistillation, and their chemical compositions were determined by GC and GC/MS analyses. The major components of the rhizome oil were γ‐selinene (11.60%), β‐pinene (10.87%), (E,E)‐farnesyl acetate (8.65%), and α‐terpineol (6.38%), while those of the leaf oil were β‐pinene (39.61%), α‐pinene (7.55%), and limonene (4.89%). The investigation of the antimicrobial activity of the essential oils using the broth microdilution technique revealed that the rhizome oil of A. pahangensis inhibited five Staphylococcus aureus strains with minimum inhibitory concentration (MIC) values between 0.08 and 0.31 μg/μl, and four selected fungi with MIC values between 1.25 and 2.50 μg/μl.  相似文献   

12.
Hydrodistillation of the dried leaves of five Eucalyptus species, E. alba Reinw. ex Blume , E. citriodora Hook ., E. paniculata Sm. , harvested from Choucha arboreta (region of Sejnane, northwest of Tunisia), E. pimpiniana Maiden from Mjez Elbab arboreta (north east of Tunisia) and E. bicolor A.Cunn ex Hook from Sidi Smail arboreta (center of Tunisia), in March 2017, afforded essential oils in yields varying from 1.3±0.2 to 6.0±0.9 % according to the species. E. citriodora provided the highest mean percentage of essential oil amongst all the species. Analysis by GC (RI) and GC/MS allowed the identification of 138 components representing 84.6–98.7 % of the total oil. The content of the different samples varied according to the species. The main components were citronellol, followed by 1,8‐cineole, α‐pinene, τ‐cadinol, 7‐epi‐α‐eudesmol, trans‐pinocarveol, spathulenol, aromadendrene, γ‐cadinene and δ‐cadinene. The principal components and the hierarchical cluster analyses separated the five leaf essential oils into three groups, each group constituted a chemotype.  相似文献   

13.
The chemical composition of 42 essential‐oil samples isolated from the leaves of Xylopia quintasii harvested in three Ivoirian forests was investigated by GC‐FID, including the determination of retention indices (RIs), and by 13C‐NMR analyses. In total, 36 components accounting for 91.9–92.6% of the oil composition were identified. The content of the main components varied drastically from sample to sample: (E)‐β‐caryophyllene (0.9–56.9%), (Z)‐β‐ocimene (0.3–54.6%), β‐pinene (0.8–27.9%), α‐pinene (0.1–22.8%), and furanoguaia‐1,4‐diene (0.0–17.6%). The 42 oil compositions were submitted to hierarchical cluster and principal components analysis, which allowed the distinction of three groups within the oil samples. The composition of the oils of the major group (22 samples) was dominated by (E)‐β‐caryophyllene. The oils of the second group (12 samples) contained β‐pinene and α‐pinene as the principal compounds, while the oils of the third group (8 samples) were dominated by (Z)‐β‐ocimene, germacrene D, (E)‐β‐ocimene, and furanoguaia‐1,4‐diene. The oil samples of Group I and II came from clay‐soil forests, while the oil samples belonging to Group III were isolated from leaves harvested in a sandy‐soil forest.  相似文献   

14.
Volatile‐oils chemical composition and bioactivity of the essentail oils from Plectranthus barbatus, P. neochilus, and P. ornatus (Lamiaceae) were assessed. Aerial parts from these three related Plectranthus species were collected from cultivated plants grown in Portugal, during vegetative and flowering phases. Volatiles, isolated by distillation? extraction, were analyzed by GC and GC/MS. Monoterpene hydrocarbons (12–74%) and sesquiterpene hydrocarbons (4–45%) constituted the main fractions in all volatiles. α‐Pinene ( 3 ; 12–67%), oct‐1‐en‐3‐ol ( 6 ; traces–28%), β‐pinene ( 7 ; 0.1–22%), and β‐caryophyllene ( 50 ; 7–12%) dominated P. barbatus volatiles. P. neochilus major volatile components were α‐terpenyl acetate ( 41 ; traces–48%), α‐thujone ( 2 ; 2–28%), β‐caryophyllene ( 50 ; 2–28%), β‐pinene ( 7 ; 1–25%), and α‐pinene ( 3 ; 1–19%). Oct‐1‐en‐3‐ol ( 6 ; 13–31%), β‐pinene ( 7 ; 11–24%), α‐pinene ( 3 ; 11–19%), and β‐caryophyllene ( 50 ; traces–11%) were the main constituents from P. ornatus volatiles. These chemical compositions were rather different from those previously found for specimens harvested in Africa and Brazil. Moreover, the volatiles from the flowers are herewith reported for the first time. Essential oils, isolated by hydrodistillation from leaves and stems, showed a yellowish color and unpleasant odor, with yields ranging from 0.08% to 0.84% (v/dry weight). Antioxidant and antimicrobial activities of the essential oils were evaluated by DPPH. and TBARS assays, and agar disc‐diffusion method, respectively. Results showed low or moderate antioxidant capacity and significant antimicrobial activity against Gram‐positive bacteria.  相似文献   

15.
To identify how many chemotypes of Salvia officinalis exist in Montenegro, the chemical composition of the essential oils of 12 wild‐growing populations was determined by GC‐FID and GC/MS analyses. Among the 40 identified constituents, the most abundant were cis‐thujone (16.98–40.35%), camphor (12.75–35.37%), 1,8‐cineol (6.40–12.06%), trans‐thujone (1.5–10.35%), camphene (2.26–9.97%), borneol (0.97–8.81%), viridiflorol (3.46–7.8%), limonene (1.8–6.47%), α‐pinene (1.59–5.46%), and α‐humulene (1.77–5.02%). The composition of the essential oils under study did not meet the ISO 9909 requirements, while the oils of populations P02P04, P09, and P10 complied with the German Drug Codex. A few of the main essential‐oil constituents appeared to be highly intercorrelated. Strong positive correlations were observed between α‐pinene and camphene, camphene and camphor, as well as between cis‐thujone and trans‐thujone. Strong negative correlations were evidenced between cis‐thujone and α‐pinene, cis‐thujone and champhene, cis‐thujone and camphor, as well as between trans‐thujone and camphene. Multivariate analyses allowed the grouping of the populations into three distinct chemotypes, i.e., Chemotype A, rich in total thujones, Chemotype B, with intermediate contents of thujones, α‐pinene, camphene, and camphor and high borneol contents, and Chemotype C, rich in camphor, camphene, and α‐pinene. The chemotypes did not significantly differ in the total essential‐oil content and the cis/trans‐thujone ratio.  相似文献   

16.
The needle‐terpene profiles of two natural Pinus heldreichii populations from Mts. O?ljak and Gali?ica (Scardo‐Pindic mountain system) were analyzed. Among the 68 detected compounds, 66 were identified. The dominant constituents were germacrene D (28.7%), limonene (27.1%), and α‐pinene (16.2%). β‐Caryophyllene (6.9%), β‐pinene (5.2%), β‐myrcene (2.3%), pimaric acid (2.0%), α‐humulene (1.2%), and seven additional components were found to be present in medium‐to‐high amounts (0.5–10%). Although the general needle‐terpene profile of the population from Gali?ica was similar to those of the populations from Lov?en, Zeletin, Bjelasica, and Zlatibor‐Pe?ter (belonging to the Dinaric Alps), the principle‐component analysis (PCA) of seven terpenes (β‐myrcene, limonene, β‐elemene, β‐caryophyllene, α‐humulene, δ‐cadinene, and germacrene D‐4‐ol) in 121 tree samples suggested a partial divergence in the needle‐terpene profiles between the populations from the Scardo‐Pindic mountain system and the Dinaric Alps. According to previously reported data, the P. heldreichii samples from the Balkan‐Rhodope mountains lack β‐caryophyllene and germacrene D, but contain γ‐muurolene in their terpene profile. Differences in the terpene composition between populations growing in the three above‐mentioned mountain systems were compared and discussed.  相似文献   

17.
The composition of 55 samples of essential oil isolated from the aerial parts of wild growing Myrtus communis L. harvested in 16 locations from East to West Algeria were investigated by GC (determination of retention indices) and 13C‐NMR analyses. The essential oils consisted mainly of monoterpenes, α‐pinene (27.4–59.2%) and 1,8‐cineole (6.1–34.3%) being the major components. They were also characterized by the absence of myrtenyl acetate. The compositions of the 55 oils were submitted to k‐means partitioning and principal component analysis, which allowed the distinction of two groups within the oil samples, which could be subdivided into two subgroups each. Groups I (78% of the samples) and II were differentiated on the basis of the contents of α‐pinene, linalool, and linalyl acetate. Subgroups IA and IB could be distinguished by their contents of α‐pinene and 1,8‐cineole. Subgroups IIA and IIB differed substantially in their contents of 1,8‐cineole and limonene. All the samples contained 3,3,5,5,8,8‐hexamethyl‐7‐oxabicyclo[4.3.0]non‐1(6)‐ene‐2,4‐dione (up to 4.9%).  相似文献   

18.
In the present work, the leaf essential oil from 97 individuals of Juniperus phoenicea var. turbinata (Guss .) Parl . from the Balkan Peninsula was analyzed. The essential oil was dominated by monoterpene hydrocarbons (45.5 – 71.8%), of which α‐pinene was the most abundant in almost all of the samples (38.2 – 55.8%). Several other monoterpenes and sesquiterpenes were also present in relatively high abundances in samples such as myrcene, δ‐3‐carene, β‐phellandrene, α‐terpinyl acetate, (E)‐caryophyllene and germacrene D. Multivariate statistical analysis suggested the existence of three possible chemotypes based on the abundance of the four components. Even though the intrapopulation variability was high, discriminant analysis (DA) was able to separate populations. DA showed high separation between western and eastern populations but also grouped geographically closer populations along the west Balkan shoreline. The potential influence of the climate on the composition of the essential oil was also studied.  相似文献   

19.
The essential oils from needles, twigs, bark, wood, and cones of Pinus cembra were analyzed by GC‐FID, GC/MS, and 1H‐NMR spectroscopy. More than 130 compounds were identified. The oils differed in the quantitative composition. The principal components of the oil from twigs with needles were α‐pinene (36.3%), limonene (22.7%) and β‐phellandrene (12.0%). The needle oil was dominated by α‐pinene (48.4%), whereas in the oil from bark and in the oil from twigs without needles there were limonene (36.2% and 33.6%, resp.) and β‐phellandrene (18.8% and 17.1%, resp.). The main constituents of the wood oil as well as cone oil were α‐pinene (35.2% and 39.0%, resp.) and β‐pinene (10.4% and 18.9%, resp.). The wood oil and the cone oil contained large amounts of oxygenated diterpenes in comparison with needle, twig, and bark oils.  相似文献   

20.
Murraya koenigii (L.) Spreng. (Rutaceae), commonly known as ‘curry leaf tree’, is a popular spice and condiment of India. To explore the diversity of the essential‐oil yield and aroma profile of curry leaf, growing wild in foot and mid hills of north India, 58 populations were collected during spring season. M. koenigii populations were found to grow up to an altitude of 1487 m in north India. Comparative results showed considerable variations in the essential‐oil yield and composition. The essential‐oil yield varied from 0.14 to 0.80% in shade‐dried leaves of different populations of M. koenigii. Analysis of the essential oils by GC and GC/MS, and the subsequent classification by statistical analysis resulted in four clusters with significant variations in their terpenoid composition. Major components of the essential oils of investigated populations were α‐pinene ( 2 ; 4.5–71.5%), sabinene ( 3 ; <0.05–66.1%), (E)‐caryophyllene ( 11 ; 1.6–18.0%), β‐pinene ( 4 ; <0.05–13.6%), terpinen‐4‐ol ( 9 ; 0.0–8.4%), γ‐terpinene ( 8 ; 0.2–7.4%), limonene ( 7 ; 1.1–5.5%), α‐terpinene ( 6 ; 0.0–4.5%), (E)‐nerolidol ( 14 ; 0.0–4.1%), α‐humulene ( 12 ; 0.6–3.5%), α‐thujene ( 1 ; 0.0–2.5%), β‐elemene ( 10 ; 0.2–2.4%), β‐selinene ( 13 ; 0.2–2.3%), and myrcene ( 5 ; 0.5–2.1%). Comparison of the present results with those in earlier reports revealed new chemotypes of M. koenigii in investigated populations from Western Himalaya. The present study documents M. koenigii populations having higher amounts of sabinene ( 3 ; up to 66.1%) for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号