首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Drugs and carcinogens are substrates of a group of metabolic enzymes including cytochrome p450 enzymes and gluthatione S-transferases. Many of the genes encoding these enzymes exhibit functional polymorphisms that contribute individual cancer susceptibility and drug response. Molecular studies based on these polymorphic enzymes also explain the aetiology of cancer and therapeutic management in clinics. We analysed the cytochrome p4501A1 (CYP1A1) and 2D6 (CYP2D6) variant genotype and allele frequencies by PCR-RFLP in Turkish individuals (n=140). The frequency of the CYP1A1*2A mutant allele was found to be 15.4%, and the CYP2D6*3 and *4 mutant allele (poor metabolizer) frequencies were 2.5% and 13.9%, respectively. This study presents the first results of CYP1A1 and CYP2D6 mutant allele distributions in the Turkish population and these data provide an understanding of epidemiological studies that correlate therapeutic approaches and aetiology of several types of malignancy in Turkish patients.  相似文献   

2.
  总被引:2,自引:0,他引:2  
Within mitochondria, manganese superoxide dismutase (MnSOD) provides a major defence against oxidative damage by reactive oxygen species (ROS). An alanine-9valine (Ala-9Val) polymorphism in the mitochondrial targeting sequence of MnSOD has been described and has recently been associated with risk of human breast cancer. Our present case-control study was performed to explore the association between MnSOD genetic polymorphism and individual susceptibility to breast cancer. Ala-9Val polymorphism in the signal sequence of the protein for MnSOD was determined using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay in a study population. There was no significant difference in risk for breast cancer development between patients positive and negative for the MnSOD Ala allele with adjusted odds ratio (OR): 0.86 (95% confidence interval (CI(0.43 to 1.72). When MnSOD Ala was combined with either cytochrome P450 1B1 CYP1B1*1 and catechol O-methyltransferase COMT-L (V158M) genotypes, the risk for developing breast cancer was significantly increased in patients with a body mass index (BMI) greater than 24 kg m(-2) (OR: 1.42 (95%CI=1.04-1.93)).  相似文献   

3.
Sulfotransferase (SULT) 1A3 catalyzes the sulfate conjugation of catecholamines and structurally related drugs. As a step toward studies of the possible contribution of inherited variation in SULT1A3 to the pathophysiology of human disease and/or variation in response to drugs related to catecholamines, we have resequenced all seven coding exons, three upstream non-coding exons, exon-intron splice junctions and the 5'-flanking region of SULT1A3 using DNA samples from 60 African-American (AA) and 60 Caucasian-American (CA) subjects. Eight single nucleotide polymorphisms (SNPs) were observed in AA and five in CA subjects, including one non-synonymous cSNP (Lys234Asn) that was observed only in AA subjects with an allele frequency of 4.2%. This change in amino acid sequence resulted in only 28 +/- 4.5% (mean +/- SEM) of the enzyme activity of the wild-type (WT) sequence after transient expression in COS-1 cells, with a parallel decrease (54 +/- 2.2% of WT) in level of SULT1A3 immunoreactive protein. Substrate kinetic studies failed to show significant differences in apparent Km values of the two allozymes for either dopamine (10.5 versus 10.2 micro m for WT and variant, respectively) or the cosubstrate 3'-phosphoadenosine 5'-phosphosulfate (0.114 versus 0.122 micro m, respectively). The decrease in level of immunoreactive protein in response to this single change in amino acid sequence was due, at least in part, to accelerated SULT1A3 degradation through a proteasome-mediated process. These observations raise the possibility of ethnic-specific inherited alterations in catecholamine sulfation in humans.  相似文献   

4.
    
The presystemic sulfate conjugation of the stereoisomers of 4′‐methoxyfenoterol, (R,R′)‐MF, (S,S′)‐MF, (R,S′)‐MF, and (S,R′)‐MF, was investigated using commercially available human intestinal S9 fractions, a mixture of sulfotransferase (SULT) enzymes. The results indicate that the sulfation was stereospecific and that an S‐configuration at the β‐OH carbon of the MF molecule enhanced the maximal formation rates with (S,R′)‐MF (S,S′)‐MF (R,S′)‐MF ≈ (R,R′)‐MF, and competition studies demonstrated that (S,R′)‐MF is an effective inhibitor of (R,R′)‐MF sulfation (IC50 = 60 μM). In addition, the results from a cDNA‐expressed human SULT isoform screen indicated that SULT1A1, SULT1A3, and SULT1E1 can mediate the sulfation of all four MF stereoisomers. Previously published molecular models of SULT1A3 and SULT1A1 were used in docking simulations of the MF stereoisomers using Molegro Virtual Docker. The models of the MF‐SULT1A3 and MF‐SULT1A1 complexes indicate that each of the two chiral centers of MF molecule plays a role in the observed relative stabilities. The observed stereoselectivity is the result of multiple hydrogen bonding interactions and induced conformational changes within the substrate–enzyme complex. In conclusion, the results suggest that a formulation developed from a mixture of (R,R′)‐MF and (S,R′)‐MF may increase the oral bioavailability of (R,R′)‐MF. Chirality 24:796–803, 2012. © 2012 Wiley Periodicals, Inc. 1   相似文献   

5.
6.
Human p-glycoprotein encoded by human multidrug resistance (MDR1) gene, is a transmembrane protein that serves as efflux pump for a wide variety of lipophilic compounds possessing a physiological role in protecting cells against the DNA damaging of certain xenobiotics. According to the published data, the frequency of C3435T polymorphism differs depending on the different ethnical populations such as Asian, African, and Caucasians populations. In our study, we identified the MDR1 C3435T polymorphism in 150 healthy volunteers in Denizli province of Turkey. DNA was extracted from peripheral blood samples by standard phenol/chloroform extraction method. Polymerase chain reaction–restriction fragment length polymorphism was used for the detection of C3435T single nucleotide polymorphism. We obtained CC, CT and TT genotype frequencies as 20, 53 and 27%, respectively. According to our results, the C allele in Turkish population (Denizli province, west of Turkey) is found 47% and this data shows similarity with Caucasian (UK and German) populations and significantly lower than African populations (p < 0.001). Our study is the first data on the genotype and allele frequency of the human multidrug resistance (MDR1) Gene C3435T Polymorphism in Denizli Province at regional basis in Turkey. Our results could serve as a basis for large-scale correlation studies on the relevance of C3435T genotype in cancer therapy and other diseases in Turkish population. Investigation of genotype frequencies related with p-glycoprotein substrates should be investigated in large scale at regional bases in Turkish population. The scaled-up data might help either to the use of p-glycoprotein substrates to be used for therapeutic applications and population genetics considering the genotype frequencies possibly occurring throughout the history in Anatolian basin.  相似文献   

7.
Estrogens are critical for breast cancer initiation and development. Sulfotransferase 1A1 (SULT1A1) and UDP-glucuronosyltransferase 1A1 (UGT1A1) conjugate and inactivate both estrogens and their metabolites, thus preventing estrogen-mediated mitosis and mutagenesis. SULT1A1 and UGT1A1 are both polymorphic, and different alleles encode functionally different allozymes. We hypothesize that low-activity alleles SULT1A1*2 and UGT1A1*28 are associated with higher risk for breast cancer and more severe breast tumor phenotypes. We performed a case-control study, which included 119 women of Russian ancestry with breast cancer and 121 age-matched Russian female controls. We used PCR followed by pyrosequencing to determine the SULT1A1 and UGT1A1 genotypes. Allele UGT1A1*28 was present at a higher frequency than the wild-type UGT1A1*1 allele in breast cancer patients as compared to controls (P = 0.002, OR = 1.79, CI 1.23–2.63). Consistently, the frequency of genotypes that contain allele UGT1A1*28 in the homozygous or the heterozygous state was greater in breast cancer patients as compared with the frequency of the wild-type UGT1A1*1/*1 genotype (P = 0.003, OR = 4.00, CI 1.49–11.11 and P = 0.014, OR = 2.04, CI 1.14–3.57, respectively). Individuals carrying allele UGT1A1*28 in the homo-or heterozygous state had larger breast tumors (>2 cm) as compared to the group with high-activity genotypes (P = 0.011, IR = 3.44, CI 1.42–8.36). No association was observed between any of the SULT1A1 genotypes and breast cancer risk or phenotypes. Our data suggest that UGT1A1, but not SULT1A1, genotypes are important for breast cancer risk and phenotype in Russian women. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 2, pp. 263–270. The article was translated by the authors.  相似文献   

8.
  总被引:2,自引:0,他引:2  
CYP 2E1 is involved in metabolic activation of carcinogenic N-nitrosamines, benzene, urethane and other low molecular weight compounds. CYP2E1 gene is present in the population in various polymorphic forms. We detected the RFLP of the human CYP2E1 gene with the restriction endonuclease PstI, RsaI and DraI in a group of 153 Turkish individuals. According to the results of the PstI/RsaI analysis, 96.07% of the subjects were of the c1/c1 genotype, and 3.93% were of the c1/c2 genotype. In the DraI RFLP analysis, 84.30% DD genotype, 15.03% CD genotype and 0.66% CC genotype were determined. The data obtained may be useful in epidemiological studies of the influence of CYP2E1 polymorphism on carcinogenesis.  相似文献   

9.
Polychlorobiphenylols (OH-PCBs) were reported as potent inhibitors of estrogen sulfotransferase, thyroid hormone and 3-hydroxybenzo(a)pyrene sulfotransferases. The aim of this study was to examine the effects of selected OH-PCBs on SULT1A1 activity in human liver cytosol, measured with 4microM 4-nitrophenol, a concentration considered to be diagnostic for selectively detecting SULT1A1. All the OH-PCBs studied inhibited the sulfonation of 4-nitrophenol in human liver cytosol. Among the eighteen OH-PCBs studied, 3'-OH-CB3 (4-chlorobiphenyl-3'-ol) was the most potent inhibitor (IC(50): 0.73+/-0.15microM, mean+/-S.D., n=3). The least potent inhibitor studied was 6'-OH-CB35 (3,3',4-trichlorobiphenyl-6'-ol) with IC(50): 49.1+/-10.8microM. The IC(50) values of the other OH-PCBs studied ranged from 0.78 to 3.76microM. Some OH-PCBs with various inhibitory potencies with human liver cytosol were selected for study with recombinant human SULT1A1 and SULT1B1. These OH-PCBs showed more potent inhibition of 4-nitrophenol sulfonation with SULT1A1 than with human liver cytosol. The IC(50) values with human liver cytosol showed a perfect linear correlation with those found with SULT1A1 (r(2)=1), but not with SULT1B1 (r(2)=0.21). The results suggested that in these human samples SULT1A1 was predominantly responsible for the sulfonation of 4-nitrophenol, with very little or no contribution from SULT1B1. The kinetics of inhibition were studied with 4'-OH-CB165, which is similar in structure to OH-PCBs found in human blood. The 4'-OH-CB165 was a mixed noncompetitive-uncompetitive inhibitor (K(i)=1.80+/-0.2microM, K(ies)=0.16+/-0.02microM). Finally, it was demonstrated that the tested OH-PCBs were themselves only slowly sulfonated by human sulfotransferases in the presence of (35)S-PAPS, as measured by the production of (35)S-labeled metabolites. Although this series of 18 OH-PCBs was too small to draw conclusions about structure-potency relationships, this work demonstrated that several OH-PCBs were potent inhibitors of 4-nitrophenol sulfonation but poor substrates in human liver cytosol, and suggested that OH-PCBs may inhibit the sulfation rate of those xenobiotics sulfated by SULT1A1.  相似文献   

10.
  总被引:2,自引:0,他引:2  
The apolipoprotein A-V gene (APOA5) plays an important role in determining plasma triglyceride levels. We studied the effects of APOA5 polymorphisms on plasma triglyceride levels in Turks, a population with low levels of HDL cholesterol and a high prevalence of coronary artery disease. We found 15 polymorphisms, three of which were novel. Seven haplotype-tagging single nucleotide polymorphisms (SNPs) were chosen and genotyped in approximately 3,000 subjects. The rare alleles of the -1464T>C, -1131T>C, S19W, and 1259T>C SNPs were significantly associated with increased triglyceride levels (19-86 mg/dl; P < 0.05) and had clear gene-dose effects. Haplotype analysis of the nine common APOA5 haplotypes revealed significant effects on triglyceride levels (P < 0.001). Detailed analysis of haplotypes clearly showed that the -1464T>C polymorphism had no effect by itself but was a marker for the -1131T>C, S19W, and 1259T>C polymorphisms. The -1131T>C and 1259T>C polymorphisms were in a strong but incomplete linkage disequilibrium and appeared to have independent effects. Thus, the APOA5 -1131T>C, S19W, and 1259T>C rare alleles were associated with significant increases in plasma triglyceride levels. At least one of these alleles was present in approximately 40% of the Turks. Similar associations were observed for -1131T>C and S19W in white Americans living in San Francisco, California.  相似文献   

11.
    
The polymorphic methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms C677T and A1298C cause mild hyperhomocysteinemia, not only in homozygotes for C677T, but also in compound heterozygotes for C677T/A1298C. The aim of this study was to determine allelic frequencies of the polymorphic MTHFR gene C677T, A1298C. In this regard, we have investigated the allelic frequencies of C677T and A1298C polymorphisms of the MTHFR gene in 1684 randomized individuals around Turkey. DNA samples isolated from peripheral blood samples of randomized individuals were analysed. The study population consisted of 1004 females and 680 males. The frequency in Turkey of the C677T was 42.9 %; of C677C, 47.4 %; and of T677T, 9.6 %. The frequency in Turkey of A1298C was 43.7 %; of A1298A, 46.3 %; and of C1298C, 10.0 %. The allelic frequencies of the T allele of MTHFR 677 and the C allele of MTHFR 1298 were 33.34 and 33.16 %, respectively. The frequency of C677T/A1298C compound heterozygosity is highest in Turkey (21.6 %), as compared to Canada (15 %), the United States (17 %) and The Netherlands (20 %).  相似文献   

12.
    
We determined the allele and genotype frequencies of three PCR-based gene polymorphisms factor XIII (FXIII) Val34Leu, glycoprotein (GP) Ibalpha Kozak and P-selectin glycoprotein ligand 1 (PSGL-1) in the Turkish population (n = 126 for FXIII Val34Leu, n = 110 for GPIbalpha Kozak and n = 203 for PSGL-1). To detect these polymorphisms, DNA was extracted from venous blood. Genomic DNA samples were replicated and analysed by a polymerase chain reaction (PCR) method. PCR products were digested by restriction endonuclease enzymes for FXIII Val34Leu and GPIbalpha Kozak. PSGL-1 was analysed by variable number of tandem repeats (VNTR). Allele frequencies of V (Val) and L (Leu) were found to be 0.805 and 0.195 respectively for the FXIII Val34Leu polymorphism. No significant difference was observed between French and Turkish populations for FXIII Val34Leu. Allele frequencies of T and C were calculated to be 0.873 and 0.127 for the GPIbalpha Kozak polymorphism and no significant difference was found between Turkish and French populations. In contrast, the difference between Turkish and Japanese populations was statistically significant (p<0.0001). In the PSGL-1 group, allele frequencies of A, B and C were calculated as 0.818, 0.160, 0.022 respectively. For the PSGL-1, although the difference between Turkish and French populations was not significant, the difference between the Turkish and Japanese was extremely significant (p<0.0001). In conclusion, a Turkish population database has been established for three gene polymorphisms.  相似文献   

13.
This case–control study was conducted to examine the association between the CYP1A1 and CYP2D6 genotypes and lung cancer risk among North Indians. The estimated relative risk for lung cancer associated with the CYP1A1 Val/Val allele was 2.68, and was four-fold when cases with small cell lung cancer (SCLC) were considered alone. With regard to the metabolism of debrisoquine, no poor metabolizers were found amongst the subjects. The odds ratio of risk with the heterozygous extensive metabolizer (HEM) genotype was 1.5. However, in the presence of at least a single copy of the variant CYP1A1 MspI allele and the CYP2D6 HEM genotype, the risk was two-fold for squamous cell carcinoma (SQCC). When the CYP1A1 Val/Val and CYP2D6 HEM genotypes were taken together, the risk for SCLC was four-fold. Stratified analysis indicated an interaction between bidi smoking and variant CYP1A1 genotypes on the risk for SQCC and SCLC. Heavy smokers (Brinkman index>400) with Val/Val genotypes were at a very high risk of developing lung cancer (odds ratio 29.30, 95% confidence interval 2.42–355, p=0.008). Heavy smokers with CYP1A1 MspI (CYP1A1*1/2A or CYP1A1*2A/*2A) genotype had a seven-fold risk for SCLC compared with non-smokers. This study is the first to be carried out on a North Indian population, and, although small, suggests that CYP1A1 and CYP2D6 polymorphisms might have a role in determining the risk for lung cancer and should be investigated further.  相似文献   

14.
A common cause for pharmacogenetic alteration in drug response is genetic variation in encoded amino acid sequence. We have used the catecholamine and drug-metabolizing enzyme sulfotransferase (SULT)1A3 to create an artificial model system to study mechanisms-especially possible aggresome formation-by which genetic alteration in amino acid sequence might influence function. Specifically, we created a double variant SULT1A3 allozyme that included the naturally occurring Asn234 polymorphism plus an additional Trp172Arg mutation. Analysis of the SULT1A3 X-ray crystal structure had indicated that the Trp172Arg mutation might destabilize the protein's structure. Expression of SULT1A3 Arg172,Asn234 in COS-1 cells resulted in undetectable enzyme activity and a virtual lack of enzyme protein. Rabbit reticulocyte lysate degradation studies showed that the double variant allozyme was degraded much more rapidly than was wild type SULT1A3 by a ubiquitin-proteasome-dependent process. In addition, after expression in COS-1 cells, the double variant allozyme localized to aggresomes, a process not previously described or studied in pharmacogenetics. Therefore, the alteration of only one or two amino acids can lead to decreased levels of protein as a result of both aggresome formation and accelerated degradation. The possible role of aggresome formation in pharmacogenetics should be evaluated in naturally occurring systems with inherited alteration in encoded amino acid sequence.  相似文献   

15.
Abstract

The conclusions of the published reports on the relationship between glutathione S-transferase P1 (GSTP1) gene polymorphism and the risk of small-cell carcinoma of lung cancer are still debated. GSTP1 is one of the important mutant sites reported at present. This meta-analysis was performed to evaluate the association between GSTP1 and the risk of small-cell carcinoma of lung cancer. The association investigations were identified from PubMed and Cochrane Library, and eligible studies were included and synthesized using meta-analysis method. Ten reports were included into this meta-analysis for the association of GSTP1 A/G gene polymorphism and small-cell carcinoma of lung cancer. The G allele and GG genotype were not associated with the susceptibility of risk of small-cell carcinoma in overall populations, East-Asians and Turkish population. However, there was an association between GG genotype with the risk of small-cell carcinoma in Caucasians. In conclusion, GG genotype was associated with the risk of small-cell carcinoma in Caucasian patients with lung cancer. However, GSTP1 A/G gene polymorphism is not associated with the susceptibility of small-cell carcinoma in overall populations, East-Asians and Turkish population.  相似文献   

16.
    
Previously, we reported five common single nucleotide polymorphisms (SNPs), ?624G>C, ?396G>A, ?358A>C, ?341C>G, and ?294T>C, and six common haplotypes (CGACT, GAACT, GGAGC, GGACC, CAACT, and GAACC) in the 5′‐flanking region of the SULT1A1 gene that were associated with altered enzymatic activity. In the present study, we performed in vitro assays to determine the functional impact of these genetic variations on the promoter activity. Dual luciferase reporter assays revealed that these SNPs are located in a negative regulatory fragment of the SULT1A1 gene. Further experiments demonstrated that these SNPs and haplotypes affected promoter activities of SULT1A1. Electrophoretic mobility shift assays showed distinctive binding patterns for the SNPs ‐396G>A and ‐294T>C, due to differential binding affinities of the G/A alleles and the T/C alleles to nuclear proteins extracted from the liver carcinoma cell lines, HepG2 and Huh7. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:422–428, 2012; View this article online at wileyonlinelibrary.com . DOI 10:1002/jbt.21437  相似文献   

17.
  总被引:3,自引:0,他引:3  
CYP1A2 and CYP2E1 are two of the main cytochrome P450 isoforms involved in the metabolism of commonly used drugs and xenobiotic compounds considered to be responsible for or possible participants in the development of several human diseases. Individual susceptibility to developing these pathologies relies, among other factors, on genetic polymorphism which depends on ethnic differences, as the frequency of mutant genotypes varies in different human populations. Thus the aim of this study was to investigate the frequency of CYP1A2 5'-flanking region and CYP2E1 Rsa I/Pst I polymorphisms in Mexicans by PCR-RFLP methods. The DNA of 159 subjects was analysed and mutant allele frequencies of 30% for CYP2E1 Rsa I/Pst I sites and 43% for CYP1A2 5'-flanking region were found. These frequencies are higher than those previously reported for other human populations.  相似文献   

18.
Lung cancer is the leading cause of cancer mortality in Mexico and worldwide. In the past decade, there has been an increase in the number of lung cancer cases in young people, which suggests an important role for genetic background in the etiology of this disease. In this study, we genetically characterized 16 polymorphisms in 12 low penetrance genes (AhR, CYP1A1, CYP2E1, EPHX1, GSTM1, GSTT1, GSTPI, XRCC1, ERCC2, MGMT, CCND1 and TP53) in 382 healthy Mexican Mestizos as the first step in elucidating the genetic structure of this population and identifying high risk individuals. All of the genotypes analyzed were in Hardy-Weinberg equilibrium, but different degrees of linkage were observed for polymorphisms in the CYP1A1 and EPHX1 genes. The genetic variability of this population was distributed in six clusters that were defined based on their genetic characteristics. The use of a polygenic model to assess the additive effect of low penetrance risk alleles identified combinations of risk genotypes that could be useful in predicting a predisposition to lung cancer. Estimation of the level of genetic susceptibility showed that the individual calculated risk value (iCRV) ranged from 1 to 16, with a higher iCRV indicating a greater genetic susceptibility to lung cancer.  相似文献   

19.
Context: The metabolic function of peroxisome proliferator-activated receptor gamma (PPARγ) in lung cancer remains unclear.

Objectives: To determine the relationship of PPARγ on ALDH1A3-induced lipid peroxidation to inhibit lung cancer cell growth.

Materials and methods: In silico analysis using microarray dataset was performed to screen the positive correlation between PPARγ and all ALDH isoforms. NUBIscan software and ChIP assay were used to identify the binding sites (BSs) of PPARγ on ALDH1A3 promoter. The expression of ALDH1A3 under thiazolidinedione (TZD) treatment was evaluated by QPCR and Western Blot in HBEC and H1993 cell lines. Upon treatment of TZD, colony formation assay was used to check cell growth inhibition and 4-hydroxy-2-nonenal (4HNE) production as lipid peroxidation marker was determined by Western Blot in PPARγ positive cell H1993 and PPARγ negative cell H1299.

Results: Compared to other ALDH isoforms, ALDH1A3 showed the highest positive correlation to PPARγ expression. ALDH1A3 upregulated PPARγ expression while PPARγ activation suppressed ALDH1A3. Among 2 potential screened PPARγ response elements, BS 1 and 2 in the promoter of ALDH1A3 gene, PPARγ bound directly to BS2. Ligand activation of PPARγ suppressed mRNA and protein expression of ALDH1A3. Growth inhibition was observed in H1993 (PPARγ positive cell) treated with PPARγ activator and ALDH inhibitor compared to H1299 (PPARγ negative cell). PPARγ activation increased 4HNE which is known to be suppressed by ALDH1A3.

Conclusions: ALDH1A3 suppression could be one of PPARγ tumor suppressive function. This study provides a better understanding of the role of PPARγ in lung cancer.  相似文献   


20.
Using a polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) method to obtain genotypes for the diploid pathogenic yeast, Candidaalbicans, we analysed 204 C. albicans isolates from three populations of the Duke University community: two from clinical sources [one from patients infected with human immunodeficiency virus (HIV) and the other from patients without HIV infection], and the third from healthy student volunteers. The results indicated: (i) extensive evidence for clonality within and between populations of C. albicans; and (ii) greater genotypic and gene diversities in the nonclinical population than those derived from clinical specimens, regardless of HIV status. The two clinical populations were genetically more similar to each other than either was to the population consisting of isolates from healthy people. Within each population sample there was a general lack of heterozygotes, and random associations of alleles within and between loci were found in less than 50% of the loci or pairs of loci. These findings were consistent between the two sets of samples analysed: those including all isolates and those including only clone-corrected isolates. Possible mechanisms are presented to explain the observed patterns of genetic variation within and between C. albicans populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号