首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Constitutive activation of the PI3 kinase/Akt pathway is associated with the neoplastic phenotype of a large number of human tumor cells. As the anti-apoptotic role of the PI3 kinase/Akt pathway has been established, we have examined whether specific blockade of this pathway sensitizes tumor cells to DNA-damaging agent-induced cytotoxicity by enhancing apoptotic cell death. Although a PI3 kinase inhibitor, LY294002, by itself does not induce apoptotic cell death, LY294002 selectively and markedly enhances the apoptosis-inducing efficacy of doxorubicin: such an enhanced cell death is only detected in tumor cells in which the PI3 kinase/Akt pathway is constitutively activated, and it is totally dependent on the functional p53 pathway. These results suggest that the combination of a PI3 kinase/Akt pathway inhibitor and doxorubicin provides an efficient chemotherapeutic strategy for the treatment of tumor cells in which the PI3 kinase/Akt pathway is constitutively activated and the p53 pathway is functional.  相似文献   

3.
Myxoma virus is a rabbit-specific poxvirus pathogen that also exhibits a unique tropism for human tumor cells and is dramatically oncolytic for human cancer xenografts. Most tumor cell lines tested are permissive for myxoma infection in a fashion intimately tied to the activation state of Akt kinase. A host range factor of myxoma virus, M-T5, directly interacts with Akt and mediates myxoma virus tumor cell tropism. mTOR is a regulator of cell growth and metabolism downstream of Akt and is specifically inhibited by rapamycin. We report that treatment of nonpermissive human tumor cell lines, which normally restrict myxoma virus replication, with rapamycin dramatically increased virus tropism and spread in vitro. This increased myxoma replication is concomitant with global effects on mTOR signaling, specifically, an increase in Akt kinase. In contrast to the effects on human cancer cells, rapamycin does not increase myxoma virus replication in rabbit cell lines or permissive human tumor cell lines with constitutively active Akt. This indicates that rapamycin increases the oncolytic capacity of myxoma virus for human cancer cells by reconfiguring the internal cell signaling environment to one that is optimal for productive virus replication and suggests the possibility of a potentially therapeutic synergism between kinase signaling inhibitors and oncolytic poxviruses for cancer treatment.  相似文献   

4.
5.
We have previously shown that protein kinase Cepsilon (PKCepsilon) protects breast cancer cells from tumor necrosis factor-alpha (TNF)-induced cell death. In the present study, we have investigated if the antiapoptotic function of PKCepsilon is mediated via Akt and the mechanism by which PKCepsilon regulates Akt activity. TNF caused a transient increase in Akt phosphorylation at Ser473 in MCF-7 cells. Overexpression of PKCepsilon in MCF-7 cells increased TNF-induced Akt phosphorylation at Ser473 resulting in its activation. Knockdown of PKCepsilon by small interfering RNA (siRNA) decreased TNF-induced Akt phosphorylation/activation and increased cell death. Introduction of constitutively active Akt protected breast cancer MCF-7 cells from TNF-mediated cell death and partially restored cell survival in PKCepsilon-depleted cells. Depletion of Akt in MCF-7 cells abolished the antiapoptotic effect of PKCepsilon on TNF-mediated cell death. Akt was constitutively associated with PKCepsilon and DNA-dependent protein kinase (DNA-PK), and this association was increased by TNF treatment. Overexpression of PKCepsilon enhanced the interaction between Akt and DNA-PK. Knockdown of DNA-PK by siRNA inhibited TNF-induced Akt phosphorylation and the antiapoptotic effect of Akt and PKCepsilon. These results suggest that PKCepsilon activates Akt via DNA-PK to mediate its antiapoptotic function. Furthermore, we report for the first time that DNA-PK can regulate receptor-initiated apoptosis via Akt.  相似文献   

6.
7.
Background information. PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a negative regulator of the PI3K (phosphoinositide 3‐kinase)–Akt (also called protein kinase B) signalling pathway and is essential for embryogenesis, but its function in early vertebrate embryos is unclear. Results. To address how PTEN functions in early embryos, we overexpressed one of the four zebrafish PTEN isoforms at the 1–2‐cell stage. Overexpression of Ptena454 alters phospho‐Akt levels and impairs cell movements associated with gastrulation. Heat shocking embryos increases phospho‐Akt levels and lowers phospho‐Ptena454 levels. Inhibiting CK2 (protein kinase CK2) activity reduces phospho‐Pten levels and augments the effects due to Ptena454 overexpression. Low phospho‐Akt and corresponding low phospho‐GSK‐3 (glycogen synthase kinase‐3) and high phospho‐Pten levels accompany wortmannin or LY294002 treatment, which inhibit PI3K activity. Conclusions. These results suggest that Ptena454 regulation is correlated to changes in phospho‐Akt levels. We propose a model in which homoeostasis in rapidly dividing and migrating embryonic cells depends on a counterbalance between pro‐survival signalling employing CK2 and GSK‐3 and the pro‐apoptotic activity of Ptena454.  相似文献   

8.
The Akt kinase is a key regulator of cell proliferation and survival. It is activated in part by PDK1-induced phosphorylation. Here we show that RalGDS, a Ras effector protein that activates Ral GTPases, has a second function that promotes Akt phosphorylation by PDK1 by bringing these two kinases together. In support of this conclusion is our finding that suppression of RalGDS expression in cells inhibits both epidermal growth factor and insulin-induced phosphorylation of Akt. Moreover, while PDK1 complexes with N-GDS, Akt complexes with the central region of RalGDS through an intermediary, JIP1. The biological significance of this newly discovered RalGDS function is highlighted by the observation that an N-terminally deleted mutant of RalGDS that retains the ability to activate Ral proteins but loses the ability to activate Akt also fails to promote cell proliferation. Thus, RalGDS forms a nexus that transduces growth factor signaling to both Ral GTPase and Akt-mediated signaling cascades.  相似文献   

9.
10.
11.
12.
13.
Cancer cells are characterized by either an increased ability to proliferate or a diminished capacity to undergo programmed cell death. PTEN is instrumental in regulating the balance between growth and death in several cell types and has been described as a tumor suppressor. The chromosome arm on which PTEN is located is deleted in a subset of human osteosarcoma tumors. Therefore, we predicted that the loss of PTEN expression was contributing to increased Akt activation and the subsequent growth and survival of osteosarcoma tumor cells. Immunoblot analyses of several human osteosarcoma cell lines and normal osteoblasts revealed relatively abundant levels of PTEN. Furthermore, stimulation of cell growth or induction of apoptosis in osteosarcoma cells failed to affect PTEN expression or activity. Therefore, routine regulation of osteosarcoma cell growth and survival appears to be independent of changes in PTEN. Subsequently, the activation of a downstream target of PTEN activity, the survival factor Akt, was analyzed. Inappropriate activation of Akt could bypass the negative regulation by PTEN. Analyses of Akt expression in several osteosarcoma cell lines and normal osteoblasts revealed uniformly low basal levels of phosphorylated Akt. The levels of phosphorylated Akt did not increase following growth stimulation. In addition, osteosarcoma cell growth was unaffected by inhibitors of phosphatidylinositol-3 kinase, an upstream activator of the Akt signaling pathway. These data further suggest that the Akt pathway is not the predominant signaling cascade required for osteoblastic growth. However, inhibition of PTEN activity resulted in increased levels of Akt phosphorylation and enhanced cell proliferation. These data suggest that while abundant levels of PTEN normally maintain Akt in an inactive form in osteoblastic cells, the Akt signaling pathway is intact and functional.  相似文献   

14.
Branched‐chain amino acids (BCAA) supplementation has been reported to suppress the incidence of liver cancer in obese patients with liver cirrhosis or in obese and diabetic model animals of carcinogenesis. Whether BCAA directly suppresses cell proliferation of hepatic tumor cells under hyperinsulinemic condition remain to be defined. The aim of this study was to investigate the effects of BCAA on insulin‐induced proliferation of hepatic tumor cells and determine the underlying mechanisms. BCAA suppressed insulin‐induced cell proliferation of H4IIE, HepG2 cells. In H4IIE cells, BCAA did not affect cell cycle progression but increased apoptosis by suppressing expressions of anti‐apoptotic genes and inducing pro‐apoptotic gene via inactivation of PI3K/Akt and NF‐κB signaling pathways. Further studies demonstrated that BCAA inhibited PI3K/Akt pathway not only by promoting negative feedback loop from mammalian target of rapamycin complex 1 (mTORC1)/S6K1 to PI3K/Akt pathway, but also by suppressing mTORC2 kinase activity toward Akt. Our findings suggest that BCAA supplementation may be useful to suppress liver cancer progression by inhibiting insulin‐induced PI3K/Akt and subsequent anti‐apoptotic pathway, indicating the importance of BCAA supplementation to the obese patients with advanced liver disease. J. Cell. Physiol. 227: 2097–2105, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

15.
Insulin-like growth factor-I (IGF-I) has gained broad recognition as an important survival factor for epithelial cells in numerous tissues. The IGF-I receptor signaling pathway is deregulated in the majority of carcinomas, and such deregulation has also been reported to be tightly associated with enhanced tumor progression and metastasis. One of the key proteins that transduces IGF-I signals and is phospho-activated downstream of the IGF-I receptor, is the non-receptor serine/threonine kinase proto-oncogene protein kinase B (PKB, also known as Akt). This kinase serves as a major molecular node to control the function of many cell survival and death proteins through phosphorylation-mediated protein modification. The end result of the activation of Akt is enhanced cell survival and proliferation, pre-requisites for malignant transformation. Recent studies show that IGF-I signals cross-talk at multiple levels with various components of the TGF-beta signaling pathway, which depending on context may function either as tumor suppressor or as tumor promoter. Thus, a better understanding of how the IGF-I and TGF-beta signaling pathways are mutually interconnected is likely to unveil novel targets for the therapeutic intervention of many cancers.  相似文献   

16.
Akt/protein kinase B critically regulates the balance between cell survival and apoptosis. Phosphorylation of Akt at two key sites, the activation loop and the hydrophobic motif, activates the kinase and promotes cell survival. The mechanism of dephosphorylation and signal termination is unknown. Here, we identify a protein phosphatase, PH domain leucine-rich repeat protein phosphatase (PHLPP), that specifically dephosphorylates the hydrophobic motif of Akt (Ser473 in Akt1), triggering apoptosis and suppressing tumor growth. The effects of PHLPP on apoptosis are prevented in cells expressing an S473D construct of Akt, revealing that the hydrophobic motif is the primary cellular target of PHLPP. PHLPP levels are markedly reduced in several colon cancer and glioblastoma cell lines that have elevated Akt phosphorylation. Reintroduction of PHLPP into a glioblastoma cell line causes a dramatic suppression of tumor growth. These data are consistent with PHLPP terminating Akt signaling by directly dephosphorylating and inactivating Akt.  相似文献   

17.
The Akt/protein kinase B is critical regulator of cellular homeostasis with diminished Akt activity being associated with dysregulation of cellular metabolism and cell death while Akt over‐activation has been linked to inappropriate cell growth and proliferation. Although the regulation of Akt function has been well characterized in vitro, much less is known regarding the function of Akt in vivo. Here we examine how skeletal muscle Akt expression and enzymatic activity are controlled, the role of Akt in the regulation of skeletal muscle contraction, stress response glucose utilization, and protein metabolism, and the potential participation of this important molecule in skeletal muscle atrophy, aging, and cancer. J. Cell. Physiol. 226: 29–36, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
High expression of the epidermal growth factor receptor (EGFR) in breast carcinoma confers a growth advantage to the tumor cells. The EGFR tyrosine kinase inhibitor (EGFR-TKI) ZD1839 ('Iressa') has clinical activity in a wide range of tumor types, although the mechanism(s) by which it exerts its antitumor activity effects remain unclear. We analyzed the ability of ZD1839 to induce apoptosis and/or inhibition of proliferation in breast carcinoma cell lines, as well any association between this ability and the downregulation activity of MAPK and Akt, two recently proposed markers of ZD1839 activity. Proliferation, survival, and activation of Akt and MAPK were evaluated in six human breast cancer cell lines expressing various levels of EGFR and HER2 and exposed to ZD1839. EGFR and HER2 expression levels were determined using specific monoclonal antibodies and FACS analysis. The effects of ZD1839 were independent of EGFR expression levels, but were influenced by high HER2 expression. ZD1839 significantly reduced the rate of [3H]-thymidine incorporation in the four sensitive cell lines, while apoptosis was also induced in two of these cell lines. No correlation was found between the cytostatic or cytotoxic effects of ZD1839 and its ability to downregulate MAPK and Akt activity in the tumor cell lines. Our data suggest that the antitumor activity of ZD1839 is due to a cytostatic effect, and involves apoptosis induction in a subset of sensitive cells only, and that neither MAPK nor Akt is a reliable marker of ZD1839 activity.  相似文献   

19.
Activation of epidermal akt by diverse mouse skin tumor promoters   总被引:1,自引:0,他引:1  
Akt is a serine/threonine kinase involved in a variety of cellular responses, including cell proliferation and cell survival. Recent studies from our laboratory suggest that Akt signaling may play an important role in skin tumor promotion. To explore this premise, we examined epidermal Akt activation and signaling in response to chemically diverse skin tumor promoters. Mice received single or multiple applications of 12-O-tetradecanoylphorbol-13-acetate (TPA), okadaic acid, or chrysarobin. All three tumor promoters were able to activate epidermal Akt as early as 1 h after treatment. Activation of Akt following tumor promoter treatment led to enhanced downstream signaling, including hyperphosphorylation of glycogen synthase kinase-3beta and Bad. Structure activity studies with phorbol ester analogues revealed that the magnitude of activation paralleled tumor-promoting activity. In cultured primary keratinocytes, TPA treatment also led to activation of Akt. Activation of the epidermal growth factor receptor (EGFR) seemed to underlie the ability of TPA to activate Akt as both PD153035, an inhibitor of EGFR, and GW2974, a dual-specific inhibitor of both EGFR and erbB2, were able to effectively reduce TPA-induced Akt phosphorylation as well as TPA-stimulated EGFR and erbB2 tyrosine phosphorylation in a dose-dependent manner. Furthermore, inhibition of protein kinase C (PKC) activity blocked TPA-stimulated heparin-binding EGF production and EGFR transactivation. Inhibition of PKC also led to a decreased association of Akt with the PP2A catalytic subunit, leading to increased Akt phosphorylation. However, combination of EGFR inhibitor and PKC inhibitor completely abrogated TPA-induced activation of Akt. Collectively, the current results support the hypothesis that elevated Akt activity and subsequent activation of downstream signaling pathways contribute significantly to skin tumor promotion. In addition, signaling through the EGFR via EGFR homodimers or EGFR/erbB2 heterodimers may be the primary event leading to Akt activation during tumor promotion in mouse skin.  相似文献   

20.
Cell cycle aberrations occurring at the G(1)/S checkpoint often lead to uncontrolled cell proliferation and tumor growth. We recently demonstrated that IL-1beta inhibits insulin-like growth factor (IGF)-I-induced cell proliferation by preventing cells from entering the S phase of the cell cycle, leading to G(0)/G(1) arrest. Notably, IL-1beta suppresses the ability of the IGF-I receptor tyrosine kinase to phosphorylate its major docking protein, insulin receptor substrate-1, in MCF-7 breast carcinoma cells. In this study, we extend this juxtamembrane cross-talk between cytokine and growth factor receptors to downstream cell cycle machinery. IL-1beta reduces the ability of IGF-I to activate Cdk2 and to induce E2F-1, cyclin A, and cyclin A-dependent phosphorylation of a retinoblastoma tumor suppressor substrate. Long-term activation of the phosphatidylinositol 3-kinase/Akt signaling pathway, but not the mammalian target of rapamycin or mitogen-activated protein kinase pathways, is required for IGF-I to hyperphosphorylate retinoblastoma and to cause accumulation of E2F-1 and cyclin A. In the absence of IGF-I to induce Akt activation and cell cycle progression, IL-1beta has no effect. IL-1beta induces p21(Cip1/Waf1), which may contribute to its inhibition of IGF-I-activated Cdk2. Collectively, these data establish a novel mechanism by which prolonged Akt phosphorylation serves as a convergent target for both IGF-I and IL-1beta; stimulation by growth factors such as IGF-I promotes G(1)-S phase progression, whereas IL-1beta antagonizes IGF-I-induced Akt phosphorylation to induce cytostasis. In this manner, Akt serves as a critical bridge that links proximal receptor signaling events to more distal cell cycle machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号