首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Factors contributing to the stability of bacterial cell division protein FtsZ remain unknown. In order to identify FtsZ-stabilizing factor(s), we exploited FtsH protease-based in vitro FtsZ degradation assay system. Whole cell lysate from an ftsH-null strain of Escherichia coli inhibited degradation of FtsZ by FtsH in vitro. However, activated charcoal-treated lysate did not inhibit degradation. The loss of ability of the activated charcoal-treated lysate to inhibit degradation of FtsZ was restored when it was replenished with GTP, but not when replenished with other NTPs or dNTPs. The lysate did not protect either FtsZ deletion mutants, which do not bind GTP, or FtsH substrates, sigma(32) and cI-108 proteins, against FtsH. GDP and GTPgammaS also stabilized FtsZ against FtsH. Neither GTP nor GDP inhibited proteolytic activity of FtsH per se. These observations demonstrate that binding of GTP/GDP ligands is responsible for the proteolytic stability of FtsZ against FtsH.  相似文献   

2.
Plants and algae contain the FtsZ1 and FtsZ2 protein families that perform specific, non-redundant functions in plastid division. In vitro studies of chloroplast division have been hampered by the lack of a suitable expression system. Here we report the expression and purification of FtsZ1-1 and FtsZ2-1 from Arabidopsis thaliana using a eukaryotic host. Specific GTPase activities were determined and found to be different for FtsZ1-1 vs. FtsZ2-1. The purified proteins readily assembled into previously unreported assembly products named type-I and -II filaments. In contrast to bacterial FtsZ, the Arabidopsis proteins do not form bundled sheets in the presence of Ca2+.  相似文献   

3.
Filamentous temperature-sensitive protein Z (FtsZ), playing a key role in bacterial cell division, is regarded as a promising target for the design of antimicrobial agent. This study is looking for potential high-efficiency FtsZ inhibitors. Ligand-based pharmacophore and E-pharmacophore, virtual screening and molecular docking were used to detect promising FtsZ inhibitors, and molecular dynamics simulation was used to study the stability of protein-ligand complexes in this paper. Sixty-three inhibitors from published literatures with pIC50 ranging from 2.483 to 5.678 were collected to develop ligand-based pharmacophore model. 4DXD bound with 9PC was selected to develop the E-pharmacophore model. The pharmacophore models validated by test set method and decoy set were employed for virtual screening to exclude inactive compounds against ZINC database. After molecular docking, ADME analysis, IFD docking and MM-GBSA, 8 hits were identified as potent FtsZ inhibitors. A 50?ns molecular dynamics simulation was implemented on the compounds to assess the stability between potent inhibitors and FtsZ. The results indicated that the candidate compounds had a high docking score and were strongly combined with FtsZ by forming hydrogen bonding interactions with key amino acid residues, and van der Waals forces and hydrophobic interactions had significant contribution to the stability of the binding. Molecular dynamics simulation results showed that the protein-ligand compounds performed well in both the stability and flexibility of the simulation process.  相似文献   

4.
Protein-protein interaction networks are very important for a wide range of biological processes. Crystallographic structures and mutational studies have generated a large number of information that allowed the discovery of energetically important determinants of specificity at intermolecular protein interfaces and the understanding of the structural and energetic characteristics of the binding hot spots. In this study we have used the improved MMPB/SA (molecular mechanics/Poisson-Boltzmann surface area) approach that combining molecular mechanics and continuum solvent permits to calculate the free energy differences upon alanine mutation. For a better understanding of the binding determinants of the complex formed between the FtsZ fragment and ZipA we extended the alanine scanning mutagenesis study to all interfacial residues of this complex. As a result, we present new mutations that allowed the discovery of residues for which the binding free energy differences upon alanine mutation are higher than 2.0 kcal/mol. We also observed the formation of a hydrophobic pocket with a high warm spot spatial complementarity between FtsZ and ZipA. Small molecules could be designed to bind to these amino acid residues hindering the binding of FtsZ to ZipA. Hence, these mutational data can be used to design new drugs to control more efficiently bacterial infections.  相似文献   

5.
Out of 95,000 commercially available chemical compounds screened by the anucleate cell blue assay, 138 selected hit compounds were further screened. As a result, A189, a 4-aminofurazan derivative was found to inhibit FtsZ GTPase with an IC(50) of 80 mug/ml and to exhibit antibacterial activity against Staphylococcus aureus and Escherichia coli. Light scattering demonstrated that A189 inhibited FtsZ assembly in vitro, and microscopic observation of A189-treated E. coli indicated that A189 perturbed FtsZ ring formation and made bacterial cells filamentous. However, nucleoids staining with DAPI revealed that A189 did not affect DNA replication and chromosome segregation in bacterial filamentous cells. Furthermore, A189 made sulA-deleted E. coli cells filamentous. Taken together, these findings suggest that A189 inhibits FtsZ GTPase activity, resulting in perturbation of FtsZ ring formation, which leads to bacterial cell death.  相似文献   

6.
The ancestors of plastids and mitochondria were once free-living bacteria that became organelles as a result of endosymbiosis. According to this theory, a key bacterial division protein, FtsZ, plays a role in plastid division in algae and plants as well as in mitochondrial division in lower eukaryotes. Recent studies have shown that organelle division is a process that combines features derived from the bacterial division system with features contributed by host eukaryotic cells. Two nonredundant versions of FtsZ, FtsZ1 and FtsZ2, have been identified in green-lineage plastids, whereas most bacteria have a single ftsZ gene. To examine whether there is also more than one type of FtsZ in red-lineage chloroplasts (red algal chloroplasts and chloroplasts that originated from the secondary endosymbiosis of red algae) and in mitochondria, we obtained FtsZ sequences from the complete sequence of the primitive red alga Cyanidioschyzon merolae and the draft sequence of the stramenopile (heterokont) Thalassiosira pseudonana. Phylogenetic analyses that included known FtsZ proteins identified two types of chloroplast FtsZ in red algae (FtsZA and FtsZB) and stramenopiles (FtsZA and FtsZC). These analyses also showed that FtsZB emerged after the red and green lineages diverged, while FtsZC arose by the duplication of an ftsZA gene that in turn descended from a red alga engulfed by the ancestor of stramenopiles. A comparison of the predicted proteins showed that like bacterial FtsZ and green-lineage FtsZ2, FtsZA has a short conserved C-termmal sequence (the C-terminal core domain), whereas FtsZB and FtsZC, like the green-lineage FtsZ1, lack this sequence. In addition, the Cyanidioschyzon and Dictyostelium genomes encode two types of mitochondrial FtsZ proteins, one of which lacks the C-terminal variable domain. These results suggest that the acquisition of an additional FtsZ protein with a modified C terminus was common to the primary and secondary endosymbioses that produced plastids and that this also occurred during the establishment of mitochondria, presumably to regulate the multiplication of these organelles.  相似文献   

7.
Synthetic gene transfer vectors based on zwitterionic nanoliposome-DNA assemblies (nanolipoplexes), formed by the mediation of magnesium ions, were prepared by a scalable method without employing volatile solvents, high-shear force treatments or extrusion. The zwitterionic nanolipoplexes (NLP) were formulated with PC (phosphatidylcholine) and DPPC (a natural lung surfactant) incorporating different amounts of cholesterol (CHOL). The resulting structures were characterised in terms of their morphology, size and DNA content. In addition, the toxicity and transfection efficiency of the nanolipoplexes were evaluated in cultured Chinese hamster ovary-K1 (CHO-K1) cells. The effects of the multivalent cation Mg2+ on nanoliposome-DNA transfection potency were evaluated. Formulations containing 10% CHOL showed maximum transfection efficiency and the optimum amount of Mg2+ ions for transfection with minimum cytotoxicity was ca. 20 mM. The zwitterionic formulations showed significantly less cytotoxicity compared to a commercially available cationic liposome reagent or polyethylenimine (PEI) while they were superior in terms of gene transfer potency. The zwitterionic vectors formulated in this study avoid the use of toxic cationic lipids as well as toxic solvents and may have potential application in gene therapy. The new method will enable scale-up and manufacture of safe and efficacious transfection vehicles required for preclinical and clinical studies. Based on the advantages and superiority of the formulated nanolipoplexes, this method allows for the acceleration of nanolipoplex formulation, enabling the rapid development and evaluation of novel carrier systems for genes and other drugs.  相似文献   

8.
The assembly of FtsZ plays an important role in bacterial cell division. Lipids in the bacterial cell membrane have been suggested to play a role in directing the site of FtsZ assembly. Using lipid monolayer and bilayer (liposome) systems, we directly examined the effects of cationic lipids on FtsZ assembly. We found that cationic lipids enhanced the assembly of FtsZ in association with an increase in the GTPase activity of FtsZ. The system consisting of lipid monolayer and bilayer (liposome) may mimic the bacterial membrane and therefore, the data might indicate the influence of bacterial membrane on the assembly of FtsZ protofilaments.  相似文献   

9.
The in vitro excystation process in Giardia intestinalis was studied by transmission electron microscopy (TEM). Untreated cysts served as controls. The excystation process was monitored by examination of organisms after the in vitro induction and at several times during the incubation phase. The control cyts had a thick wall, made of microfibrils, that appeared not to contain any weak areas. The peritrophic space extended between the cyst wall and the organism peripherally, the space was delimited by a thin cytoplasmic layer, "the outer cytoplasmic envelope" that subtended the cyst wall. During the in vitro incubation, the trophozoite cytoplasm retracted from the wall; thus, the peritrophic space became progressively larger. The outer cytoplasmic envelope detached from the cyst wall, then broke up forming numerous small vesicles lodged between the wall and the organism. The tight arrangement of the wall microfibirils was lost. Electron-dense vacuoles appeared in the peripheral cytoplasm of the trophozoite. The organism emerged through the posterior end of the cyst, leaving behind the empty husk. Emergence was followed by cell division. The possible interrelationships of biochemical and mechanical factors affecting the process of excystation are discussed in light of the present TEM findings.  相似文献   

10.
11.
L Balleisen  R Marx 《Blut》1976,32(3):185-194
Scanning microscopic investigations show the interaction of Leukocytes and Erythrocytes with fibrillar and aggregating type I and type III collagens in vitro. Leukocytes, in the presence of collagen, form loose aggregates within a minute and these aggregates, after 15 to 30 minutes, coalesce and become compact. The close association of the fibrillar collagens to the leukocyte surfaces is shown. Fibrillar collagen and collagen in solution with erythrocytes form only loose aggregates. Qualitative differences between the various collagen preparations were not found. The pathogenetic implications of these observations are briefly discussed.  相似文献   

12.
The in vitro excystation of Giardia lamblia on cysts isolated from human feces was studied. After purification by sucrose gradient, cysts were incubated in a pepsin-acid solution, then placed in a modified HSP3 medium where excystation occurred within a few minutes. The excystation procedure was studied by continuous observations by light microscopy and sequential observations by scanning electron microscopy (SEM). The in vitro excystation was stopped at timed intervals during incubation by addition of a large amount of 1% glutaraldehyde. The excystation process began by the cyst wall opening at one pole. Flagella protruded rapidly, the parasite emerged progressively from the cyst envelope, posterior end first, the empty cyst collapsed and shrank. Although flagella emerging from the organism were distinguishable, the cell body had not yet shown all the morphological features of the G. lamblia trophozoite. A radical rearrangement of the organism occurred gradually: initially oval in shape, the parasite became round, then elongated, flattened, and underwent cytokinesis. The daughter trophozoites acquired their typical morphological features: the shape, the adhesive disc with the C-shaped structure distinctly visible on the ventral surface, and the definite placement of the flagella. These observations obtained on G. lamblia by SEM were comparable to those obtained with G. muris.  相似文献   

13.
Giardia muris: scanning electron microscopy of in vitro excystation   总被引:1,自引:0,他引:1  
A recently developed in vitro excystation procedure results in almost total excystation of Giardia muris, an intestinal parasite of mice. The present experiment examines the G. muris cyst morphology by scanning electron microscopy and the efficacy of the excystation procedure. Untreated cysts of G. muris were elliptical and displayed a distinctive surface structure. Excystation began almost immediately after incubation had begun and most trophozoites emerged within 30 min. Excystation appears to involve flagellar action of the encysted trophozoite. A tear of the wall occurred at one pole. This opening was subsequently enlarged, presumably by flagellar action. Trophozoites emerged, posterior end first, and an associated mucoid-like material was extruded. Newly emerged trophozoites were nearly oval in shape. Trophozoites quickly became flattened, elongate, and underwent cytokinesis resulting in two daughter trophozoites. Few organisms not excysted were seen after 30 min incubation.  相似文献   

14.
Summary Electron microscope studies have been conducted on the parthenogenesis induced by in vitro culture of unfertilized ovules of sunflower (Helianthus annuus). In comparison with the state of the egg prior to inoculation, some eggs 5 days after culture show striking ultrastructural changes, which include, among others, nuclear migration, an increase in the number and activity of the organelles, a loss of polarity and wall formation at the chalazal end of the cell. Most of these changes are similar to those that occur normally in the zygote, indicating that parthenogenic development has been triggered in these eggs. Such eggs have been termed activated and are presumed to be capable of undergoing parthenogenesis. The parthenogenic proembryos which result share some features in common with zygotic proembryos. In addition, some parthenogenic proembryos exhibit unique properties not found in zygotic proembryos. These include embryos that consist of two parts differing markedly in density, an inversion of polarity, the frequent occurrence of autophagic vacuoles, the thickening of cell walls, a centripetal growth mode of wall formation, the appearance of an incomplete cell wall, free nuclear division, amitosis and degeneration. We believe that these ultrastructural peculiarities are the effects of in vitro culture.  相似文献   

15.
Structural characterization of microtubules has been the realm of three‐dimensional electron microscopy and thus has evolved hand in hand with the progress of this technique, from the initial 3D reconstructions of stained tubulin assemblies, and the first atomic model of tubulin by electron crystallography of 2D sheets of protofilaments, to the ever more detailed cryoelectron microscopy structures of frozen‐hydrated microtubules. Most recently, hybrid helical and single particle image processing techniques, and the latest detector technology, have lead to atomic models built directly into the density maps of microtubules in different functional states, shading new light into the critical process of microtubule dynamic instability.  相似文献   

16.
17.
Natural Australian sapphire (α-Al2O3 with around 1% Fe and up to 0.03% Ti) occurs in many colours, generally with an abundance of exsolved phases. Such ‘silky’ stones, cut en cabochon, exhibit the well-known phenomenon of asterism. For stones with a well-defined ‘star’ needle-like precipitate phases can be seen under an optical microscope. The needle axes are perpendicular to the star axes and generally parallel to the prism a-axes. (For artificial star sapphire the precipitate needle axes are perpendicular to the prism axes, e.g. Phillips et al., 1980.) Many authors have assumed that these precipitate phases in natural sapphire were needles of rutile (TiO2) only, as is the case for artificial sapphire (Phillips et al., 1980). Our studies on natural Australian black sapphire, however, confirm the existence of a variety of iron/titanium rich phases, as well as rutile.Sample specimens were prepared by illuminating a polished basal plane with a He-Ne laser to obtain the star directions and then cutting slices of the stone parallel to the star axes. The polished sections were then ion-beam thinned and examined in a JEOL 100CX (S)TEM, equipped with an energy dispersive X-ray spectrometer. Precipitate phases were identified by electron diffraction and from their X-ray spectrum.  相似文献   

18.
Suspensions of microparticles produced in a polymerase chain reaction on plasmid templates using different primers have been studied by electron microscopy. In all of the samples, microspheres of two types have been detected: of a spherical or ellipsoid form (smooth, without thorns) and of an ellipsoid form with big thorns and/or outgrowths; the diameter of the microspheres varies from 1 to 3 μm. Along with microspheres, so-called three-dimensional network structures of various shapes formed by three-dimensional nanoparticles of a particular topology have been observed. In some samples, discs a few microns in diameter and several dozen nanometers in thickness have been detected. It has been shown that the quantity of netshaped structures and discs sharply increases during asymmetric PCR. In addition, DNA nanofilaments (nanowires), electron-dense point particles (nanodots), electron-translucent nanoparticles in the form of rags, and large electron-dense spherical nanoparticles have been found. Suspensions of microparticles after their quick (5 min) heating at 94°C have been examined. The partial melting of smooth microspheres (without thorns) has been established: they lose a part of the DNA so that the details of their structure (ultrastructure) can be discerned. Simultaneously, clusters of nanowires appear after the heating. The molecular mechanisms of the formation of nanoand microparticles are discussed.  相似文献   

19.
Summary This paper describes the microscopic evidence supporting a cesium-induced delay in the fusion of chick embryo myoblast membranes during in vitro myogenic differentiation. We have recently demonstrated that the sharp decrease in the conductivity and permittivity of the membranes of these myogenic cells at the time of fusion is delayed 30 h by the addition of cesium to the culture medium (Santini et al., Biochim. Biophys. Acta 945:56–64; 1988). We report here that this delay in fusion is substantiated by direct microscopic observation and that cesium also induces ultrastructural changes in the myoblast cells themselves. Possible mechanisms by which cesium may cause both the delay in fusion as well as the ultrastructural changes observed are discussed. This investigation was partially supported by an Italian Consiglio Nazionale delle Ricerche grant 85.00.304.02 (to P. L. I.).  相似文献   

20.
Gliadin, a protein present in wheat, rye, and barley, undergoes incomplete enzymatic degradation during digestion, producing an immunogenic 33‐mer peptide, LQLQPF(PQPQLPY)3PQPQPF. The special features of 33‐mer that provoke a break in its tolerance leading to gliadin sensitivity and celiac disease remains elusive. Herein, it is reported that 33‐mer gliadin peptide was not only able to fold into polyproline II secondary structure but also depending on concentration resulted in conformational transition and self‐assembly under aqueous condition, pH 7.0. A 33‐mer dimer is presented as one initial possible step in the self‐assembling process obtained by partial electrostatics charge distribution calculation and molecular dynamics. In addition, electron microscopy experiments revealed supramolecular organization of 33‐mer into colloidal nanospheres. In the presence of 1 mM sodium citrate, 1 mM sodium borate, 1 mM sodium phosphate buffer, 15 mM NaCl, the nanospheres were stabilized, whereas in water, a linear organization and formation of fibrils were observed. It is hypothesized that the self‐assembling process could be the result of the combination of hydrophobic effect, intramolecular hydrogen bonding, and electrostatic complementarity due to 33‐mer's high content of proline and glutamine amino acids and its calculated nonionic amphiphilic character. Although, performed in vitro, these experiments have revealed new features of the 33‐mer gliadin peptide that could represent an important and unprecedented event in the early stage of 33‐mer interaction with the gut mucosa prior to onset of inflammation. Moreover, these findings may open new perspectives for the understanding and treatment of gliadin intolerance disorders. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 96–106, 2014.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号