首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this clinical study was to assess low frequency, low intensity magnetic fields in the enhancement of the physical rehabilitation of patients after knee endoprosthesis surgery. The study included 62 patients who underwent total knee arthroplasty. Group A consisted of 32 patients who were physically rehabilitated. Group B consisted of 30 patients who were physically rehabilitated and treated additionally with pulsing magnetic fields (5 mT, 30 Hz, 20 min once a day, 5 days weekly). Therapy lasted 3 weeks for both groups. The rehabilitation process was evaluated using a goniometer, tensometer, goniometric pendulum test, Lysholm scale for knee function, and a visual analogue scale (VAS) questionnaire for pain and activity. The changes of measured rates were comparable in both groups. Low frequency and low intensity magnetic fields of examined parameters were not demonstrated to effectively improve the rehabilitation of patients after knee endoprosthesis surgery. Bioelectromagnetics 30:152–158, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

2.
Interaction between weak low frequency magnetic fields and cell membranes   总被引:12,自引:0,他引:12  
The question of whether very weak low frequency magnetic fields can affect biological systems, has attracted attention by many research groups for quite some time. Still, today, the theoretical possibility of such an interaction is often questioned and the site of interaction in the cell is unknown. In the present study, the influence of extremely low frequency (ELF) magnetic fields on the transport of Ca(2+) was studied in a biological system consisting of highly purified plasma membrane vesicles. We tested two quantum mechanical theoretical models that assume that biologically active ions can be bound to a channel protein and influence the opening state of the channel. Vesicles were exposed for 30 min at 32 degrees C and the calcium efflux was studied using radioactive (45)Ca as a tracer. Static magnetic fields ranging from 27 to 37 micro T and time varying magnetic fields with frequencies between 7 and 72 Hz and amplitudes between 13 and 114 micro T (peak) were used. We show that suitable combinations of static and time varying magnetic fields directly interact with the Ca(2+) channel protein in the cell membrane, and we could quantitatively confirm the model proposed by Blanchard.  相似文献   

3.
The effects of low intensity, low frequency magnetic fields (MFs) on catalytic activity of the calcium dependent protease calpain was determined following the enzyme activation both in "in vitro" and "in vivo" conditions. We have observed that a 0.3 mT MF induces a significant increase in the requirement of the protease for this metal ion. This change is detectable at low [Ca(2+)] and disappears when the level of Ca(2+) is raised to saturating amounts. The observed effects are not due to transient MF(-) induced conformational changes occurring in calpain, but to direct effects of the MF on Ca(2+) ions, which become less available for the binding sites present in calpain. Altogether, these results indicate that exposure to low intensity, low frequency MFs alters the intracellular Ca(2+) "availability," thereby modifying the related cell response.  相似文献   

4.
Calcium-ion uptake by normal and leukemia lymphocytes increased during a 30-min exposure to a 13.6 Hz, sinusoidal magnetic field at 20 microT peak. The time-varying field was horizontal and parallel to a 16.5 microT component of the ambient static magnetic field. The uptake of 45Ca2+ increased 102% in a line of murine, cytotoxic T-lymphocytes (C57B1/6-derived CTLL-1), increased 126% in freshly-isolated spleen lymphocytes (C57B1/6 mice), and increased 75% in a line of lymphoma cells (C57B1/6-derived EL4). In contrast, there was no effect when the same field was applied for 30 min immediately before--as opposed to during--incorporation of calcium ions. When spleen lymphocytes were exposed during incubation with 45Ca2+ to a 60 Hz magnetic field at 20 microT peak, a small but statistically significant increase (37%) in uptake of the labeled ions occurred. These results indicate that weak, alternating magnetic fields might affect calcium-dependent functions of normal and leukemic lymphocytes.  相似文献   

5.
To address the effect of extremely low frequency electromagnetic fields on programmed cell death we assessed both the spontaneous and dexamethasone (Dex)-induced apoptosis of thymocytes and spleen cells from mice submitted to a long-term continuous exposure of a 0.4–1.0 μT 60 Hz magnetic field or an 8–20 μT direct current (DC) magnetic field. Dex-induced apoptosis but not spontaneous apoptosis was substantially increased in thymocytes from 0.4 to 1.0 μT 60 Hz field-exposed animals. Spontaneous apoptosis and Dex-induced apoptosis of spleen cells were not affected by the 0.4–1.0 μT 60 Hz field exposure. In addition, spontaneous apoptosis and Dex-induced apoptosis of thymocytes and spleen cells from mice exposed to an 8–20 μT DC field were similar to the controls. These findings represent the first demonstration that thymocytes from mice exposed to a long-term 0.4–1.0 μT 60 Hz field may show abnormal response to Dex apoptotic stimuli. Bioelectromagnetics 19:131–135, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
In vitro assays were made of the effect of a static magnetic field of a neodymium magnet on cellular behavior. The cell turnover rate was examined by the incorporation of radioactive thymidine, and anabolic processes were measured by the incorporation of radioactive proline. Cell cultures of fibroblast- and osteoblast-like cells of the neonatal rat calvarium were assayed to determine uptakes of radioactive thymidine and proline; these assays were performed in conjunction with examination of an explant of the rat calvarium. The cells were assayed after exposure to a field for 1-, 3-, 5-, 7-, and 10-day periods. Cells were exposed to north and south poles with a pole-face flux density of 0.61 T; control cultures were exposed to an unmagnetised piece of neodymium. After sham exposure or exposure to the magnetic field, 50 μCuries/ml of culture media of isotope were added to the culture medium. The cultures were returned to an incubator for 6 h. Then, following centrifugation, the supernatant was assayed for radioactivity in a scintillation counter after addition of 3 ml of scintillation fluid. A statistically significant magnetic stimulation of turnover rate and synthesis of fibroblasts was found, but stimulation of osteoblasts did not occur. Conversely, the explants, which represent the osteoblasts and fibroblasts in an organised system, showed a statistically significant inhibition in uptake of the radioactive label. The data indicate both variability and diversity of cellular behaviour, and they accentuate the need for caution in the interpretation of effects of static magnetic fields. © 1993 Wiley-Liss, Inc.  相似文献   

7.
8.
A study of the influence of electromagnetic fields (EMF) of various frequencies, from 50 up to 400 Hz, on the catalytic activity of soluble and insoluble horseradish peroxidase (POD) was carried out. To simulate the conditions in which the enzyme operates in vivo, the POD was immobilized by entrapment on a gelatin membrane or by covalent attachment on a nylon graft membrane. The rate of inactivation of the soluble POD was found to exhibit positive and negative interactions with the 1 mT applied magnetic field, with an optimum positive effect at 130 Hz. The immobilized PODs, on the contrary, do not exhibit negative interactions, but show a maximum positive interaction at 150 Hz when entrapped and at 170 Hz when covalently attached. At 50 Hz and at frequencies higher than 250 Hz no effects were observed with insoluble POD. The optimum frequency of positive interaction between the EMF and the catalytic activity of the insoluble enzymes is shifted with respect to that of the soluble enzymes towards higher frequencies, the size of the shifts being dependent on the intensity of the physical forces involved in the immobilization process.  相似文献   

9.
10.
The aim of this study was to investigate the effects of 50 Hz magnetic fields (0.2–0.5 mT) on rabbit red blood cells (RBCs) that were exposed simultaneously to the action of an oxygen radical-generating system, Fe(II)/ascorbate. Previous data obtained in our laboratory showed that the exposure of rabbit erythrocytes or reticulocytes to Fe(II)/ascorbate induces hexokinase inactivation, whereas the other glycolytic enzymes do not show any decay. We also observed depletion of reduced glutathione (GSH) content with a concomitant intracellular and extracellular increase in oxidized glutathione (GSSG) and a decrease in energy charge. In this work we investigated whether 50 Hz magnetic fields could influence the intracellular impairments that occur when erythrocytes or reticulocytes are exposed to this oxidant system, namely, inactivation of hexokinase activity, GSH depletion, a change in energy charge, and hemoglobin oxidation. The results obtained indicate that a 0.5 mT magnetic field had no effect on intact RBCs, whereas it increased the damage in an oxidatively stressed erythrocyte system. In fact, exposure of intact erythrocytes incubated with Fe(II)/ascorbate to a 0.5 mT magnetic field induced a significant further decay in hexokinase activity (about 20%) as well as a twofold increase in methemoglobin production compared with RBCs that were exposed to the oxidant system alone. Although further studies will be needed to determine the physiological implications of these data, the results reported in this study demonstrate that the effects of the magnetic fields investigated are able to potentiate the cellular damage induced in vitro by oxidizing agents. Bioelectromagnetics 18:125–131, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

11.
Previous experiments with mice have shown that a repeated 1 h daily exposure to an ambient magnetic field shielded environment induces analgesia (anti-nociception). This shielding reduces ambient static and extremely low frequency magnetic fields (ELF-MF) by approximately 100 times for frequencies below 120 Hz. To determine the threshold of ELF-MF amplitude that would attenuate or abolish this effect, 30 and 120 Hz magnetic fields were introduced into the shielded environment at peak amplitudes of 25, 50, 100 and 500 nT. At 30 Hz, peak amplitudes of 50, 100, and 500 nT attenuated this effect in proportion to the amplitude magnitude. At 120 Hz, significant attenuation was observed at all amplitudes. Exposures at 10, 60, 100, and 240 Hz with peak amplitudes of 500, 300, 500, and 300 nT, respectively, also attenuated the induced analgesia. No exposure abolished this effect except perhaps at 120 Hz, 500 nT. If the peak amplitude frequency product was kept constant at 6000 nT-Hz for frequencies of 12.5, 25, 50, and 100 Hz, the extent of attenuation was constant, indicating that the detection mechanism is dependent on the nT-Hz product. A plot of effect versus the induced current metric nT-Hz suggests a threshold of ELF-MF detection in mice at or below 1000 nT-Hz.  相似文献   

12.
An attempt has been made to understand whether 50 Hz electric and magnetic fields (EMFs) are involved in producing bioeffects by exposing human erythrocytes in vitro. The study evaluated some key glycolytic enzymes, glucose consumption, lactate production, energy charge, 2,3-diphosphoglycerate, and reduced glutathione levels. all of which are biochemical parameters significant to erythrocyte function. Cells exposed to individual or superimposed EMFs have not shown any significant difference compared with the controls. © 1993 Wiley-Liss. Inc.  相似文献   

13.
The mechanisms of biological effects of 50/60 Hz (power frequency) magnetic fields (MF) are still poorly understood. There are a number of studies indicating that MF affect biochemical processes in which free radicals are involved, such as the biological objects' response to ultraviolet radiation (UVA). Therefore, the present study was aimed to assess the effect of 50 Hz MFs on the oxidative deterioration of DNA in rat lymphocytes irradiated in vitro by UVA. UVA radiation (150 J/m2) was applied for 5 min for all groups and 50 Hz MF (40 microT rms) exposure was applied for some of the groups for 5 or 60 min. The level of DNA damage was assessed using the alkaline comet assay, the fluorescence microscope, and image analysis. It has been found that the 1 h exposure to MF caused an evident increase in all parameters consistent with damaged DNA. This suggest that MF affects the radical pairs generated during the oxidative or enzymatic processes of DNA repair.  相似文献   

14.
Exposure to extremely low frequency (ELF) magnetic fields has been shown to attenuate endogenous opioid peptide mediated antinociception or “analgaesia” in the terrestrial pulmonate snail, Cepaea nemoralis. Here we examine the roles of light in determining this effect and address the mechanisms associated with mediating the effects of the ELF magnetic fields in both the presence and absence of light. Specifically, we consider whether the magnetic field effects involve an indirect induced electric current mechanism or a direct effect such as a parametric resonance mechanism (PRM). We exposed snails in both the presence and absence of light at three different frequencies (30, 60, and 120 Hz) with static field values (BDC) and ELF magnetic field amplitude (peak) and direction (BAC) set according to the predictions of the PRM for Ca2+. Analgaesia was induced in snails by injecting them with an enkephalinase inhibitor, which augments endogenous opioid (enkephalin) activity. We found that the magnetic field exposure reduced this opioid-induced analgaesia significantly more if the exposure occurred in the presence rather than the absence of light. However, the percentage reduction in analgaesia in both the presence and absence of light was not dependent on the ELF frequency. This finding suggests that in both the presence and the absence of light the effect of the ELF magnetic field was mediated by a direct magnetic field detection mechanism such as the PRM rather than an induced current mechanism. Bioelectromagnetics 18:284–291, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

15.
Several authors have concluded that thermal electromagnetic noise will be of sufficient magnitude to overwhelm electric and/or magnetic fields induced by environmentally generated, power frequency electric and magnetic fields in the membranes of living cells located in the bodies of humans. Yet, there are research reports that indicate that living cells may respond to power frequency electric and/or magnetic field levels well below the limits set by these thermal noise arguments. The purpose of this study is to suggest that published thermal arguments may not make a full accounting of all membrane force fields of thermal origin, and that when such an accounting is made, the net thermal noise fields may be smaller in the power frequency range than previously thought. If this analysis is correct, there may be no thermal noise barrier that precludes the possibility of cellular membranes of human cells responding to environmental levels of power frequency electric or magnetic fields.  相似文献   

16.
Rats with skin-wounds surgically created on their backs were exposed immediately after surgery and every 12 h thereafter to pulsed, extremely-low-frequency magnetic fields. The shape of the pulse was a positive triangle (50 Hz, 8 mT peak). The rate of healing of skin wounds was evaluated macroscopically and by light and electron microscopy at 6, 12, 21, and 42 days after the operation. A significant increase in the rate of wound contraction was found in rats treated with magnetic fields. Forty-two days after surgery all treated animals show fully closed wounds, while control rats at the same time intervals still lacked a final 6% of the wound surface to be covered. Treated rats showed earlier cellular organization, collagen formation and maturation, and a very early appearance of newly formed vascular network.  相似文献   

17.
A study of the effect of weak, interrupted sinusoidal low frequency magnetic field (ISMF) stimulation on regeneration of the rat sciatic nerve was carried out. In the experiment, 60 Wistar rats were used: 24 rats underwent unilateral sciatic nerve transection injury and immediate surgical nerve repair, 24 rats underwent unilateral sciatic nerve crush injury, and the remaining 12 rats underwent a sham surgery. Half of the animals (n = 12) with either sciatic nerve lesion were randomly chosen and exposed between a pair of Helmholtz coils for 3 weeks post-injury, 4 h/day, to an interrupted (active period to pause ratio = 1.4 s/0.8 s) sinusoidal 50 Hz magnetic field of 0.5 mT. The other half of the animals (n = 12) and six rats with sham surgery were used for two separate controls. Functional recovery was followed for 6 weeks for the crush injuries and 7(1/2) months for the transection injuries by video assisted footprint analysis in static conditions and quantified using a recently revised static sciatic index (SSI) formula. We ascertained that the magnetic field influence was weak, but certainly detectable in both injury models. The accuracy of ISMF influence detection, determined by the one-way repeated measures ANOVA test, was better for the crush injury model: F(1, 198) = 9.0144, P = .003, than for the transection injury model: F(1, 198) = 6.4826, P = .012. The Student-Newman-Keuls range test for each response day yielded significant differences (P < .05) between the exposed and control groups early in the beginning of functional recovery and later on from the points adjacent to the beginning of the plateau, or 95% of functional recovery, and the end of observation. These differences probably reflect the ISMF systemic effect on the neuron cell bodies and increased and more efficient reinnervation of the periphery.  相似文献   

18.
Lin HY  Lin YJ 《Bioelectromagnetics》2011,32(7):552-560
An in vitro model was set up to investigate the effects of low frequency pulsed electromagnetic fields (PEMF) and its induced electric fields on osteoblast cells under inflammatory conditions. Osteoblasts (7F2) were seeded on top of chitosan scaffolds and co-cultured with macrophage cells (RAW 264.7) growing on the bottom of culture wells, stimulated by lipopolysaccharide to release reactive oxygen species including nitric oxide (NO). The co-culture was exposed to PEMF (magnitude of the magnetic field = 1.5 mT; induced electric voltage = 2.5 mV; frequency = 75 Hz; pulse duration = 1.3 ms) for 9 h. The osteoblasts were examined for their proliferation, viability, alkaline phosphatase (ALP) activity, and genetic expressions of type I collagen (COL I) and osteocalcin (OC), immediately and 7 days after PEMF exposure (days 0 and 7). Macrophage cell viability and NO concentration in the medium were monitored before and after PEMF exposure. The PEMF-exposed co-culture released a significantly higher amount of NO (65 μM) compared to control (17 μM) on day 7. Despite the high level of NO in the medium that was reported to be cytotoxic, PEMF-exposed osteoblasts had enhanced cell proliferation (23%), viability (36%), and COL I mRNA expression (3.4-fold) compared to the controls. The osteoblasts subjected to the PEMF had 41% less ALP activity than the control, which was associated with the active cell proliferation and COL I expression. The expression of OC mRNA was not seen in either the PEMF or control group, indicating cells had not entered the mineralization stage by day 7.  相似文献   

19.
目的:研究在固定时间和频率下,矩形波形低频脉冲磁场(LF-PMF)对大鼠心肌微血管内皮细胞(CMECs)迁移和NO分泌能力的影响。方法:实验分为4组(对照组,1.0MT组,1.4MT组,1.8MT组)。对照组不加磁场干预,其余各组分别在频率为15Hz,磁场强度分别为1.0MT、1.4MT和1.8MT,时间为4h/d,连续照射3d的条件下,用三角波形作用离体培养的大鼠CMECs。利用transwell检测细胞迁移能力,硝酸还原酶法检测CMECs培养液中NO含量的变化。结果:1.0MT组,1.4MT组和1.8MT组LF-PMF迁移能力与对照组相比均有不同程度提高[(24.40±5.12)(个/视野)vs(22.00±3.87)(个/视野),P<0.05;(31.40±3.81)(个/视野)vs(22.00±3.87)(个/视野),P<0.05;(37.40±4.01)(个/视野)vs(22.00±3.87)(个/视野),P<0.01]。1.0MT组,1.4MT组和1.8MT组LF-PMF的NO分泌能力与对照组相比均有提高[(25.26±1.06)(μmol/L)vs(19.18±2.88)(μmol/L),P<0...  相似文献   

20.
The effect induced by exposure to 50 Hz magnetic fields (MFs) in immunocytes from the mussel Mytilus galloprovincialis is evaluated. The whole animal was exposed for 15 and 30 min to MF intensities ranging from 200 to 1,000 microT. The changes in the cellular shape of immunocytes, expressed as shape factor (SF), were studied at different times after addition of the chemotacting substance N-formyl-Meth-Leu-Phe (fMLP). Results show that MFs provoke differing delays in fMLP-induced cellular shape changes: 200 microT are ineffective, while levels from 300 microT upwards cause a significant increase in immunocyte SF values compared to controls. Reactivation of the cells is possible up to an intensity of 600 microT. The use of PCO 400, an opener of ATP-sensitive K+ channels, shows that potassium channels are involved in the effect of MFs on M. galloprovincialis immunocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号