首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ciliary motility is necessary for many developmental and physiological processes in animals. In zebrafish, motile cilia are thought to be required for the deposition of otoliths, which comprise crystals of protein and calcium carbonate, on hair cells of the inner ear. The identity of the motile cilia and their role in otolith biogenesis, however, remain controversial. Here, we show that the ear vesicle differentiates numerous motile cilia, the spatial distribution of which changes as a function of the expression pattern of the ciliogenic gene foxj1b. By contrast, the hair cells develop immotile kinocilia that serve as static tethers for otolith crystallization. In ears devoid of all cilia, otoliths can form but they are of irregular shapes and sizes and appear to attach instead to the hair cell apical membranes. Moreover, overproduction of motile cilia also disrupts otolith deposition through sustained agitation of the precursor particles. Therefore, the correct spatial and temporal distribution of the motile cilia is crucial for proper otolith formation. Our findings support the view that the hair cells express a binding factor for the otolith precursors, while the motile cilia ensure that the precursors do not sediment prematurely and are efficiently directed towards the hair cells. We also provide evidence that the kinocilia are modified motile cilia that depend on Foxj1b for their differentiation. We propose that in hair cells, a Foxj1b-dependent motile ciliogenic program is altered by the proneural Atoh proteins to promote the differentiation of immotile kinocilia.  相似文献   

2.
Non‐motile primary cilium is an antenna‐like structure whose defect is associated with a wide range of pathologies, including developmental disorders and cancer. Although mechanisms regulating cilia assembly have been extensively studied, how cilia disassembly is regulated remains poorly understood. Here, we report unexpected roles of Dishevelled 2 (Dvl2) and interphase polo‐like kinase 1 (Plk1) in primary cilia disassembly. We demonstrated that Dvl2 is phosphorylated at S143 and T224 in a manner that requires both non‐canonical Wnt5a ligand and casein kinase 1 epsilon (CK1ε), and that this event is critical to interact with Plk1 in early stages of the cell cycle. The resulting Dvl2–Plk1 complex mediated Wnt5a–CK1ε–Dvl2‐dependent primary cilia disassembly by stabilizing the HEF1 scaffold and activating its associated Aurora‐A (AurA), a kinase crucially required for primary cilia disassembly. Thus, via the formation of the Dvl2–Plk1 complex, Plk1 plays an unanticipated role in primary cilia disassembly by linking Wnt5a‐induced biochemical steps to HEF1/AurA‐dependent cilia disassembly. This study may provide new insights into the mechanism underlying ciliary disassembly processes and various cilia‐related disorders.  相似文献   

3.
高等动物体内气管、脑室管膜及输卵管等上皮组织具有一类富含运动纤毛的多纤毛细胞,通过其细胞表面运动纤毛的周期性摆动可以清洁气管、驱动脑脊液流动和受精卵运动.运动纤毛发生或功能的异常则可导致气管炎、脑积水、不孕不育等多种遗传疾病.然而,在多纤毛细胞分化过程中关于如何精确组装运动性纤毛复杂结构的分子机制仍不清楚.该研究运用蛋...  相似文献   

4.
Ciliopathies are complex genetic multi‐system disorders causally related to abnormal assembly or function of motile or non‐motile cilia. While most human cells possess a non‐motile sensory/primary cilium (PC) during development and/or in adult tissues, motile cilia are restricted to specialised cells. As a result, PC‐associated ciliopathies are characterised by high phenotypic variability with extensive clinical and genetic overlaps. In the present review, we have focused on cerebral developmental anomalies, which are commonly found in PC‐associated ciliopathies and which have mostly been linked to Hedgehog signalling defects. In addition, we have reviewed emerging evidence that PC dysfunctions could be directly or indirectly involved in the mechanisms underlying malformations of cerebral cortical development including primary microcephaly.  相似文献   

5.
6.
Structure and function of mammalian cilia   总被引:3,自引:1,他引:2  
In the past half century, beginning with electron microscopic studies of 9 + 2 motile and 9 + 0 primary cilia, novel insights have been obtained regarding the structure and function of mammalian cilia. All cilia can now be viewed as sensory cellular antennae that coordinate a large number of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation. This view has had unanticipated consequences for our understanding of developmental processes and human disease.  相似文献   

7.
Structural birth defect (SBD) is a major cause of morbidity and mortality in the newborn period. Although the etiology of SBD is diverse, a wide spectrum of SBD associated with ciliopathies points to the cilium as having a central role in the pathogenesis of SBDs. Ciliopathies are human diseases arising from disruption of cilia structure and/or function. They are associated with developmental anomalies in one or more organ systems and can involve defects in motile cilia, such as those in the airway epithelia or from defects in nonmotile (primary cilia) that have sensory and cell signaling function. Availability of low cost next generation sequencing has allowed for explosion of new knowledge in genetic etiology of ciliopathies. This has led to the appreciation that many genes are shared in common between otherwise clinically distinct ciliopathies. Further insights into the relevance of the cilium in SBD has come from recovery of pathogenic mutations in cilia‐related genes from many large‐scale mouse forward genetic screens with differing developmental phenotyping focus. Our mouse mutagenesis screen for congenital heart disease (CHD) using noninvasive fetal echocardiography has yielded a marked enrichment for pathogenic mutations in genes required for motile or primary cilia function. These novel mutant mouse models will be invaluable for modeling human ciliopathies and further interrogating the role of the cilium in the pathogenesis of SBD and CHD. Overall, these findings suggest a central role for the cilium in the pathogenesis of a wide spectrum of developmental anomalies associated with CHD and SBDs. Birth Defects Research (Part C) 102:115–125, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
In this review, we propose a new classification of vertebrate cilia/flagella and discuss the evolution and prototype of cilia. Cilia/flagella are evolutionarily well-conserved membranous organelles in eukaryotes and serve a variety of functions, including motility and sensation. Vertebrate cilia have been traditionally classified into conventional motile cilia and sensory primary cilia. However, an avalanche of emerging evidence on the variations of cilia has made it almost impossible to classify them in a simple dichotomic manner. For example, conventional motile cilia are also involved in the sensation of bitter taste to facilitate the beating of cilia as a defense system of the respiratory system. On the other hand, the primary cilium, often regarded as a non-motile sensory organelle, has been revealed to be motile in vertebrate embryonic nodes, where they play a crucial role in the determination of left-right asymmetry of the body. Moreover, choroid plexus epithelial cells in the cerebral ventricular system exhibit multiple primary cilia on a single cell. Considering these lines of evidence on the diversity of cilia, we believe the classification of cilia should be based on their structure and function, and include more detailed criteria. Another intriguing issue is how in the evolution of cilia, their function and morphology are combined. For example, has motility been acquired from originally sensory cilia, or vice versa? Alternatively, were they originally hybrid in nature? These questions are inseparable from the classification of cilia per se. We would like to address these conundrums in this review article, principally from the standpoint of differentiation of the animal cell.  相似文献   

9.
10.
One of the most widespread cellular organelles in nature is cilium, which is found in many unicellular and multicellular organisms. Formerly thought to be a mostly vestigial organelle, the cilium has been discovered in the past several decades to play critical motile and sensory roles involved in normal organogenesis during development. The role of cilia has also been implicated in an ever increasing array of seemingly unrelated human diseases, including blindness, kidney cysts, neural tube defects and obesity. In this article we review some of the recent developments in research on cilia, and how defects in ciliogenesis and function can give rise to developmental disorders and disease.  相似文献   

11.
Recent advances in developmental genetics and human disease gene cloning have highlighted the essential roles played by cilia in developmental cell fate decisions, left-right asymmetry, and the pathology of human congenital disorders. Hedgehog signaling in sensory cilia illustrates the importance of trafficking receptors to the cilia membrane (Patched and Smoothened) and the concept of cilia 'gatekeepers' that restrict entry and egress of cilia proteins (Suppressor of fused: Gli complexes). Cilia-driven fluid flow in the embryonic node highlights the role of motile cilia in both generation and detection of mechanical signals in development. In this brief review I select examples of recent studies that have clarified and consolidated our understanding of the role of cilia in development.  相似文献   

12.
The primary cilium is a non‐motile cilium whose structure is 9+0. It is involved in co‐ordinating cellular signal transduction pathways, developmental processes and tissue homeostasis. Defects in the structure or function of the primary cilium underlie numerous human diseases, collectively termed ciliopathies. The presence of single cilia in the central nervous system (CNS) is well documented, including some choroid plexus cells, neural stem cells, neurons and astrocytes, but the presence of primary cilia in differentiated neurons of the enteric nervous system (ENS) has not yet been described in mammals to the best of our knowledge. The enteric nervous system closely resembles the central nervous system. In fact, the ultrastructure of the ENS is more similar to the CNS ultrastructure than to the rest of the peripheral nervous system. This research work describes for the first time the ultrastructural characteristics of the single cilium in neurons of rat duodenum myenteric plexus, and reviews the cilium function in the CNS to propose the possible role of cilia in the ENS cells.  相似文献   

13.
Cilia project from the surface of most vertebrate cells and are important for several physiological and developmental processes. Ciliary defects are linked to a variety of human diseases, named ciliopathies, underscoring the importance of understanding signaling pathways involved in cilia formation and maintenance. In this paper, we identified Rer1p as the first endoplasmic reticulum/cis-Golgi–localized membrane protein involved in ciliogenesis. Rer1p, a protein quality control receptor, was highly expressed in zebrafish ciliated organs and regulated ciliary structure and function. Both in zebrafish and mammalian cells, loss of Rer1p resulted in the shortening of cilium and impairment of its motile or sensory function, which was reflected by hearing, vision, and left–right asymmetry defects as well as decreased Hedgehog signaling. We further demonstrate that Rer1p depletion reduced ciliary length and function by increasing γ-secretase complex assembly and activity and, consequently, enhancing Notch signaling as well as reducing Foxj1a expression.  相似文献   

14.
15.
Because arrays of motile cilia drive fluids for a range of processes, the versatile mechano-chemical mechanism coordinating them has been under scrutiny. The protist Paramecium presents opportunities to compare how groups of cilia perform two distinct functions, swimming propulsion and nutrient uptake. We present how the body cilia responsible for propulsion and the oral-groove cilia responsible for nutrient uptake respond to changes in their mechanical environment accomplished by varying the fluid viscosity over a factor of 7. Analysis with a phenomenological model of trajectories of swimmers made neutrally buoyant with magnetic forces combined with high-speed imaging of ciliary beating reveal that the body cilia exert a nearly constant propulsive force primarily by reducing their beat frequency as viscosity increases. By contrast, the oral-groove cilia beat at a nearly constant frequency. The existence of two extremes of motor response in a unicellular organism prompts unique investigations of factors controlling ciliary beating.  相似文献   

16.
Because arrays of motile cilia drive fluids for a range of processes, the versatile mechano-chemical mechanism coordinating them has been under scrutiny. The protist Paramecium presents opportunities to compare how groups of cilia perform two distinct functions, swimming propulsion and nutrient uptake. We present how the body cilia responsible for propulsion and the oral-groove cilia responsible for nutrient uptake respond to changes in their mechanical environment accomplished by varying the fluid viscosity over a factor of 7. Analysis with a phenomenological model of trajectories of swimmers made neutrally buoyant with magnetic forces combined with high-speed imaging of ciliary beating reveal that the body cilia exert a nearly constant propulsive force primarily by reducing their beat frequency as viscosity increases. By contrast, the oral-groove cilia beat at a nearly constant frequency. The existence of two extremes of motor response in a unicellular organism prompts unique investigations of factors controlling ciliary beating.  相似文献   

17.
Cilia, as motile and sensory organelles, have been implicated in normal development, as well as diseases including cystic kidney disease, hydrocephalus and situs inversus. In kidney epithelia, cilia are proposed to be non-motile sensory organelles, while in the mouse node, two cilia populations, motile and non-motile have been proposed to regulate situs. We show that cilia in the zebrafish larval kidney, the spinal cord and Kupffer's vesicle are motile, suggesting that fluid flow is a common feature of each of these organs. Disruption of cilia structure or motility resulted in pronephric cyst formation, hydrocephalus and left-right asymmetry defects. The data show that loss of fluid flow leads to fluid accumulation, which can account for organ distension pathologies in the kidney and brain. In Kupffer's vesicle, loss of flow is associated with loss of left-right patterning, indicating that the 'nodal flow' mechanism of generating situs is conserved in non-mammalian vertebrates.  相似文献   

18.
Primary cilia are specialized microtubule‐based signaling organelles that convey extracellular signals into a cellular response in most vertebrate cell types. The physiological significance of primary cilia is underscored by the fact that defects in assembly or function of these organelles lead to a range of severe diseases and developmental disorders. In most cell types of the human body, signaling by primary cilia involves different G protein‐coupled receptors (GPCRs), which transmit specific signals to the cell through G proteins to regulate diverse cellular and physiological events. Here, we provide an overview of GPCR signaling in primary cilia, with main focus on the rhodopsin‐like (class A) and the smoothened/frizzled (class F) GPCRs. We describe how such receptors dynamically traffic into and out of the ciliary compartment and how they interact with other classes of ciliary GPCRs, such as class B receptors, to control ciliary function and various physiological and behavioral processes. Finally, we discuss future avenues for developing GPCR‐targeted drug strategies for the treatment of ciliopathies.  相似文献   

19.
R D Vale  Y Y Toyoshima 《Cell》1988,52(3):459-469
Dynein, the force-generating enzyme that powers the movement of cilia and flagella, has been characterized biochemically, but no simple system has been available for examining its motile properties. Here we describe a quantitative in vitro motility assay in which dynein adsorbed onto a glass surface induces linear translocation of purified bovine microtubules. Using this assay, we show that both 22S and 14S dyneins from Tetrahymena cilia induce movement but have distinct motile properties. A unique property of 14S dynein, which has not been described for other motility proteins, is its ability to generate torque that causes microtubules to rotate during forward translocation. In the axoneme, 14S dynein-induced torque may induce rotation of central-pair microtubules and may play an important role in generating three-dimensional ciliary beating patterns.  相似文献   

20.
The internal organs of vertebrates show distinctive left-right asymmetry. Leftward extracellular fluid flow at the node (nodal flow), which is generated by the rotational movement of node cilia, is essential for left-right patterning in the mouse and other vertebrates. However, the identity of the pathways by which nodal flow is interpreted remains controversial as the molecular sensors of this process are unknown. In the current study, we show that the medaka left-right mutant abecobe (abc) is defective for left-right asymmetric expression of southpaw, lefty and charon, but not for nodal flow. We identify the abc gene as pkd1l1, the expression of which is confined to Kupffer's vesicle (KV, an organ equivalent to the node). Pkd1l1 can interact and interdependently colocalize with Pkd2 at the cilia in KV. We further demonstrate that all KV cilia contain Pkd1l1 and Pkd2 and left-right dynein, and that they are motile. These results suggest that Pkd1l1 and Pkd2 form a complex that functions as the nodal flow sensor in the motile cilia of the medaka KV. We propose a new model for the role of cilia in left-right patterning in which the KV cilia have a dual function: to generate nodal flow and to interpret it through Pkd1l1-Pkd2 complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号