首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two of each semisynthetic lanostane‐ and cycloartane‐type triterpenes with a cyano‐enone functionality, i.e., 13 and 18 , and 23 and 28 , respectively, sixteen of their synthetic intermediates, 9 – 12, 14 – 17, 19 – 22 , and 24 – 27 , along with seven semisynthetic oxygenated triterpene acetates, 29 – 35 , and eight natural hydroxy triterpenes, 1 – 8 , were evaluated for their cytotoxic activities against leukemia (HL60), lung (A549), stomach (AZ521), and breast (SK‐BR‐3) cancer cell lines. One natural triterpene, 8 , and ten semisynthetic triterpenes, 9, 13, 15, 18, 23, 25, 28, 29, 32 , and 33 , exhibited potent cytotoxicities against one or more cell lines with IC50 values in the range of 1.4–9.9 μM . Two lanostane‐type triterpenes with a cyano‐enone functionality, 3‐oxolanosta‐1,8,24‐triene‐2‐carbonitrile ( 13 ) and 3‐oxolanosta‐1,8‐diene‐2‐carbonitrile ( 18 ), induced apoptosis in HL60 cells, as observed by membrane phospholipid exposure in flow cytometry. Western blot analysis showed that 13 and 18 significantly reduced procaspases‐3, ‐8, and ‐9, and increased cleaved caspases‐3, ‐8, and ‐9. These findings indicated that compounds 13 and 18 induced apoptosis in HL60 cells via both the mitochondrial and the death receptor‐mediated pathways. In addition, upon evaluation of the inhibitory effects on Epstein? Barr virus early antigen (EBV‐EA) activation induced with 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) in Raji cells, seven natural triterpenes, 1 – 6 and 8 , and ten semisynthetic triterpenes, 9, 10, 14, 15, 19, 20, 24, 25, 29 , and 30 , exhibited inhibitory effects which were higher than that of β‐carotene, a vitamin A precursor studied widely in cancer‐chemoprevention animal models.  相似文献   

2.
From an Argentine collection of Senecio santelisis Phil ., the new furanoeremophilanoids, (10βH)‐6β‐acetoxy‐1α‐hydroxyfuranoeremophilan‐9‐one ( 1 ) and (10βH)‐1α‐hydroxy‐6β‐(propanoyloxy)furanoeremophilan‐9‐one ( 2 ), together with the known (10αH)‐6β‐acetoxy‐1α‐hydroxyfuranoeremophilan‐9‐one ( 3 ), (10αH)‐1α,6β‐diacetoxyfuranoeremophilan‐9‐one ( 4 ), and (10αH)‐1α‐hydroxy‐6β‐(propanoyloxy)furanoeremophilan‐9‐one ( 5 ) were isolated. Their structures and relative configurations were established on the basis of spectroscopic analysis. CHCl3 Extract and pure compounds were evaluated for their antifungal activity. Compound 5 exhibited remarkable mycelial growth inhibition against B. cinerea with an IC50 value of 21.4 μg/ml.  相似文献   

3.
Three (9βH)‐pimaranes, 1, 2 , and 3 , and two (9βH)‐17‐norpimaranes, 4 and 5 , belonging to a rare compound class in nature, were obtained from the tubers of Icacina trichantha for the first time. Compound 1 is a new natural product, and 2 – 5 have been previously reported. The structures were elucidated based on NMR and MS data, and optical rotation values. The absolute configurations of (9βH)‐pimaranes were unambiguously established based on X‐ray crystallographic analysis. Full NMR signal assignments for the known compounds 2, 4 , and 5 , which were not available in previous publications, are also reported. All five isolates displayed cytotoxic activities on MDA‐MB‐435 cells (IC50 0.66–6.44 μM ), while 2, 3 , and 4 also exhibited cytotoxicities on HT‐29 cells (IC50 3.00–4.94 μM ).  相似文献   

4.
Four new cycloartane triterpenes, named huangqiyegenins V and VI and huangqiyenins K and L ( 1 – 4 , resp.), together with nine known triterpenoids, 5 – 13 , and eight flavonoids, 14 – 21 , were isolated from a 70%‐EtOH extract of Astragalus membranaceus leaves. The structures of the new compounds were elucidated by detailed spectroscopic analyses, and the compounds were identified as (9β,11α,16β,20R,24S)‐11,16,25‐trihydroxy‐20,24‐epoxy‐9,19‐cyclolanostane‐3,6‐dione ( 1 ), (9β,16β,24S)‐16,24,25‐trihydroxy‐9,19‐cyclolanostane‐3,6‐dione ( 2 ), (3β,6α,9β,16β,20R,24R)‐16,25‐dihydroxy‐3‐(β‐D ‐xylopyranosyloxy)‐20,24‐epoxy‐9,19‐cyclolanostan‐6‐yl acetate ( 3 ), and (3β,6α,9β,16β,24E)‐26‐(β‐D ‐glucopyranosyloxy)‐16‐hydroxy‐3‐(β‐D ‐xylopyranosyloxy)‐9,19‐cyclolanost‐24‐en‐6‐yl acetate ( 4 ). All isolated compounds were evaluated for their inhibitory activities against LPS‐induced NO production in RAW264.7 macrophage cells. Compounds 1 – 3, 14, 15 , and 18 exhibited strong inhibition on LPS‐induced NO release by macrophages with IC50 values of 14.4–27.1 μM .  相似文献   

5.
Three new compounds ( 1 – 3 ), including two euphane type triterpenes, 24,24‐dimethoxy‐25,26,27‐trinoreuphan‐3β‐ol ( 1 ) and (24S)‐24‐hydroperoxyeupha‐8,25‐dien‐3β‐ol ( 2 ), and an ent‐atisine diterpene, ent‐atisane‐3α,16α,17‐triol ( 3 ), were isolated from an acetone extract of the stems of Euphorbia antiquorum, together with eight known diterpenes ( 4 – 11 ). The structures of compounds ( 1 – 11 ) were elucidated using NMR and MS spectroscopic methods. Compound 7 showed moderate activity against HIV‐1 replication in vitro (EC50 = 1.38 μm ).  相似文献   

6.
Bioassay‐guided fractionation of the active AcOEt‐soluble layer led to the isolation of two new pyranocoumarins, 3‐hydroxyxanthyletin ( 1 ) and 3‐methoxyxanthyletin ( 2 ), along with 22 known compounds including four simple coumarins, i.e., xanthyletin ( 3 ), umbelliferone ( 4 ), scopoletin ( 5 ), and (+)‐(S)‐marmesin ( 6 ); nine flavonoids, i.e., carpachromene ( 7 ), parvisoflavone B ( 8 ), alpinumisoflavone ( 9 ) genistein ( 10 ), 2′‐hydroxygenistein ( 11 ), prunetin ( 12 ), cajanin ( 13 ), apigenin ( 14 ), and (2S)‐naringenin ( 15 ); three benzenoids, i.e., 4‐hydroxybenzaldehyde ( 16 ), vanillin ( 17 ), and (S)‐lasiodiplodin ( 18 ); five steroids, i.e., ergosterol peroxide ( 19 ), a mixture of 6β‐hydroxystigmast‐4‐en‐3‐one ( 20 ) and 6β‐hydroxystigmasta‐4,22‐dien‐3‐one ( 21 ), and a mixture of β‐sitosterol ( 22 ) and stigmasterol ( 23 ); and one triterpenoid, i.e., oleanolic acid ( 24 ) from the roots of Ficus nervosa. Their structures were elucidated on the basis of extensive 1D‐ and 2D‐NMR as well as MS analyses. Among these isolates, 3‐hydroxyxanthyletin ( 1 ), genistein ( 10 ), prunetin ( 12 ), and (2S)‐naringenin ( 15 ) showed antimycobacterial activities against Mycobacterium tuberculosis H37RV in vitro with MIC values of 16, 35, 30, and ≤2.8 μg/ml, respectively.  相似文献   

7.
Xiong Liu  Yu Ma  Longqi Xu  Qi Liu 《Chirality》2019,31(9):750-758
(S,S)‐DIOP, a common catalyst used in asymmetric reaction, was adopted as chiral extractant to separate 3‐chloro‐phenylglycine enantiomers in liquid‐liquid extraction. The factors affecting extraction efficiency were studied, including metal precursors, organic solvents, extraction temperature, chiral extractant concentration, and pH of aqueous phase. (S,S)‐DIOP‐Pd exhibited good ability to recognize 3‐chloro‐phenylglycine enantiomers, and the operational enantioselectivity (α) is 1.836. The highest performance factor (pf) was obtained under the condition of extraction temperature of 9.1°C, (S,S)‐DIOP‐Pd concentration of 1.7 mmol/L, and pH of aqueous phase of 7.0. In addition, the possible recognition mechanism of (S,S)‐DIOP‐Pd towards 3‐chloro‐phenylglycine enantiomers was discussed.  相似文献   

8.
The use of quail meat and eggs has made this animal important in recent years, with its low cost and high yields. Glutathione S‐transferases (GST, E.C.2.5.1.18) are an important enzyme family, which play a critical role in detoxification system. In our study, GST was purified from quail liver tissue with 47.88‐fold purification and 12.33% recovery by glutathione agarose affinity chromatography. The purity of enzyme was checked by SDS‐PAGE method and showed a single band. In addition, inhibition effects of (3aR,4S,7R,7aS)‐2‐(4‐((E)‐3‐(aryl)acryloyl)phenyl)‐3a,4,7,7a‐tetrahydro‐1H‐4,7methanoisoindole‐1,3(2H)‐dion derivatives ( 1a–g ) were investigated on the enzyme activity. The inhibition parameters (IC50 and Ki values) were calculated for these compounds. IC50 values of these derivatives ( 1a–e ) were found as 23.00, 15.75, 115.50, 10.00, and 28.75 μM, respectively. Ki values of these derivatives ( 1a–e ) were calculated in the range of 3.04 ± 0.50 to 131.50 ± 32.50 μM. However, for f and g compounds, the inhibition effects on the enzyme were not found.  相似文献   

9.
Four new lanostane-type triterpenoids, inonotsuoxodiol B (1), inonotsuoxodiol C (2), epoxyinonotsudiol (3), and methoxyinonotsutriol (4), were isolated from the sclerotia of Inonotus obliquus. Their structures were determined to be 3β,22R-dihydroxylanosta-9(11),24-dien-7-one (1), 3β,22R-dihydroxylanosta-7,24-dien-11-one (2), 9α,11α-epoxy-lanosta-7,24-diene-3β,22R-diol (3), and 7β-methoxylanosta-8,24-diene-3β,11α,22R-triol (4) on the basis of NMR spectroscopy, including 1D and 2D (1H–1H-COSY, NOESY, HMQC, HMBC) NMR spectra, and EIMS.  相似文献   

10.
A phytochemical investigation of the roots of Ligularia atroviolacea resulted in the isolation of 24 compounds including seven new eremophilanoids named eremophila‐3,7(11),8‐triene‐12,8;14,6α‐diolide ( 1 ), 3β‐(angeloyloxy)eremophil‐7(11)‐en‐12,8β‐olid‐14‐oic acid ( 2 ), 1α‐chloro‐10β‐hydroxy‐6β‐(2‐methylpropanoyloxy)‐9‐oxo‐7,8‐furoeremophilane ( 3 ), (10βH)‐8‐oxoeremophila‐3(4),6(7)‐diene‐12,14‐dioic acid ( 4 ), (10αH)‐8‐oxoeremophila‐3(4),6(7)‐diene‐12,14‐dioic acid ( 5 ), 8β‐[eremophila‐3′,7′(11′)‐diene‐12′,8′α;14′,6′α‐diolide]eremophila‐3,7(11)‐diene‐12,8α;14,6α‐diolide ( 6 ), and ligulatrovine A ( 7 ), eleven known eremophilanoids, 8 – 18 , four steroids, one glucose derivative, and one fatty acid. The structures of these compounds were elucidated by spectroscopic methods including 2D‐NMR experiments. The structure of 3 was also established by an X‐ray diffraction study. The in vitro cytotoxicity evaluation of selected compounds was performed on seven cultured tumor cell lines, i.e., KB, BEL‐7404, A549, HL‐60, HeLa, CNE, and P‐388D1. The preliminary taxonomy of this species was also discussed, and the possible biogenesis of a dimer possessing a new noreremophilanoid type skeleton, 7 , is presented in a preliminary form.  相似文献   

11.
Paclobutrazol, with two stereogenic centers, but gives only (2R, 3R) and (2S, 3S)‐enantiomers because of steric‐hindrance effects, is an important plant growth regulator in agriculture and horticulture. Enantioselective degradation of paclobutrazol was investigated in rat liver microsomes in vitro. The degradation kinetics and the enantiomer fraction were determined using a Lux Cellulose‐1 chiral column on a reverse‐phase liquid chromatography–tandem mass spectrometry system. The t1/2 of (2R, 3R)‐paclobutrazol is 18.60 min, while the t1/2 of (2S, 3S)‐paclobutrazol is 10.93 min. Such consequences clearly indicated that the degradation of paclobutrazol in rat liver microsomes was stereoselective and the degradation rate of (2S, 3S)‐paclobutrazol was much faster than (2R, 3R)‐paclobutrazol. In addition, significant differences between the two enantiomers were also observed in enzyme kinetic parameters. The Vmax of (2S, 3S)‐paclobutrazol was more than 2‐fold of (2R, 3R)‐paclobutrazol and the Clint of (2S, 3S)‐paclobutrazol was higher than that of (2R, 3R)‐paclobutrazol after incubation in rat liver microsomes. These results may have potential implications for better environmental and ecological risk assessment for paclobutrazol. Chirality 27:344–348, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
Four new tirucallane triterpenoids, (21S,23R,24R)‐21,23‐epoxy‐21,24‐dihydroxy‐25‐methoxytirucall‐7‐en‐3‐one ( 2 ), (3S,21S,23R,24S)‐21,23‐epoxy‐21,25‐dimethoxytirucall‐7‐ene‐3,24‐diol ( 8 ), (21S,23R,24R)‐21,23‐epoxy‐24‐hydroxy‐21‐methoxytirucalla‐7,25‐dien‐3‐one ( 11 ), and (21S,23R,24R)‐21,23‐epoxy‐21,24‐dihydroxytirucalla‐7,25‐dien‐3‐one ( 12 ), along with 16 known analogues, 1 , 3  –  7 , 9  –  10 , and 13  –  20 , were isolated from the fruits of Melia azedarach. Their structures were elucidated by spectroscopic methods including 1D‐ and 2D‐NMR techniques and mass spectrometry. These compounds were evaluated for their cytotoxicities against HepG2 (liver), SGC7901 (stomach), K562 (leukemia), and HL60 (leukemia) cancer cell lines. Compound 20 exhibited potent cytotoxicity against HepG2 and SGC7901 cancer cells with the IC50 values of 6.9 and 6.9 μm , respectively.  相似文献   

13.
(20S,24S)‐epoxy‐dammarane‐3,12,25‐triol (24S‐epimer) and (20S,24R)‐epoxy‐ dammarane‐3,12,25‐triol (24R‐epimer), a pair of ocotillol type epimers, were identified as the main metabolites of 20(S)‐protopanaxadiol (PPD). The aim of this study was to systematically investigate the formation and metabolism of this pair of epimers in vivo and in vitro and to elucidate the isoforms of cytochrome P450 enzymes responsible for the stereoselective metabolism of both epimers. The result showed that 24S‐epimer was a more predominant ingredient in rat plasma after oral administration of PPD with higher area under the curve (AUC) values. Both the enzyme kinetic evaluations of the formation and elimination of 24S‐epimer and 24R‐epimer in rat liver microsomes (RLM) and human liver microsomes (HLM) indicated that 24S‐epimer had a higher formation rate and a lower oxygenation metabolism rate than 24R‐epimer, and the stereoselective differences were more obvious in HLM than in RLM. The chemical inhibition and recombinant human P450 isoforms assay showed that CYP3A4 was the predominant isoform responsible for the further metabolism of 24R‐epimer in HLM. The biliary excretion ratio of the 24S‐epimer glucuronide was more than 28‐fold higher than that of 24R‐epimer glucuronide after intravenous administration to rats, which also indicated 24S‐epimer was more preferential to be metabolized as the glucuronide conjugate than 24R‐epimer. Chirality 27:170–176, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Three sodium salts of (2E)‐3‐(4'‐halophenyl)prop‐2‐enoyl sulfachloropyrazine (CCSCP) were synthesized and their structures were determined by 1H and 13C NMR, LC‐MS and IR. The binding properties between CCSCPs and bovine serum albumin (BSA) were studied using fluorescence spectroscopy in combination with UV–vis absorbance spectroscopy. The results indicate that the fluorescence quenching mechanisms between BSA and CCSCPs were static quenching at low concentrations of CCSCPs or combined quenching (static and dynamic) at higher CCSCP concentrations of 298, 303 and 308 K. The binding constants, binding sites and corresponding thermodynamic parameters (ΔH, ΔS, ΔG) were calculated at different temperatures. All ΔG values were negative, which revealed that the binding processes were spontaneous. Although all CCSCPs had negative ΔH and positive ΔS, the contributions of ΔH and ΔS to ΔG values were different. When the 4'‐substituent was fluorine or chlorine, van der Waals interactions and hydrogen bonds were the main interaction forces. However, when the halogen was bromine, ionic interaction and proton transfer controlled the overall energetics. The binding distances between CCSCPs and BSA were determined using the Förster non‐radiation energy transfer theory and the effects of CCSCPs on the conformation of BSA were analyzed by synchronous fluorescence spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Four Δ5-sterols and six Δ7-sterols were isolated from the seed oil of Trichosanthes kirilowii and identified as campesterol, sitosterol, stigmasterol, Δ7-campesterol, Δ7-stigmasterol, Δ7,22-stigmastadienol, 24-ethylcholesta-5,25-diene-3β-ol, 24-ethylcholesta-7,24(25)-diene-3β-ol, 24-ethylcholesta-7,25-diene-3β-ol, and 24-ethylcholesta-7,22,25-trine-3β-ol.  相似文献   

16.
The 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were synthesized from the reactions of 7‐benzylidenebicyclo[3.2.0]hept‐2‐en‐6‐ones with 2‐aminobenzenethiol. The antiproliferative activities of 2‐[2‐(2‐phenylethenyl)cyclopent‐3‐en‐1‐yl]‐1,3‐benzothiazoles were determined against C6 (rat brain tumor) and HeLa (human cervical carcinoma cells) cell lines using BrdU cell proliferation ELISA assay. Cisplatin and 5‐fluorouracil (5‐FU) were used as standards. The most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 cell lines with IC50=5.89 μm value (cisplatin, IC50=14.46 μm and 5‐FU, IC50=76.74 μm ). Furthermore, the most active compound was 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa cell lines with IC50=3.98 μm (cisplatin, IC50=37.95 μm and 5‐FU, IC50=46.32 μm ). Additionally, computational studies of related molecules were performed by using B3LYP/6‐31G+(d,p) level in the gas phase. Experimental IR and NMR data were compared with the calculated results and were found to be compatible with each other. Molecular electrostatic potential (MEP) maps of the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against HeLa and the most active 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole against C6 were investigated, aiming to determine the region that the molecule is biologically active. Biological activities of mentioned molecules were investigated with molecular docking analyses. The appropriate target protein (PDB codes: 1 M17 for the HeLa cells and 1JQH for the C6 cells) was used for 2‐{(1S,2S)‐2‐[(E)‐2‐(2‐methoxyphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole and 2‐{(1S,2S)‐2‐[(E)‐2‐(4‐methylphenyl)ethenyl]cyclopent‐3‐en‐1‐yl}‐1,3‐benzothiazole molecules exhibiting the highest biological activity against HeLa and C6 cells in the docking studies. As a result, it was determined that these molecules are the best candidates for the anticancer drug.  相似文献   

17.
Four new steroidal glycosides, protolinckiosides A – D ( 1 – 4 , resp.), were isolated along with four previously known glycosides, 5 – 8 , from the MeOH/EtOH extract of the starfish Protoreaster lincki. The structures of 1 – 4 were elucidated by extensive NMR and ESI‐MS techniques as (3β,4β,5α,6β,7α,15α,16β,25S)‐4,6,7,8,15,16,26‐heptahydroxycholestan‐3‐yl 2‐O‐methyl‐β‐d ‐xylopyranoside ( 1 ), (3β,5α,6β,15α,24S)‐3,5,6,8,15‐pentahydroxycholestan‐24‐yl α‐l ‐arabinofuranoside ( 2 ), sodium (3β,6β,15α,16β,24R)‐29‐(β‐d ‐galactofuranosyloxy)‐6,8,16‐trihydroxy‐3‐[(2‐O‐methyl‐β‐d ‐xylopyranosyl)oxy]stigmast‐4‐en‐15‐yl sulfate ( 3 ), and sodium (3β,6β,15α,16β,22E,24R)‐28‐(β‐d ‐galactofuranosyloxy)‐6,8,16‐trihydroxy‐3‐[(2‐O‐methyl‐β‐d ‐xylopyranosyl)oxy]ergosta‐4,22‐dien‐15‐yl sulfate ( 4 ). The unsubstituted β‐d ‐galactofuranose residue at C(28) or C(29) of the side chains was found in starfish steroidal glycosides for the first time. Compounds 1 – 4 significantly decreased the intracellular reactive oxygen species (ROS) content in RAW 264.7 murine macrophages at induction by proinflammatory endotoxic lipopolysaccharide (LPS) from E. coli.  相似文献   

18.
The antimycobacterial activities of eight diterpenes, 1 – 8 , isolated previously from Plectranthus and eleven esters, 9 – 19 , of 7α‐acetoxy‐6β,12‐dihydroxyabieta‐8,12‐diene‐11,14‐dione ( 5 ) were evaluated against the MTB strains H37Rv and MDR. Only diterpenoids with a quinone framework revealed anti‐MTB activity. Abietane 5 and its 6,12‐dibenzoyl, 12‐methoxybenzoyl, 12‐chlorobenzoyl, and 12‐nitrobenzoyl esters, 9, 11, 12 , and 13 , respectively, showed potent activities against the MDR strain with MIC values between 3.12 and 0.39 μg/ml. Cytotoxic activities towards 3T3 and Vero cells were also evaluated. Compound 11 , with the best selectivity index, may be a suitable lead for further chemical modifications. The complete structural elucidation of the new esters, 9 – 14, 16, 18 , and 19 , as well as the NMR data of known derivatives 15 and 17 are reported.  相似文献   

19.
5α‐Androst‐16‐en‐3α‐ol (α‐androstenol) is an important contributor to human axilla sweat odor. It is assumed that α‐andostenol is excreted from the apocrine glands via a H2O‐soluble conjugate, and this precursor was formally characterized in this study for the first time in human sweat. The possible H2O‐soluble precursors, sulfate and glucuronide derivatives, were synthesized as analytical standards, i.e., α‐androstenol, β‐androstenol sulfates, 5α‐androsta‐5,16‐dien‐3β‐ol (β‐androstadienol) sulfate, α‐androstenol β‐glucuronide, α‐androstenol α‐glucuronide, β‐androstadienol β‐glucuronide, and α‐androstenol β‐glucuronide furanose. The occurrence of α‐androstenol β‐glucuronide was established by ultra performance liquid chromatography (UPLC)/MS (heated electrospray ionization (HESI)) in negative‐ion mode in pooled human sweat, containing eccrine and apocrine secretions and collected from 25 female and 24 male underarms. Its concentration was of 79 ng/ml in female secretions and 241 ng/ml in male secretions. The release of α‐androstenol was observed after incubation of the sterile human sweat or α‐androstenol β‐glucuronide with a commercial glucuronidase enzyme, the urine‐isolated bacteria Streptococcus agalactiae, and the skin bacteria Staphylococcus warneri DSM 20316, Staphylococcus haemolyticus DSM 20263, and Propionibacterium acnes ATCC 6919, reported to have β‐glucuronidase activities. We demonstrated that if α‐ and β‐androstenols and androstadienol sulfates were present in human sweat, their concentrations would be too low to be considered as potential precursors of malodors; therefore, the H2O‐soluble precursor of α‐androstenol in apocrine secretion should be a β‐glucuronide.  相似文献   

20.
Three new oplopane sesquiterpenes, knorringianalarins D – F ( 1 – 3 , respectively), and five known analogues ( 4 – 8 , respectively), were isolated from the roots and rhizomes of Ligularia knorringiana. The structures of three new compounds were identified as 4‐acetoxy‐11α,12‐epoxy‐2β‐hydroxy‐3β‐(2‐methylbutyryloxy)‐9α‐(4‐methylsenecioyloxy)oplop‐10(14)‐ene ( 1 ), 3β,4‐diacetoxy‐9α‐(4‐acetoxy‐4‐methylsenecioyloxy)‐11α,12‐epoxy‐8α‐(2‐methylbutyryloxy)oplop‐10(14)‐ene ( 2 ), and (1R,5R,6R,7R,9R)‐5,9,11‐trihydroxy‐4,15‐dinoroplop‐10(14)‐en‐3‐one ( 3 ) based on spectroscopic methods including 1D‐ and 2D‐NMR, mass spectrometry, and CD spectroscopy techniques. All compounds were evaluated for their anti‐complementary activity on the classical pathway of the complement system in vitro. Among which, three oplopane sesquiterpenes ( 3 , 7 , and 8 ) exhibited better anti‐complementary effects with CH50 values ranging from 0.33 to 0.89 mm , which are plausible candidates for developing potent anti‐complementary agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号