首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细胞内视黄酸信号传递系统   总被引:3,自引:0,他引:3       下载免费PDF全文
视黄酸对基因表达的调控与肿瘤细胞的分化、胚胎的发育以及疾病的发生关系密切.视黄酸的基因调控作用是通过视黄酸信号传递系统实现的.视黄酸信号传递系统包括视黄酸、细胞液视黄醇(酸)结合蛋白、视黄酸细胞核受体及视黄酸反应元件等.视黄酸信号传递系统自成一体系,在这一系列调控的级联反应中存在着多级反馈调控环节,而且该系统还与视黄酸配体以外的信号系统相联系.  相似文献   

2.
    
The vitamin A metabolite, retinoic acid, carries out essential and conserved roles in vertebrate heart development. Retinoic acid signals via retinoic acid receptors (RAR)/retinoid X receptors (RXRs) heterodimers to induce the expression of genes that control cell fate specification, proliferation, and differentiation. Alterations in retinoic acid levels are often associated with congenital heart defects. Therefore, embryonic levels of retinoic acid need to be carefully regulated through the activity of enzymes, binding proteins and transporters involved in vitamin A metabolism. Here, we review evidence of the complex mechanisms that control the fetal uptake and synthesis of retinoic acid from vitamin A precursors. Next, we highlight recent evidence of the role of retinoic acid in orchestrating myocardial compact zone growth and coronary vascular development.  相似文献   

3.
视黄类受体与视黄酸致畸作用关系   总被引:2,自引:1,他引:1  
李增刚  孙开来 《遗传》2004,26(5):735-738
视黄酸(维甲酸)可引起包括人在内的多种动物胚胎畸形,其生物活性是由一系列视黄酸受体及其配体介导的。其中视黄类受体RAR起主要作用,RAR的配体为强致畸物,相对致畸活性由强至弱依次为配体α、配体β和配体γ。视黄酸受体RXR的配体无致畸活性,但是可加强RAR激动剂的某些致畸郊应。视黄酸受体还可通过其它基因的表达而影响胚胎发育。对视黄类受体基因突变和不同视黄类受体及其配体与致畸作用的关系,以及此类受体对其它基因表达的调节作简要综述。Abstract: Retinoic acid can induce teratogenesis of the fetus of many animals including human, and its biological activities are induced by a serious of different retinoic acid accepters and their ligands. The retinoic acid acceptor RAR plays key roles in the teratogenesis, and the legands of RAR are strong teratogens. The intensity sequence of the relative teratogenesis is ligandα、ligandβ and ligandγ. The ligands of the retinoic acid acceptor RXR cannot induce teratogenesis, but they can enhance the teratogenesis of the RAR stimulus. The retinoic acid acceptors can also affect the development of the fetus by adjusting the expression of the other genes. The relations between the gene mutation of the retinoic acid acceptor, various retinoic acid acceptors and their ligands and teratogenesis of retinoic acid are summarized in this article. In addition, the regulations of the retinoic acid acceptors to the other genes are also discussed.  相似文献   

4.
5.
  总被引:1,自引:0,他引:1  
BACKGROUND: The triazole derivative, triadimefon (FON), induces branchial arch abnormalities in post-implantation rat embryos cultured in vitro, and cranio-facial malformations in mouse fetuses. Ectopic maxillary cartilage has been also described as a typical FON-related malformation. This work studies the morphogenesis of the ectopic cartilage in rat embryos and fetuses exposed in vivo to FON during the early postimplantation period. METHODS: Pregnant rats were treated with 0, 250, and 500 mg/kg FON on Day 9.5 of pregnancy (D9.5) and sacrificed at term (D20), during the early fetal period (D17) or at different embryogenetic periods (D10, D11, D12). The skeleton was examined after stain of bone and cartilage or of cartilage alone respectively at term or at D17. The neural crest cell (NCC) migration and compaction was investigated at D10 and D11 and the cranial nerve organization described at D12. RESULTS: Triadimefon is teratogenic in rats under the chosen experimental conditions. The malformations were at the level of the cranio-facial and axial skeleton at term and of the hindbrain nerves in embryos. A NCC abnormal migration and compaction was observed at the level of the first branchial arch: in FON-exposed embryos NCC were detected at the level of both maxillary and mandibular processes, whereas control embryos showed the immunostained tissue only at the level of the mandibular bud. CONCLUSIONS: The pathogenic pathway, proposed to explain the ectopic cartilage, is the displacement of part of the NCC-derived tissues at the maxillary region of the first branchial arch.  相似文献   

6.
    
BACKGROUND: Although normal coronary artery embryogenesis is well described in the literature, little is known about the development of coronary vessels in abnormal hearts. METHODS: We used an animal model of retinoic acid (RA)-evoked outflow tract malformations (e.g., double outlet right ventricle [DORV], transposition of the great arteries [TGA], and common truncus arteriosus [CTA]) to study the embryogenesis of coronary arteries using endothelial cell markers (anti-PECAM-1 antibodies and Griffonia simplicifolia I (GSI) lectin). These markers were applied to serial sections of staged mouse hearts to demonstrate the location of coronary artery primordia. RESULTS: In malformations with a dextropositioned aorta, the shape of the peritruncal plexus, from which the coronary arteries develop, differed from that of control hearts. This difference in the shape of the early capillary plexus in the control and RA-treated hearts depends on the position of the aorta relative to the pulmonary trunk. In both normal and RA-treated hearts, there are several capillary penetrations to each aortic sinus facing the pulmonary trunk, but eventually only 1 coronary artery establishes patency with 1 aortic sinus. CONCLUSIONS: The abnormal location of the vessel primordia induces defective courses of coronary arteries; creates fistulas, a single coronary artery, and dilated vessel lumens; and leaves certain areas of the heart devoid of coronary artery branches. RA-evoked heart malformations may be a useful model for elucidating abnormal patterns of coronary artery development and may shed some light on the angiogenesis of coronary artery formation.  相似文献   

7.
    
Retinoic acid (RA) is a vitamin A metabolite that acts as a morphogen and teratogen. Excess or defective RA signaling causes developmental defects including in the heart. The heart develops from the anterior lateral plate mesoderm. Cardiogenesis involves successive steps, including formation of the primitive heart tube, cardiac looping, septation, chamber development, coronary vascularization, and completion of the four‐chambered heart. RA is dispensable for primitive heart tube formation. Before looping, RA is required to define the anterior/posterior boundaries of the heart‐forming mesoderm as well as to form the atrium and sinus venosus. In outflow tract elongation and septation, RA signaling is required to maintain/differentiate cardiogenic progenitors in the second heart field at the posterior pharyngeal arches level. Epicardium‐secreted insulin‐like growth factor, the expression of which is regulated by hepatic mesoderm‐derived erythropoietin under the control of RA, promotes myocardial proliferation of the ventricular wall. Epicardium‐derived RA induces the expression of angiogenic factors in the myocardium to form the coronary vasculature. In cardiogenic events at different stages, properly controlled RA signaling is required to establish the functional heart.  相似文献   

8.
9.
Regulation of Cardiac Energy Metabolism in Newborn   总被引:1,自引:0,他引:1  
Energy in the form of ATP is supplied from the oxidation of fatty acids and glucose in the adult heart in most species. In the fetal heart, carbohydrates, primarily glucose and lactate, are the preferred sources for ATP production. As the newborn matures the contribution of fatty acid oxidation to overall energy production increases and becomes the dominant substrate for the adult heart. The mechanisms responsible for this switch in energy substrate preference in the heart are complicated to identify due to slight differences between species and differences in techniques that are utilized. Nevertheless, our current knowledge suggests that the switch in energy substrate preference occurs due to a combination of events. During pregnancy, the fetus receives a constant supply of nutrients that is rich carbohydrates and poor in fatty acids in many species. Immediately after birth, the newborn is fed with milk that is high in fat and low in carbohydrates. The hormonal environment is also different between the fetal and the newborn. Moreover, direct subcellular changes occur in the newborn period that play a major role in the adaptation of the newborn heart to extrauterin life. The newborn period is unique and provides a very useful model to examine not only the metabolic changes, but also the effects of hormonal changes on the heart. A better understanding of developmental physiology and metabolism is also very important to approach certain disorders in energy substrate metabolism.  相似文献   

10.
    
The epicardium has recently been identified as an active and essential element of cardiac development. Recent reports have unveiled a variety of functions performed by the embryonic epicardium, as well as the cellular and molecular mechanisms regulating them. However, despite its developmental importance, a number of unsolved issues related to embryonic epicardial biology persist. In this review, we will summarize our current knowledge about (i) the ontogeny and evolution of the epicardium, including a discussion on the evolutionary origins of the proepicardium (the epicardial primordium), (ii) the nature of epicardial–myocardial interactions during development, known to be essential for myocardial growth and maturation, and (iii) the contribution of epicardially derived cells to the vascular and connective tissue of the heart. We will finish with a note on the relationships existing between the primordia of the viscera and their coelomic epithelial lining. We would like to suggest that at least a part of the properties of the embryonic epicardium are shared by many other coelomic cell types, such that the role of epicardium in cardiac development is a particular example of a more general mechanism for the contribution of coelomic and coelomic-derived cells to the morphogenesis of organs such as the liver, kidneys, gonads or spleen.  相似文献   

11.
12.
    
Persistent cardiac Ca2+/calmodulin‐dependent Kinase II (CaMKII) activation was considered to promote heart failure (HF) development, some studies believed that CaMKII was a target for therapy of HF. However, CaMKII was an important mediator for the ischaemia‐induced coronary angiogenesis, and new evidence confirmed that angiogenesis inhibited cardiac remodelling and improved heart function, and some conditions which impaired angiogenesis aggravated ventricular remodelling. This study aimed to investigate the roles and the underlying mechanisms of CaMKII inhibitor in cardiac remodelling. First, we induced cardiac remodelling rat model by ISO, pre‐treated by CaMKII inhibitor KN‐93, evaluated heart function by echocardiography measurements, and performed HE staining, Masson staining, Tunel staining, Western blot and RT‐PCR to test cardiac remodelling and myocardial microvessel density; we also observed ultrastructure of cardiac tissue with transmission electron microscope. Second, we cultured HUVECs, pre‐treated by ISO and KN‐93, detected cell proliferation, migration, tubule formation and apoptosis, and carried out Western blot to determine the expression of NOX2, NOX4, VEGF, VEGFR2, p‐VEGFR2 and STAT3; mtROS level was also measured. In vivo, we found KN‐93 severely reduced myocardial microvessel density, caused apoptosis of vascular endothelial cells, enhanced cardiac hypertrophy, myocardial apoptosis, collagen deposition, aggravated the deterioration of myocardial ultrastructure and heart function. In vitro, KN‐93 inhibited HUVECs proliferation, migration and tubule formation, and promoted apoptosis of HUVECs. The expression of NOX2, NOX4, p‐VEGFR2 and STAT3 were down‐regulated by KN‐93; mtROS level was severely reduced by KN‐93. We concluded that KN‐93 impaired angiogenesis and aggravated cardiac remodelling and heart failure via inhibiting NOX2/mtROS/p‐VEGFR2 and STAT3 pathways.  相似文献   

13.
Bao GC  Wang JG  Jong A 《FEBS letters》2006,580(15):3687-3693
Cip/Kip family protein p21, a cyclin-dependent kinase (CDK) inhibitor, is directly transactivated by retinoic acid receptor alpha (RARalpha) upon retinoic acid (RA):RARalpha binding. Yet the role of p21 upregulation by RA in lymphoma cells remains unknown. Here, we show that, in human pre-B lymphoma Nalm6 cells, RA-induced proliferation inhibition results from massive cell death characterized by apoptosis. Upregulated p21 by RA accompanies caspase-3 activation and precedes the occurrence of apoptosis. p21 induction leads to increased p21 complex formation with cyclin E/CDK2, which occurs when cyclin E and CDK2 levels remain constant. CDK2 can alternatively promote apoptosis, but the mechanisms remain unknown. Data presented here suggest a novel RA-signaling, by which RA-induced p21 induction and complex formation with cyclin E/CDK2 diverts CDK2 function from normally driving proliferation to alternatively promoting apoptosis.  相似文献   

14.
    
Resident cardiac progenitor cells (CPCs) have gained attention in cardiac regenerative medicine primarily due to their paracrine activity. In our current study we determined the role of pathological conditions such as heart failure on the autocrine-paracrine action of stem cell antigen-1 (Sca-1) expressing CPC. This comparative secretome profiling of Sca-1+ cells derived from transgenic heart failure (αMHC–cyclin-T1/Gαq overexpression [Cyc] cells) versus healthy (wild-type [Wt] cells) mice, achieved via mass-spectrometric quantification, enabled the identification of over 700 proteins. Our results demonstrate that the heart failure milieu caused a 2-fold enrichment of extracellular matrix proteins (ECM) like biglycan, versican, collagen XII, and angiogenic factors like heparan sulfate proteoglycan 2, plasminogen activator inhibitor 1 in the secretome. We further elucidated the direct influence of the secretome on the functional behavior of Sca-1 + cells via in vitro tube forming assay. Secreted factors present in the diseased milieu induced tube formation in Cyc cells (1.7-fold; p < 0.01) when compared with Wt cells after 24 hr of exposure. The presence of conditioned media moderately increased the proliferation of Cyc cells but had a more pronounced effect on Wt cells. Overall, these findings revealed global modifications in the secretory activity of adult Sca-1 + cells in the heart failure milieu. The secretion of ECM proteins and angiogenic factors, which are crucial for cardiac remodeling and recovery, was notably enriched in the supernatant of Cyc cells. Thus, during heart failure the microenvironment of Sca-1 + cells might favor angiogenesis and proliferation suggesting their potential to recover the damaged heart.  相似文献   

15.
16.
    
BACKGROUND: Conflicting findings with regard to the teratogenic risks of first trimester use of paroxetine have prompted the FDA, Health Canada, and the manufacturer of the drug to issue warnings against its use during pregnancy. Given that untreated depression during pregnancy can lead to deleterious effect on the mother and her unborn fetus, data on the relationship between the dose and the range of malformations is warranted. This study attempts to quantify the association between first trimester exposure to paroxetine and congenital cardiac malformations, adjusting for possible confounders, and to quantify the dose-response relationship between paroxetine use and cardiac defects. METHODS: The Medication and Pregnancy registry was used. This population-based registry was built by linking three administrative databases (RAMQ, Med-Echo, and ISQ), and includes all pregnancies in Quebec between 01/01/1997 and 06/30/2003. Date of entry in the registry is the date of the first day of the last menstrual period. To be eligible for this study, women had to: 1) be 15-45 years of age at entry; 2) be covered by the RAMQ drug plan >or=12 months before and during pregnancy; 3) be using only one type of antidepressant during the first trimester; and 4) have a live birth. Two nested case-control studies were carried out comparing the prevalence of paroxetine use in the first trimester of pregnancy to the prevalence of other antidepressant exposures during the same time period. Cases were defined as: 1) any major malformations; or 2) any cardiac malformations diagnosed in the first year of life; controls were defined as no major or minor malformations. Multivariate logistic regression techniques were used to analyze data. RESULTS: Among the 1,403 women meeting inclusion criteria, 101 infants with major congenital malformations were identified; 24 had cardiac malformations. Adjusting for possible confounders, the use of paroxetine (odds ratio [OR] = 1.38, 95% confidence interval [CI] = 0.49-3.92), and the use of other SSRIs (OR = 0.89, 95% CI = 0.28-2.84) during the first trimester of pregnancy did not increase the risk of congenital cardiac malformations compared with the use of non-SSRI antidepressants. When considering the dose, however, a dose-response relationship was observed, thus women exposed to >25 mg/day of paroxetine during the first trimester of pregnancy were at increased risk of having an infant with major congenital malformations (adjusted [adj] OR = 2.23, 95% CI = 1.19, 4.17), or major cardiac malformations (adj OR = 3.07, 95% CI = 1.00, 9.42). CONCLUSIONS: Gestational exposure to paroxetine is associated with major congenital malformations and major cardiac malformations for only first trimester exposure above 25 mg/day.  相似文献   

17.
Vitamin A and its derivatives (retinoids) are critically important in the development and maintenance of multiple epithelial tissues, including skin, hair, and sebaceous glands, as shown by the detrimental effects of either vitamin A deficiency or toxicity. Thus, precise levels of retinoic acid (RA, active metabolite) are needed. These precise levels of RA are achieved by regulating several steps in the conversion of dietary vitamin A (retinol) to RA and RA catabolism. This review discusses the localization of RA synthesis to specific sites within the hair follicle and sebaceous gland, including their stem cells, during both homeostasis and disease states. It also discusses what is known about the specific roles of RA within the hair follicle and sebaceous gland. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.  相似文献   

18.
In order to gain a better understanding on the possible role of retinoic acid (RA) on human GH secretion, we have characterized the expression of its nuclear receptors in somatotropic adenoma cell extracts. By immunoblotting with rabbit polyclonal antibodies directed against RARα, β, and γ and RXRα and β, we could only detect the presence of RARα and RXRα proteins. The predominant expression of RXRα was confirmed at the mRNA level by Northern and slot-blot analysis. When then investigated the effect of RA on GH synthesis in cell culture of adenomatous somatotrophs. In cultured cells, RA (1 μM) stimulated GH secretion, increased intracellular GH content and GH mRNA levels within 72 h, suggesting a modulation of GH synthesis by RA. J. Cell. Biochem 65:25–31. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Abstract

All-trans-retinoic acid (ATRA) can regulate some specific genes expression in various tissue and cells via nuclear retinoic acid receptors (RARs), including three subtypes: retinoic acid receptor-alpha (RAR-α), retinoic acid receptor-beta (RAR-β) and retinoic acid receptor-gamma (RAR-γ). Podocyte injury plays a pivotal role in the progression of glomerulosclerosis (GS). This study was performed to study the potential signal pathway of ATRA in the expression of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9) in injury podocyte. Cells were divided into three groups: group of negative control (NC), group of injury podocyte induced by adriamycin (ADR) (AI) and group of ADR inducing podocyte injury model treated with ATRA (AA). The cells morphology changes were detected using microscope and scanning electron microscopy. MMP-2 and MMP-9 enzymic activity was detected using the gelatin zymography method. Protein and mRNA expressions of MMP-2, MMP-9, RAR-α, RAR-β and RAR-γ were measured by western-blot and real-time RT-PCR. Enzymatic activity of MMP-2 and MMP-9 in group AA was significantly enhanced compared to AI group after ATRA-treated 24?h (p?<?0.05). The protein and mRNA expressions of MMP-2/MMP-9 in group AA were significantly increased than those in group AI at both 12 and 24?h time points (p?<?0.05). Compared to group AI, RAR-α and RAR-γ protein/mRNA expressions of group AA were significantly increased at both 12 and 24?h time points (p?<?0.05). There was no difference for the expression of RAR-β between group AI and group AA (p?>?0.05). RAR-α protein level was positively correlated with MMP-2 or MMP-9 protein expression (p?<?0.05), and RAR-γ protein level was also positively correlated with MMP-2 or MMP-9 protein expression (p?<?0.05). In conclusion, ATRA may increase expression of MMP-2 and MMP-9 by the potential signal pathway of RAR-α and RAR-γ in injury podocyte induced by adriamycin, but not RAR-β.  相似文献   

20.
    
《Neuron》2022,110(24):4033-4035
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号