首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To be able to study the effect of mixing as well as any other parameter on productivity of algal cultures, we designed a lab‐scale photobioreactor in which a short light path (SLP) of (12 mm) is combined with controlled mixing and aeration. Mixing is provided by rotating an inner tube in the cylindrical cultivation vessel creating Taylor vortex flow and as such mixing can be uncoupled from aeration. Gas exchange is monitored on‐line to gain insight in growth and productivity. The maximal productivity, hence photosynthetic efficiency, of Chlorella sorokiniana cultures at high light intensities (1,500 μmol m?1 s?1) was investigated in this Taylor vortex flow SLP photobioreactor. We performed duplicate batch experiments at three different mixing rates: 70, 110, and 140 rpm, all in the turbulent Taylor vortex flow regime. For the mixing rate of 140 rpm, we calculated a quantum requirement for oxygen evolution of 21.2 mol PAR photons per mol O2 and a yield of biomass on light energy of 0.8 g biomass per mol PAR photons. The maximal photosynthetic efficiency was found at relatively low biomass densities (2.3 g L?1) at which light was just attenuated before reaching the rear of the culture. When increasing the mixing rate twofold, we only found a small increase in productivity. On the basis of these results, we conclude that the maximal productivity and photosynthetic efficiency for C. sorokiniana can be found at that biomass concentration where no significant dark zone can develop and that the influence of mixing‐induced light/dark fluctuations is marginal. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

2.
High annual microalgae productivities can only be achieved if solar light is efficiently used through the different seasons. During winter the productivity is low because of the light and temperature conditions. The productivity and photosynthetic efficiency of Chlorella sorokiniana were assessed under the worst-case scenario found during winter time in Huelva, south of Spain. The maximum light intensity (800?μmol photons m-2 s-1) and temperature (20°C) during winter were simulated in a lab-scale photobioreactor with a short light-path of 14?mm. Chemostat conditions were applied and the results were compared with a temperature-controlled situation at 38°C (optimal growth temperature for C. sorokiniana). When temperature was optimal the highest productivity was found at a dilution rate of 0.18 h-1 (P v?=?0.28?g Kg-1 h-1), and the biomass yield on light energy was high (Y x,E?=?1.2?g?mol-1 photons supplied). However, at suboptimal temperature, the specific growth rate of C. sorokiniana was surprisingly low, not being able to support continuous operation at a dilution rate higher than 0.02 h-1. The slow metabolism under suboptimal temperature resulted in a decline of the light energy requirements of the cells. Consequently, the maximum winter irradiance was experienced as excessive, leading to a low photosynthetic efficiency and productivity (Y x,E?=?0.5?g mol-1 photons supplied, P v?=?0.1?g Kg-1 h-1). At suboptimal temperature a higher carotenoid-to-chlorophyll ratio was observed indicating the activation of light-dissipating processes. We conclude that temperature control and/or light dilution during winter time will enhance the productivity.  相似文献   

3.
Net productivity and biomass night losses in outdoor chemostat cultures ofPhaeodactylum tricornutum were analyzed in two tubular airlift photobioreactors at different dilution rates, photobioreactor surface/volume ratios and incident solar irradiance. In addition, an approximate model for the estimation of light profile and average irradiance inside outdoor tubular photobioreactors was proposed. In both photobioreactors, biomass productivity increased with dilution rate and daily incident solar radiation except at the highest incident solar irradiances and dilution rates, when photoinhibition effect was observed in the middle of the day. Variation of estimated average irradiance vs mean incident irradiance showed two effects: first, the outdoor cultures are adapted to average irradiance, and second, simultaneous photolimitation and photoinhibition took place at all assayed culture conditions, the extent of this phenomena being a function of the (incident)1 irradiance and light regime inside the culture. Productivity ranged between 0.50 and 2.04 g L–1 d–1 in the tubular photobioreactor with the lower surface/volume ratio (S/V = 77.5 m–1) and between 1.08 and 2.76 g L–1 d–1 in the other (S/V = 122.0 m–1). The optimum dilution rate was 0.040 h–1 in both reactors. Night-time biomass losses were a function of the average irradiance inside the culture, being lower in TPB0.03 than TPB0.06, due to a better light regime in the first. In both photobioreactors, biomass night losses strongly decreased when the photoinhibition effect was pronounced. However, net biomass productivity also decreased due to lower biomass generation during the day. Thus, optimum culture conditions were obtained when photolimitation and photoinhibition were balanced.  相似文献   

4.
In this paper, the outdoor production of Botryococcus braunii in pilot-scale panel reactors (0.4?m3) is studied under uncontrolled conditions at a location close to the Atacama Desert (Chile). Discontinuous experiments were performed on different dates to determine the feasibility of the culture and the influence of environmental conditions on the system yield. Data showed that solar radiation is a major parameter in determining system yield, the average irradiance inside the culture determining both the growth rate and biomass productivity. A maximum specific growth rate of 0.09?day?1 and biomass productivity of 0.02?g?L?1?day?1 (dry weight) were measured in discontinuous mode, at an average irradiance of 60?μE?m?2?s?1. With respect to lipids, a productivity of 2.5?mg?L?1?day?1 was obtained under favourable growth conditions; no accumulation of lipids at the stationary phase was observed. To confirm this behaviour, a semicontinuous culture was performed at 0.04?day?1 in a larger reactor (1?m3). In this experiment, the biomass concentration and productivity was 0.3?g?L?1 and 0.015?g?L?1?day?1, respectively. The lipid content and productivity was 15.6% and 2.4?mg?L?1?day?1, respectively, the mean average irradiance inside the reactor being 60?μmol photons?m?2?s?1. The light path of the reactor determines the light availability, thus determining also the biomass concentration and productivity of the reactor once the dilution rate is fixed. Experimentally, biomass productivity of 0.015?g?L?1?day?1 was determined for a light path of 0.15?m, but this can be increased by more than three times for a light path of 0.1?m. These data confirm that this alga can be produced outdoors in a secure form, the culture yield improving when optimal conditions are applied, the data reported here establishing the starting point for the development of the process.  相似文献   

5.
Photosynthetic activity and temperature regulation of microalgal cultures (Chlorella vulgaris and Scenedesmus obliquus) under different irradiances controlled by a solar tracker and different cell densities were studied in outdoor flat panel photobioreactors. An automated process control unit regulated light and temperature as well as pH value and nutrient concentration in the culture medium. CO2 was supplied using flue gas from an attached combined block heat and power station. Photosynthetic activity was determined by pulse amplitude modulation fluorometry. Compared to the horizontal irradiance of 55 mol photons m?2 d?1 on a clear day, the solar tracked photobioreactors enabled a decrease and increase in the overall light absorption from 19 mol photons m?2 d?1 (by rotation out of direct irradiance) to 79 mol photons m?2 d?1 (following the position of the sun). At biomass concentrations below 1.1 g cell dry weight (CDW) L?1, photoinhibition of about 35 % occurred at irradiances of ≥1,000 μmol photons m?2 s?1 photosynthetic active radiation (PAR). Using solar tracked photobioreactors, photoinhibition can be reduced and at optimum biomass concentration (≥2.3 g CDW L?1), the culture was irradiated up to 2,000 μmol photons m?2 s?1 to overcome light limitation with biomass yields of 0.7 g CDW mol photons?1 and high photosynthetic activities indicated by an effective quantum yield of 0.68 and a maximum quantum yield of 0.80 (F v/F m). Overheating due to high irradiance was avoided by turning the PBR out of the sun or using a cooling system, which maintained the temperature close to the species-specific temperature optima.  相似文献   

6.
Upper limits of photosynthetic productivity and problems of scaling   总被引:1,自引:0,他引:1  
Some 1,370 W m?2 of light energy reaches the outer atmosphere of earth and on average only 240 W m?2 reaches the earth’s surface. Only a fraction of this is used to fix CO2 through photosynthesis, and efficiencies ranging from 0.1?8% for total irradiance have been reported. The theoretical maximum quantum efficiency of carbon fixation is 0.125 mol C (mol quanta)?1 which relates to a maximum productivity of about 12 g C m?2 day?1 or 29.8 g(dw) m?2 day?1. This could increase to a maximum of 200 g(dw) m?2 day?1 in intermittent light of high frequencies, which is on average eight times higher than the average measured under field conditions where rates approaching 25 g(dw) m?2 day?1 are considered high. Several possibilities exist for achieving higher yields and photosynthetic efficiencies, such as limiting the antennae sizes and pulsing light at frequencies equivalent to electron turnover in the electron transport chains of photosynthesis. Scaling from laboratory experimental conditions to large commercial photobioreactors is a major stumbling block and may be the single most important factor responsible for the overall low reported areal production rates.  相似文献   

7.
Light effect on cultures of microalgae has been studied mainly on single species cultures. Cyanobacteria have photosynthetic pigments that can capture photons of wavelengths not available to chlorophylls. A native Louisiana microalgae (Chlorella vulgaris ) and cyanobacteria (Leptolyngbya sp.) co‐culture was used to study the effects of light quality (blue–467 nm, green–522 nm, red–640 nm and white–narrow peak at 450 nm and a broad range with a peak at 550 nm) at two irradiance levels (80 and 400 μmol m?2 s?1) on the growth, species composition, biomass productivity, lipid content and chlorophyll‐a production. The co‐culture shifted from a microalgae dominant culture to a cyanobacteria culture at 80 μmol m?2 s?1. The highest growth for the cyanobacteria was observed at 80 μmol μmol m?2 s?1 and for the microalgae at 400 μmol m?2 s?1. Red light at 400 μmol m?2 s?1 had the highest growth rate (0.41 d?1), biomass (913 mg L?1) and biomass productivity (95 mg L?1 d?1). Lipid content was similar between all light colors. Green light had the highest chlorophyll‐a content (1649 μg/L). These results can be used to control the species composition of mixed cultures while maintaining their productivity.  相似文献   

8.
The effects of salinity, light intensity and sediment on Gracilaria tenuistipitata C.F. Chang & B.M. Xia on growth, pigments, agar production, and net photosynthesis rate were examined in the laboratory under varying conditions of salinity (0, 25 and 33 psu), light intensity (150, 400, 700 and 1000 µmol photons m?2 s?1) and sediment (0, 0.67 and 2.28 mg L?1). These conditions simulated field conditions, to gain some understanding of the best conditions for cultivation of G. tenuistipitata. The highest growth rate was at 25 psu, 700 µmol photons m?2 s?1 with no sediments, that provided a 6.7% increase in weight gain. The highest agar production (24.8 ± 3.0 %DW) was at 25 psu, 150–400 µmol photons m?2 s?1 and no sediment. The highest pigment contents were phycoerythrin (0.8 ± 0.5 mg g?1FW) and phycocyanin (0.34 ± 0.05 mg g?1 FW) produced in low light conditions, at 150 µmol photons m?2 s?1. The highest photosynthesis rate was 161.3 ± 32.7 mg O2 g?1 DW h?1 in 25 psu, 400 µmol photons m?2 s?1 without sediment in the short period of cultivation, (3 days) and 60.3 ± 6.7 mg O2 g?1 DW h?1 in 25 psu, 700 µmol photons m?2 s?1 without sediment in the long period of cultivation (20 days). The results indicated that salinity was the most crucial factor affecting G. tenuistipitata growth and production. This would help to promote the cultivation of Gracilaria cultivation back into the lagoon using these now determined baseline conditions. Extrapolation of the results from the laboratory study to field conditions indicated that it was possible to obtain two crops of Gracilaria a year in the lagoon, with good yields of agar, from mid‐January to the end of April (dry season), and from mid‐July to the end of September (first rainy season) when provided sediment was restricted.  相似文献   

9.
In aquaculture, particularly in bivalve hatcheries, the biochemical composition of algal diets has a strong influence on larval and post-larval development. Biochemical composition is known to be related to culture conditions, among which light represents a major source of variation. The effects of blue light on biochemical composition and photosynthetic rate of Isochrysis sp. (T-iso) CCAP 927/14 were assessed in chemostat at a single irradiance (300 μmol photons m?2 s?1) and compared with white light. Two different dilution (renewal) rates were also tested: 0.7 and 0.2 d?1. Relative carbohydrate content was lower under blue light than under white light at both dilution rates, whereas chlorophyll a and photosynthesis activity were higher. In contrast, carbon quota was lower and protein content higher under blue light than under white light, but only at 0.7 d?1. Despite these metabolic differences, cell productivity was not significantly affected by the spectrum. However, the nitrogen to carbon ratio and photosynthetic activity were higher at 0.7 d?1 than at 0.2 d?1, while carbon quota and carbohydrate content were lower. Our results show that blue light may influence microalgal metabolism without reducing productivity for a given growth rate, a result that should be of great interest for microalgal production in aquaculture.  相似文献   

10.
The kinetic study of Arthrospira platensis extracellular polymeric substances (EPS) production under different trophic modes??photoautotrophy (100???mol photons m?2?s?1), heterotrophy (1.5?g/L glucose), and mixotrophy (100???mol photons m?2?s?1 and 1.5?g/L glucose)??was investigated. Under photoautotrophic and heterotrophic conditions, the maximum EPS production 219.61?±?4.73 and 30.30?±?1.97?mg/L, respectively, occurred during the stationary phase. Under a mixotrophic condition, the maximum EPS production (290.50?±?2.21?mg/L) was observed during the early stationary phase. The highest specific EPS productivity (433.62?mg/g per day) was obtained under a photoautotrophic culture. The lowest specific EPS productivity (38.33?mg/g per day) was observed for the heterotrophic culture. The effects of glucose concentration, light intensity, and their interaction in mixotrophic culture on A. platensis EPS production were evaluated by means of 32 factorial design and response surface methodology. This design was carried out with a glucose concentration of 0.5, 1.5, and 2.5?g/L and at light levels of 50, 100, and 150???mol photons m?2?s?1. Statistical analysis of the model demonstrated that EPS concentration and EPS yield were mainly influenced by glucose concentration and that conditions optimizing EPS concentration were dissimilar from those optimizing EPS yield. The highest maximum predicted EPS concentration (369.3?mg/L) was found at 150???mol photons m?2?s?1 light intensity and 2.4?g/L glucose concentration, while the highest maximum predicted EPS yield (364.3?mg/g) was recorded at 115???mol photons m?2?s?1 light intensity and 1.8?g/L glucose concentration.  相似文献   

11.
As a result of mixing and light attenuation in a photobioreactor (PBR), microalgae experience light/dark (L/D) cycles that can enhance PBR efficiency. One parameter which characterizes L/D cycles is the duty cycle; it determines the time fraction algae spend in the light. The objective of this study was to determine the influence of different duty cycles on oxygen yield on absorbed light energy and photosynthetic oxygen evolution. Net oxygen evolution of Chlamydomonas reinhardtii was measured for four duty cycles (0.05, 0.1, 0.2, and 0.5) in a biological oxygen monitor (BOM). Oversaturating light flashes were applied in a square-wave fashion with four flash frequencies (5, 10, 50, and 100 Hz). Algae were precultivated in a turbidostat and acclimated to a low photon flux density (PFD). A photosynthesis–irradiance (PI) curve was measured under continuous illumination and used to calculate the net oxygen yield, which was maximal between a PFD of 100 and 200 μmol m?2?s?1. Net oxygen yield under flashing light was duty cycle-dependent: the highest yield was observed at a duty cycle of 0.1 (i.e., time-averaged PFD of 115 μmol m?2?s?1). At lower duty cycles, maintenance respiration reduced net oxygen yield. At higher duty cycles, photon absorption rate exceeded the maximal photon utilization rate, and, as a result, surplus light energy was dissipated which led to a reduction in net oxygen yield. This behavior was identical with the observation under continuous light. Based on these data, the optimal balance between oxygen yield and production rate can be determined to maximize PBR productivity.  相似文献   

12.
Photosynthesis and respiration of three Alaskan Porphyra species, P. abbottiae V. Krishnam., P. pseudolinearis Ueda species complex (identified as P. pseudolinearis” below), and P. torta V. Krishnam., were investigated under a range of environmental parameters. Photosynthesis versus irradiance (PI) curves revealed that maximal photosynthesis (Pmax), irradiance at maximal photosynthesis (Imax), and compensation irradiance (Ic) varied with salinity, temperature, and species. The Pmax of Porphyra abbottiae conchocelis varied between 83 and 240 μmol O2 · g dwt?1 · h?1 (where dwt indicates dry weight) at 30–140 μmol photons · m?2 · s?1 (Imax) depending on temperature. Higher irradiances resulted in photoinhibition. Maximal photosynthesis of the conchocelis of P. abbottiae occurred at 11°C, 60 μmol photons · m?2·s?1, and 30 psu (practical salinity units). The conchocelis of P. “pseudolinearis” and P. torta had similar Pmax values but higher Imax values than those of P. abbottiae. The Pmax of P. “pseudolinearis” conchocelis was 200–240 μmol O2 · g dwt?1 · h?1 and for P. torta was 90–240 μmol O2 · g dwt?1 · h?1. Maximal photosynthesis for P. “pseudolinearis” occurred at 7°C and 250 μmol photons · m?2 · s?1 at 30 psu, but Pmax did not change much with temperature. Maximal photosynthesis for P. torta occurred at 15°C, 200 μmol photons · m?2 · s?1, and 30 psu. Photosynthesis rates for all species declined at salinities <25 or >35 psu. Estimated compensation irradiances (Ic) were relatively low (3–5 μmol · photons · m?2 · s?1) for intertidal macrophytes. Porphyra conchocelis had lower respiration rates at 7°C than at 11°C or 15°C. All three species exhibited minimal respiration rates at salinities between 25 and 35 psu.  相似文献   

13.
Synechococcus sp. (PTCC 6021), a cyanobacterium species, was cultivated in an internally illuminated photobioreactor. The reactor was designed to achieve a monoseptic cultivation of the species. The goal was to study the growth–irradiance behavior of Synechococcus sp. (PTCC 6021). To accomplish this, different initial light irradiances were implemented inside the photobioreactor and the growth of the cells was monitored. It was observed that cell growth increased with higher light intensity until the photoinhibition occurrence at light irradiance higher than 250?μE?m?2?s?1. The maximum OD600, maximum growth rate, and biomass productivity increased, and hence the extinction coefficient decreased, with the increase in light irradiance before photoinhibition. The maximum optical density (OD600) of 5.91 was obtained with irradiance below 250?μE?m?2?s?1 during a growth period of 80 days. The modified Monod function could model the growth–irradiance of cells with satisfactory agreement with the experimental data. The comparison of growth–irradiance of the studied species with other photosynthetic organisms showed the same trend as for cyanobacteria with photoinhibition.  相似文献   

14.
Relationships between light intensity and chlorophyll concentration on hydrogen production were investigated in a sulfur‐deprived Chlamydomonas reinhardtii culture in a laboratory scale photobioreactor (PBR) equipped with two different stirring devices. In the first case, the culture was mixed using a conventional magnetic stir bar, while in the second it was mixed using an impeller equipped with five turbines. Experiments were carried out at 70 and 140 µmol photons m?2 s?1 in combination with chlorophyll concentrations of 12 and 24 mg L?1. A high light intensity (140 µmol photons m?2 s?1, supplied on both sides of the PBR) in combination with a low chlorophyll concentration (12 mg L?1) inhibited the production of hydrogen, in particular in the culture mixed with the stir bar. An optimal combination for hydrogen production was found when the cultures were exposed to 140 µmol photons m?2 s?1 (on both sides) and 24 mg L?1 of chlorophyll. Under these conditions, the hydrogen production output rate reached about 120 mL L?1 in the culture mixed with the stir bar, and rose to about 170 mL L?1 in the one mixed with the impeller. These outputs corresponded to a mean light conversion efficiency of 0.56% and 0.81%, respectively. However, the efficiency increased to 1.08% and 1.64%, respectively, when maximum hydrogen rates were considered. The better performance of the dense cultures mixed with an impeller was mainly attributed to an intermittent illumination pattern to which the cells were subjected (time cycles within 50–100 ms) which influenced the hydrogen production (1) directly, by providing the PSII with a higher production of electrons for the hydrogenase and (2) indirectly, through a higher synthesis of carbohydrates. The fluid dynamics in the PBR equipped with the impeller was characterized. The better mixing state achieved in the PBR of the new configuration makes it a useful tool for studying the hydrogen production process involving photosynthetic microorganisms, and provides a better insight into the physiology of the process. Biotechnol. Bioeng. 2009; 104: 76–90 © 2009 Wiley Periodicals, Inc.  相似文献   

15.
The productivity of a vertical outdoor photobioreactor was quantitatively assessed and compared to a horizontal reactor. Daily light cycles in southern Spain were simulated and applied to grow the microalgae Chlorella sorokiniana in a flat panel photobioreactor.The maximal irradiance around noon differs from 400 μmol photons m−2 s−1 in the vertical position to 1800 μmol photons m−2 s−1 in the horizontal position. The highest volumetric productivity was achieved in the simulated horizontal position, 4 g kg culture−1 d−1. The highest photosynthetic efficiency was found for the vertical simulation, 1.3 g of biomass produced per mol of PAR photons supplied, which compares favorably to the horizontal position (0.85 g mol−1) and to the theoretical maximal yield (1.8 g mol−1). These results prove that productivity per unit of ground area could be greatly enhanced by placing the photobioreactors vertically.  相似文献   

16.
The cryptophyte Rhodomonas salina is widely used as feed for copepod cultures. However, culturing conditions to obtain high-quality algae have not yet been efficiently optimized. Therefore, we aimed to develop a cultivation protocol for R. salina to optimize its nutritional value and provide technical recommendations for later large-scale production in algal photobioreactors. We studied photosynthesis, growth, pigments, fatty acid (FA) and free amino acid (FAA) composition of R. salina cultured at different irradiances (10–300 μmol photons m?2 s?1) and nutrient availability (deficiency and excess). The optimal range of irradiance for photosynthesis and growth was 60–100 μmol photons m?2 s?1. The content of chlorophylls a and c decreased with increasing irradiance while phycoerythrin peaked at irradiances of 40–100 μmol photons m?2 s?1. The total FA content was maximal at optimal irradiances for growth, especially under nutrient deficiency. However, highly unsaturated fatty acids, desired components for copepods, were higher under nutrient excess. The total FAA content was highest at limiting irradiances (10–40 μmol photons m?2 s?1) but a better composition with a higher fraction of essential amino acids was obtained at saturated irradiances (60–140 μmol photons m?2 s?1). These results demonstrate that quality and quantity of FA and FAA of R. salina can be optimized by manipulating the irradiance and nutrient conditions. We suggest that R. salina should be cultivated in a range of irradiance 60–100 μmol photons m?2 s?1 and nutrient excess to obtain algae with high production and a balanced biochemical composition as feed for copepods.  相似文献   

17.
The rates of net photosynthesis as a function of irradiance and temperature were determined for gametophytes and embryonic sporophytes of the kelp, Macrocystis pyrifera (L.) C. Ag. Gametophytes exhibited higher net photosynthetic rates based on oxygen and pH measurements than their derived embryonic sporophytes, but reached light saturation at comparable irradiance levels. The net photosynthesis of gametophytes reached a maximum of 66.4 mg O2 g dry wt?1 h?1 (86.5 mg CO2 g dry wt?1 h?1), a value approximately seven times the rate reported previously for the adult sporophyte blades. Gametophytes were light saturated at 70 μE m?2 s?1 and exhibited a significant decline in photosynthetic performance at irradiances 140 μE m?1 s?1. Embryonic sporophytes revealed a maximum photosynthetic capacity of 20.6 mg O2 g dry wt?1 h?1 (25.3 mg CO2 g dry wt?1 h?1), a rate about twice that reported for adult sporophyte blades. Embryonic sporophytes also became light saturated at 70 μE m?2 s?1, but unlike their parental gametophytes, failed to exhibit lesser photosynthetic rates at the highest irradiance levels studied; light compensation occurred at 2.8 μE m?2 s?1. Light-saturated net photosynthetic rates of gametophytes and embryonic sporophytes varied significantly with temperature. Gametophytes exhibited maximal photosynthesis at 15° to 20° C, whereas embryonic sporophytes maintained comparable rates between 10° and 20° C. Both gametophytes and embryonic sporophytes declined in photosynthetic capacity at 30° C. Dark respiration of gametophytes was uniform from 10° to 25° C, but increased six-fold at 30° C; the rates for embryonic sporophytes were comparable over the entire range of temperatures examined. The broader light and temperature tolerances of the embryonic sporophytes suggest that this stage in the life history of M. pyrifera is well suited for the subtidal benthic environment and for the conditions in the upper levels of the water column.  相似文献   

18.
The population of Undaria pinnatifida in its ecologic niche sustains itself in high temperature summer in the form of vegetative gametophytes, the haploid stage in its heteromorphic life cycle. Gametogenesis initiates when seawater temperature drops below the threshold levels in autumn in the northern hemisphere. Given that the temperature may fall into the appropriate range for gametogenesis, the level of irradiance determines the final destiny of a gametophytic cell, either undergoing vegetative cell division or initiating gametogenesis. In elucidating how vegetatively propagated gametophytes cope with changes of irradiance in gametogenesis, we carried out a series of culture experiments and found that a direct exposure to irradiance as high as 270 μmol photons m?2 s?1 was lethal to dim‐light (7–10 μmol photons m?2 s?1) adapted male and female gametophytes. This lethal effect was linearly corelated with the exposure time. However, dim‐light adapted vegetative gametophytes were shown to be able tolerate as high as 420 μmol photons m?2 s?1 if the irradiance was steadily increased from dim light levels (7–10 μmol photons m?2 s?1) to 90, 180 and finally 420 μmol photons m?2 s?1, respectively, at a minimum of 1–3 h intervals. Percentage of female gametophytic cells that turned into oogonia and were eventually fertilized was significantly higher if cultured at higher but not lethal irradiances. Findings of this investigation help to understand the dynamic changes of population size of sporophytic plants under different light climates at different site‐specific ecologic niches. It may help to establish specific technical details of manipulation of light during mass production of seedlings by use of vegetatively propagated gametophytes.  相似文献   

19.
Cell size has implications for the package effect in photon absorption as well as for metabolic scaling of metabolism. In this study, we have avoided species-related differences by using isolates of the marine planktonic diatom Coscinodiscus granii with cells of different sizes and grown at different light intensities to investigate their energy allocation strategies. To make full use of incident light, several fold variations in cellular chlorophyll a content were employed across cell size. This modulation of pigment-related light absorbance was deemed effective as similar light absorbing capacities were found in all treatments. Unexpected low values of O2 evolution rate at the highest irradiance level of 450 μmol photons m?2 s?1 were found in medium and large cells, regardless of more photons being absorbed under these conditions, suggesting the operation of alternative electron flows acting as electron sinks. The growth rate was generally larger at higher irradiance levels except for the large cells, in which growth slowed at 450 μmol photons m?2 s?1, suggesting that larger cells achieved a balance between growth and photoprotection by sacrificing growth rate when exposed to high light. Although the ratio of carbon demand to rates of uncatalysed CO2 diffusion to the cell surface reached around 20 in large cells grown under higher irradiance, the carbon fixation rate was not lowered, due to the presence of a highly effective carbon dioxide concentrating mechanism.  相似文献   

20.
Conventional acetone–butanol–ethanol (ABE) fermentation is severely limited by low solvent titer and productivities. Thus, this study aims at developing an improved Clostridium acetobutylicum strain possessing enhanced ABE production capability followed by process optimization for high ABE productivity. Random mutagenesis of C. acetobutylicum PJC4BK was performed by screening cells on fluoroacetate plates to isolate a mutant strain, BKM19, which exhibited the total solvent production capability 30.5% higher than the parent strain. The BKM19 produced 32.5 g L?1 of ABE (17.6 g L?1 butanol, 10.5 g L?1 ethanol, and 4.4 g L?1 acetone) from 85.2 g L?1 glucose in batch fermentation. A high cell density continuous ABE fermentation of the BKM19 in membrane cell‐recycle bioreactor was studied and optimized for improved solvent volumetric productivity. Different dilution rates were examined to find the optimal condition giving highest butanol and ABE productivities. The maximum butanol and ABE productivities of 9.6 and 20.0 g L?1 h?1, respectively, could be achieved at the dilution rate of 0.85 h?1. Further cell recycling experiments were carried out with controlled cell‐bleeding at two different bleeding rates. The maximum solvent productivities were obtained when the fermenter was operated at a dilution rate of 0.86 h?1 with the bleeding rate of 0.04 h?1. Under the optimal operational condition, butanol and ABE could be produced with the volumetric productivities of 10.7 and 21.1 g L?1 h?1, and the yields of 0.17 and 0.34 g g?1, respectively. The obtained butanol and ABE volumetric productivities are the highest reported productivities obtained from all known‐processes. Biotechnol. Bioeng. 2013; 110: 1646–1653. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号