首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rotavirus VP6 self-assembles into high order macrostructures useful as novel scaffolds for the construction of multifunctional hybrid nanobiomaterials. This application requires large quantities of high quality pure material with strict structural consistency. Strategies for obtaining high quality recombinant VP6 and different characterization techniques are explored and compared in this work. VP6 was expressed in the insect cell-baculovirus system. VP6 assemblies were selectively purified utilizing an ion exchange and size exclusion (SE) chromatography. Purification steps were monitored and characterized by dynamic light scattering (DLS), ELISA, SDS-PAGE, HPLC and Western blot. DLS showed that the initial ultrafiltration step removed small particles, the intermediate anion exchange chromatographic step completely removed the baculovirus, whereas the final size exclusion chromatography permitted the selective recovery of correctly assembled VP6 nanotubes and discrimination of non-assembled VP6, as confirmed by transmission electron microscopy. VP6 assembled into tubular structures with diameter of 75 nm and several nanometers in length. The purification yield was 20% of multimeric assemblies with a purity >98%. The resulting material was suitable for the production of functionalized hybrid nanobiomaterials through in situ synthesis of metallic nanoparticles.  相似文献   

2.
In this work, a facile one-pot reaction for the formation of metal nanoparticles in a water solution through the use of n-(2-aminoethyl)-3-aminosilanetriol is presented. This compound can be used to effectively reduce and complex metal salts into metal core nanoparticles coated with the compound. By controlling the concentrations of salt and silane one is able to control reaction rates, particle size, and nanoparticle coating. The effects of these changes were characterized through transmission electron microscopy (TEM), UV-Vis spectrometry (UV-Vis), Nuclear Magnetic Resonance spectroscopy (NMR) and Fourier Transform Infrared spectroscopy (FTIR). A unique aspect to this reaction is that usually silanes hydrolyze and cross-link in water; however, in this system the silane is water-soluble and stable. It is known that silicon and amino moieties can form complexes with metal salts. The silicon is known to extend its coordination sphere to form penta- or hexa-coordinated species. Furthermore, the silanol group can undergo hydrolysis to form a Si-O-Si silica network, thereby transforming the metal nanoparticles into a functionalized nanocomposites.  相似文献   

3.
Surface-enhanced Raman scattering (SERS) is a surface-sensitive technique that enhances Raman scattering by molecules adsorbed on rough metal surfaces. It is known that metal nanoparticles, especially gold and silver nanoparticles, exhibit great SERS properties, which make them very attractive for the development of biosensors and biocatalysts. On the other hand, the development of ecofriendly methods for the synthesis of metallic nanostructures has become the focus of research in several countries, and many microorganisms and plants have already been used to biosynthesize metallic nanostructures. However, the majority of these are pathogenic to plants or humans. Here, we report gold nanoparticles with good SERS properties, biosynthesized by Neurospora crassa extract under different environmental conditions, increasing Raman signals up to 40 times using methylene blue as a target molecule. Incubation of tetrachloroauric acid solution with the fungal extract at 60°C and a pH value of a) 3, b) 5.5, and c) 10 resulted in the formation of gold nanoparticles of a) different shapes like triangles, hexagons, pentagons etc. in a broad size range of about 10-200 nm, b) mostly quasi-spheres with some different shapes in a main size range of 6-23 nm, and c) only quasi-spheres of 3-12 nm. Analyses included TEM, HRTEM, and EDS in order to corroborate the shape and the elemental character of the gold nanoparticles, respectively. The results presented here show that these ‘green’ synthesized gold nanoparticles might have potential applicability in the field of biological sensing.  相似文献   

4.
Chitosan/alginate multilayers were fabricated using a spin‐coating method, and ZnS:Cu nanoparticles were generated within the network of two natural polysaccharides, chitosan and sodium alginate. The synthesized nanoparticles were characterized using an X‐ray diffractometer (XRD), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). The results showed that cubic zinc blende‐structured ZnS:Cu nanoparticles with an average crystal size of ~ 3 nm were uniformly distributed. UV–vis spectra indicate a large quantum size effect and the absorption edge for the ZnS:Cu nanoparticles slightly shifted to longer wavelengths with increasing Cu ion concentrations. The photoluminescence of the Cu‐doped ZnS nanoparticles reached a maximum at a 1% doping level. The ZnS:Cu nanoparticles form and are distributed uniformly in the composite multilayer films with a surface average height of 25 nm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A novel enzymatic hydrogen peroxide sensor was successfully fabricated based on the nanocomposites containing of Ag/C nanocables and gold nanoparticles (AuNPs). Ag/C nanocables have been synthesized by a hydrothermal method and then AuNPs were assembled on the surface of Ag/C nanocables. The nanocomposites were confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDS). The above nanocomposites have satisfactory chemical stability and excellent biocompatibility. Cyclic voltammetry (CV) was used to evaluate the electrochemical performance of the Ag/C/Au nanocomposites at glassy carbon electrode (GCE). The results indicated that the Ag/C/Au nanocomposites exhibited excellent electrocatalytic activity to the reduction of H(2)O(2). It offered a linear range of 6.7×10(-9) to 8.0×10(-6) M, with a detection limit of 2.2×10(-9) M. The apparent Michaelis-Menten constant of the biosensor was 51.7×10(-6) M. These results indicated that Ag/C/Au nanocomposites have potential for constructing of a variety of electrochemical biosensors.  相似文献   

6.
This study used ionotropic crosslinking to synthesize chitosan-tripolyphosphate chelating resin beads, which are used to fabricate zero-valent copper-chitosan nanocomposites. The copper nanoparticles were dispersed on chitosan-tripolyphosphate beads, and were thus able to maintain appropriate dispersion and stability, which greatly improves their applicability. The fabrication process contains two steps: using chitosan-tripolyphosphate beads to adsorb Cu(II) ions, followed by chemical reduction to reduce Cu(II) ions to zero-valent copper. This study explored the adsorption of synthesized chitosan-tripolyphosphate beads to Cu(II) ions, and used SEM/EDS, XPS, and TEM to examine the properties of zero-valent copper-chitosan nanocomposites. The results showed that, the adsorption behavior of hexavalent chromium from aqueous solution onto fabricated nanocomposites has better adsorption capacity than that of the chitosan-tripolyphosphate beads.  相似文献   

7.
In the present study, we report the preparation of semi interpenetrating hydrogel networks (SIHNs) based on cross-linked poly (acrylamide) prepared through an optimized rapid redox-solution polymerization with N,N′-methylenebisacrylamide (MBA) in presence of three different carbohydrate polymers, namely gum acacia (GA), carboxymethylcellulose (CMC) and starch (SR). Highly stable and uniformly distributed silver nanoparticles have been obtained with hydrogel networks as nanoreactors via in situ reduction of silver nitrate (AgNO3) using sodium borohydride (NaBH4) as reducing agent. The formation of silver nanoparticles has been confirmed with ultraviolet visible (UV–vis) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) analyses. Thermogravimetric analysis (TGA) provides the amounts of silver nanoparticles exist in the hydrogel networks. Transmission electron microscopy (TEM) results demonstrate that acacia employed hydrogels have regulated the silver nanoparticles size to 2–5 nm where as CMC and starch composed hydrogel networks result in a heterogeneous size from 2 to 20 nm. The preliminary antibacterial activity performed to these hydrogel–silver nanocomposites.  相似文献   

8.
In the present investigation, the silver-bionanocomposite with fcc structured Ag-nanocrystals was synthesized using the fungus, Cylindrocladium floridanum through a novel, environmentally benign biological process. Silver-bionanocomposite was systematically characterized by UV-Vis spectroscopy, XRD, SEM, EDX, and TEM techniques. TEM analysis of mycelia confirmed the presence of silver nanoparticles (AgNPs) on the outer surface of the cell wall and inner of cytoplasmic membrane of the fungus, when cultured in aqueous solution of AgNO3 at 30 °C for a period of 7 days in static condition. Additionally, it was observed that bionanocomposite with AgNPs functions as an efficient heterogeneous catalyst in the degradation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP), in the presence of reducing agent, sodium borohydride which was reflected by UV-Vis spectra of the catalytic reaction kinetics. This is the first report of the silver-bionanocomposite using fungus, Cy. floridanum, heterogeneously catalyzing the reduction of a toxic pollutant, 4-NP to 4-AP.  相似文献   

9.
SV40 is a small, non enveloped DNA virus with an icosahedral capsid of 45 nm. The outer shell is composed of pentamers of the major capsid protein, VP1, linked via their flexible carboxy-terminal arms. Its morphogenesis occurs by assembly of capsomers around the viral minichromosome. However the steps leading to the formation of mature virus are poorly understood. Intermediates of the assembly reaction could not be isolated from cells infected with wt SV40. Here we have used recombinant VP1 produced in insect cells for in vitro assembly studies around supercoiled heterologous plasmid DNA carrying a reporter gene. This strategy yields infective nanoparticles, affording a simple quantitative transduction assay. We show that VP1 assembles under physiological conditions into uniform nanoparticles of the same shape, size and CsCl density as the wild type virus. The stoichiometry is one DNA molecule per capsid. VP1 deleted in the C-arm, which is unable to assemble but can bind DNA, was inactive indicating genuine assembly rather than non-specific DNA-binding. The reaction requires host enzymatic activities, consistent with the participation of chaperones, as recently shown. Our results demonstrate dramatic cooperativity of VP1, with a Hill coefficient of approximately 6. These findings suggest that assembly may be a concerted reaction. We propose that concerted assembly is facilitated by simultaneous binding of multiple capsomers to a single DNA molecule, as we have recently reported, thus increasing their local concentration. Emerging principles of SV40 assembly may help understanding assembly of other complex systems. In addition, the SV40-based nanoparticles described here are potential gene therapy vectors that combine efficient gene delivery with safety and flexibility.  相似文献   

10.
In this work, a novel route to synthesize biomolecule/metal composite nanospheres is proposed. This method combines the advantages that the silver nanoparticles and bovine serum albumin (BSA) can be precipitated simultaneously from water-in-oil microemulsion by the easy control of CO2 pressure, which was revealed by our high-pressure UV-VIS spectra. The Ag/BSA nanocomposites were successfully prepared using this method. The transmission electronic microscopy (TEM) if the obtained nanocomposites shows that the small-sized Ag nanaoparticles are immobilized by the BSA nanospheres, and the phase structure was characterized by X-ray diffraction (XRD). The Ag/BSA nanocomposites show absorption properties at a wavelength around 435 nm.  相似文献   

11.
Maayan G  Liu LK 《Biopolymers》2011,96(5):679-687
The interaction between biopolymers and metal nanoparticles (AgNPs) is a key element in the development of biomimetic nanomaterials with applications in catalysis, delivery, and recognition. Here we report a facile method for the functionalization of AgNPs by N-substituted glycine oligomers, "peptoids." Based on the established affinity between phenanthroline ligand and Ag(0), we synthesized a peptoid bearing 1,10-phenanthroline at the N-terminus (PHP). Treatment of AgNPs that were pre-stabilized by citrate ions, with PHP, leads to the formation of aggregates as suggested by UV-vis spectroscopy. Transmission electron microscopy (TEM) revealed that the replacement of citrate ions by PHP yields spherical assemblies of AgNPs. These peptoids/AgNPs hybrids, as well as the ability of functional biomimetic oligomers to mediate the assembly of metal nanoparticles, hold potential for applications in sensor materials, biology, and catalysis.  相似文献   

12.
A green approach is described that generates bulk quantities of nanocomposites containing transition metals such as Cu, Ag, In, and Fe at room temperature using a biodegradable polymer, carboxymethyl cellulose (CMC), by reacting respective metal salts with the sodium salt of CMC in aqueous media. These nanocomposites exhibit broader decomposition temperatures when compared with control CMC, and Ag-based CMC nanocomposites exhibit a luminescent property at longer wavelengths. The noble metals such as Au, Pt, and Pd do not react at room temperature with aqueous solutions of CMC, but do so rapidly under microwave irradiation (MW) conditions at 100 degrees C. This environmentally benign approach, which provides facile entry to the production of multiple shaped noble nanostructures without using any toxic reducing agent such as sodium borohydride (NaBH4), hydroxylamine hydrochloride, and so forth, and/or a capping/surfactant agent, and which uses a benign biodegradable polymer CMC, could find widespread technological and medicinal applications. The ensuing nanocomposites derived at room temperature and MW conditions were characterized using scanning electron microscopy, transmission electron microscopy, infrared spectroscopy, UV-visible spectroscopy, X-ray mapping, energy-dispersive analysis, and thermogravimetric analysis.  相似文献   

13.
A stepwise seeded growth route for the preparation of silver nanoparticles (AgNPs) is reported. In the process, silver nitrate was used as a precursor, with sodium borohydride as a reducing agent and trisodium citrate as both a reductant and stabilizer. The AgNPs were characterized using several methods, including UV–vis spectroscopy, X‐ray diffraction and transmission electron microscopy. The prepared AgNPs were quasi‐spherical and crystalline, with an average diameter of 21 nm. Interactions between the AgNPs and bovine serum albumin (BSA) were investigated using UV–vis, fluorescence spectroscopy and synchronous fluorescence spectroscopy (SFS). It was proved that the quenching mechanism is a static process. The binding constants and number of binding sites were calculated. The thermodynamic parameters implied that the binding process was spontaneous and the main driving force of the interaction was electrostatic. The results of the SFS indicated that the conformational change of BSA was induced by AgNPs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
One of the most important challenges in tissue engineering research is the development of biomimetic materials. In this present study, we have investigated the effect of the titanium dioxide (TiO2) nanoparticles on the properties of electrospun mats of poly (hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), to be used as scaffold. The morphology of electrospun fibers was observed by scanning electron microscopy (SEM). Both pure PHBV and nanocomposites fibers were smooth and uniform. However, there was an increase in fiber diameter with the increase of TiO2 concentration. Thermal properties of PHBV and nanocomposite mats were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). DSC analysis showed that the crystallization temperature for PHBV shifts to higher temperature in the presence of the nanoparticles, indicating that TiO2 nanoparticles change the process of crystallization of PHBV due to heterogeneous nucleation effect. TGA showed that in the presence of the nanoparticles, the curves are shifted to lower temperatures indicating a decreasing in thermal stability of nanocomposites compared to pure PHBV. To produce scaffolds for tissue engineering, it is important to evaluate the biocompatibility of the material. Cytotoxicity assay showed that TiO2 nanoparticles were not cytotoxic for cells at the concentration used to synthesize the mats. The proliferation of cells on the mats was evaluated by the MTT assay. Results showed that the nanocomposite samples increased cell proliferation compared to the pure PHBV. These results indicate that continuous electrospun fibrous scaffolds may be a good substrate for tissue regeneration.  相似文献   

15.
The inhibitively high cost of the noble‐metal‐containing materials has become a major obstacle for the large‐scale application of rechargeable zinc‐air batteries (ZABs). To solve this problem in a practical way, a green and scalable method to prepare sandwich‐like reduced graphene oxide /carbon black/amorphous cobalt borate nanocomposites (rGO/CB/Co‐Bi) is reported. These composites are shown to be a highly efficient and robust bifunctional electrocatalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this system, the spontaneous assembly of the GO sheet and CB nanoparticles is demonstrated by noncovalent interactions to build the sandwich‐like structure with hierarchical pore distribution. The impressive ORR and OER activities of the obtained nanocomposite are attributed to the high conductivity, large surface area, and the hierarchically porous channels. With room‐temperature synthesis and significant activities shown in the demonstrative battery test, the prepared nanocomposite can potentially serve as an alternative for noble‐metal‐based rechargeable ZAB cathode materials.  相似文献   

16.
In this study, magnetic nanoparticles (Fe3O4, magnetite) with immobilized metal affinity ligands (MSS) were prepared and characterized by X‐ray diffraction (XRD), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), and vibrating‐sample magnetometer (VSM) methods for purification and immobilization of the histidine‐tagged recombinant benzoylformate decarboxylase (BFD). The MSS support was shown to be eligible for selective binding of HIS‐tagged BFD by SDS‐page analysis. Loading capacity of the MSS support was determined as 43.6 ± 1.1 mg/g. The regeneration ability for protein binding was also studied. An immobilized BFD was tested to catalyze benzoin condensation and representative cross acyloin reaction. Conversion and enantiomeric excess values were comparable with that of free enzyme catalyzed reactions. Chirality 25:415–421, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
目的:重组表达肠道病毒71型(EV71)外壳蛋白VP1全长,用于研制血清学检测试剂和疫苗研发。方法:在获得EV71全长基因并测序正确的基础上,将外壳蛋白VP1全长基因克隆到表达载体pET28a(+)上,构建重组表达质粒pET28a(+)/VP1,转化大肠杆菌BL21,IPTG诱导表达,利用Ni2+亲和层析柱对重组蛋白进行纯化,采用双抗原夹心检测技术评价重组抗原与27份EV71抗体阳性血清和18份阴性血清的反应情况。结果:重组EV71-VP1蛋白在大肠杆菌中诱导6 h后可获得高效表达,能与27份EV71抗体阳性血清中的21份发生阳性反应,EV71双抗原夹心检测与中和血清测试结果具有很好的一致性(P0.05)。结论:实现了肠道病毒71型外壳蛋白VP1的高效表达,为肠道病毒71型诊断试剂和疫苗的研究奠定了基础。  相似文献   

18.
As part of the desire to save the environment through “green” chemistry practices, we herein report an environmentally benign synthesis of silver nanoparticles (Ag-NPs) using cellulose extracted from an environmentally problematic aquatic weed, water hyacinth (WH), as both reducing and capping agent in an aqueous medium. By varying the pH of the solution and reaction time, the temporal evolutions of the optical and morphological properties of the as-synthesised Ag-NPs were investigated. The as-synthesised cellulose capped silver nanoparticles (C–Ag-NPs) were characterised using Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible spectroscopy (UV–vis), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The maximum surface plasmon resonance (SPR) peak decreased as the pH increased indicating that an increase in the pH of the solution favoured the formation of smaller particles. In addition, instantaneous change in the colour of the solution from colourless to brown within 5 min at pH 11 showed that the rate of reduction is faster at this pH compared to those at lower pH. The TEM micrographs showed that the materials are small, highly monodispersed and spherical in shape. The average particle mean diameters were calculated to be 5.69 ± 5.89 nm, 4.53 ± 1.36 nm and 2.68 ± 0.69 nm nm at pH 4, 8 and 11 respectively. The HRTEM confirmed the crystallinity of the material while the FTIR spectra confirmed the capping of the as-synthesised Ag-NPs by the cellulose. It has been shown therefore that based on this synthetic method, this aquatic plant can be used to the advantage of mankind.  相似文献   

19.
Protein nanoparticles such as virus‐like particles (VLPs) can be obtained by recombinant protein production of viral capsid proteins and spontaneous self‐assembling in cell factories. Contrarily to infective viral particles, VLPs lack infective viral genome while retaining important viral properties like cellular tropism and intracellular delivery of internalized molecules. These properties make VLPs promising and fully biocompatible nanovehicles for drug delivery. VLPs of human JC virus (hJCV) VP1 capsid protein produced in Escherichia coli elicit variable hemagglutination properties when incubated at different NaCl concentrations and pH conditions, being optimal at 200 mM NaCl and at pH range between 5.8 and 7.5. In addition, the presence or absence of chaperone DnaK in E. coli cells influence the solubility of recombinant VP1 and the conformational quality of this protein in the VLPs. The hemagglutination ability of hJCV VP1 VLPs contained in E. coli cell extracts can be modulated by buffer composition in the hemagglutination assay. It has been also determined that the production of recombinant hJCV VP1 in E. coli is favored by the absence of chaperone DnaK as observed by Western Blot analysis in different E. coli genetic backgrounds, indicating a proteolysis targeting role for DnaK. However, solubility is highly compromised in a DnaK? E. coli strain suggesting an important role of this chaperone in reduction of protein aggregates. Finally, hemagglutination efficiency of recombinant VP1 is directly related to the presence of DnaK in the producing cells. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:744–748, 2014  相似文献   

20.
Rational design and exploration of robust and low‐cost bifunctional oxygen reduction/evolution electrocatalysts are greatly desired for metal–air batteries. Herein, a novel high‐performance oxygen electrode catalyst is developed based on bimetal FeCo nanoparticles encapsulated in in situ grown nitrogen‐doped graphitic carbon nanotubes with bamboo‐like structure. The obtained catalyst exhibits a positive half‐wave potential of 0.92 V (vs the reversible hydrogen electrode, RHE) for oxygen reduction reaction, and a low operating potential of 1.73 V to achieve a 10 mA cm?2 current density for oxygen evolution reaction. The reversible oxygen electrode index is 0.81 V, surpassing that of most highly active bifunctional catalysts reported to date. By combining experimental and simulation studies, a strong synergetic coupling between FeCo alloy and N‐doped carbon nanotubes is proposed in producing a favorable local coordination environment and electronic structure, which affords the pyridinic N‐rich catalyst surface promoting the reversible oxygen reactions. Impressively, the assembled zinc–air batteries using liquid electrolytes and the all‐solid‐state batteries with the synthesized bifunctional catalyst as the air electrode demonstrate superior charging–discharging performance, long lifetime, and high flexibility, holding great potential in practical implementation of new‐generation powerful rechargeable batteries with portable or even wearable characteristic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号