首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
2.
This study describes the effects of a static magnetic field (SMF) on cell growth and DNA integrity of human umbilical vein endothelial cells (HUVECs). Fast halo assay was used to investigate nuclear damage; quantitative polymerase chain reaction (QPCR), standard PCR, and real‐time PCR were used to evaluate mitochondrial DNA integrity, content, and gene expression. HUVECs were continually exposed to a 300 mT SMF for 4, 24, 48, and 72 h. Compared to control samples (unexposed cultures) the SMF‐exposed cells did not show a statistically significant change in their viability. Conversely, the static field was shown to be significant after 4 h of exposure, inducing damage on both the nuclear and mitochondrial levels, reducing mitochondrial content and increasing reactive oxygen species. Twenty‐four hours of exposure increased mitochondrial DNA content as well as expression of one of the main genes related to mitochondrial biogenesis. No significant differences between exposed and sham cultures were found after 48 and 72 h of exposure. The results suggest that a 300 mT SMF does not cause permanent DNA damage in HUVECs and stimulates a transient mitochondrial biogenesis. Bioelectromagnetics 31:630–639, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
4.
5.
6.
B. Tenuzzo 《Tissue & cell》2009,41(3):169-179
An increasing number of evidence indicates that static magnetic fields (SMFs) are capable of altering apoptosis, mainly through modulation of Ca2+ influx. Here we present data that suggest apoptotic-related gene expression as an alternative pathway, through which exposure to 6 milliTesla (mT) SMF can interfere with apoptosis. Exposure to 6 mT SMF affects the apoptotic rate (spontaneous and drug-induced) and [Ca2+]i in isolated human lymphocytes; the aged cells are more susceptible to exposure than fresh ones. The exposure to 6 mT exerted a protective effect on chemical or physical-induced apoptosis, irrespective of the age of the cells.The investigation of the gene expression of bcl-2, bax, p53 and hsp70 in freshly isolated and in culture-aged human lymphocytes indicates that these genes are modulated by SMF exposure in the experimental conditions used, in a gene-, age- and time-dependent manner. The exposure of isolated lymphocytes to SMF for up to 24 h modulated increased bax and p53 and decreased hsp70, and bcl-2. The amount of increment and/or decrement of the proteins varied for each gene examined and was independent of the apoptotic inducers. Finally, the same stress applied to freshly isolated or aged lymphocytes resulted in different modulation of bcl-2, bax and hsp70.  相似文献   

7.
8.
9.
Recent research demonstrated that exposure of mice to both inhomogeneous (3–477 mT) and homogeneous (145 mT) static magnetic fields (SMF) generated an analgesic effect toward visceral pain elicited by the intraperitoneal injection of 0.6% acetic acid. In the present work, we investigated behavioral responses such as writhing, entry avoidance, and site preference with the help of a specially designed cage that partially protruded into either the homogeneous (ho) or inhomogeneous (inh) SMF. Aversive effects, cognitive recognition of analgesia, and social behavior governed mice in their free locomotion between SMF and sham sides. The inhibition of pain response (I) for the 0–5, 6–20, and 21–30 min periods following the challenge was calculated by the formula I = 100 (1 ? x/y) in %, where x and y represent the number of writhings in the SMF and sham sides, respectively. In accordance with previous measurements, an analgesic effect was induced in exposed mice (Iho = 64%, P < 0.0002 and Iinh = 62%, P < 0.002). No significant difference was found in the site preference (SMFho, inh vs. sham) indicating that SMF is neither aversive nor favorable. Comparison of writhings observed in the sham versus SMF side of the cage revealed that SMF exposure resulted in significantly fewer writhings than sham (Iho = 64%, P < 0.004 and Iinh = 81%, P < 0.03). Deeper statistical analysis clarified that the lateral SMF gradient between SMF and sham sides could be responsible for most of the analgesic effect (Iho = 91%, P < 0.02 and Iinh = 54%, P < 0.02). Bioelectromagnetics 34:385–396, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
This investigation was performed to evaluate the differentiation capacity and alteration in genes expression patterns during in vitro differentiation of bone marrow stem cells into primordial germ cells using static magnetic field (4 mT) and BMP-4 (25 ng/ml). The rate of differentiation was investigated using the Real Time-PCR method for tracing expression of differentiation markers (Oct-4, Nanog, C-Myc, Fragilis, Mvh and Stella). Then, immunocytochemical reaction was carried out for detection of marker proteins (Oct4 and Mvh). Increasing of the exposure time of the 4 mT SMF (24 and 48 h) and treatment time with 25 ng/ml BMP4 (48 and 96 h) indicated a marked decrease in expression of pluripotency genes (Oct-4, Nanog and C-Myc) and Oct4 protein and increase in primordial germ cell-specific genes (Fragilis, Mvh and Stella) and Mvh protein compared with the control group. Final results showed that in a synergistic manner, the combination of SMF with BMP4 exaggerates the differentiation potential of BMSCs to PGCs by activating the MAPK pathway and altering the Ca2+ concentration.  相似文献   

11.
12.
Magnetotactic bacteria produce nanometer‐size intracellular magnetic crystals. The superior crystalline and magnetic properties of magnetosomes have been attracting much interest in medical applications. To investigate effects of intense static magnetic field on magnetosome formation in Magnetospirillum magneticum AMB‐1, cultures inoculated with either magnetic or non‐magnetic pre‐cultures were incubated under 0.2 T static magnetic field or geomagnetic field. The results showed that static magnetic field could impair the cellular growth and raise Cmag values of the cultures, which means that the percentage of magnetosome‐containing bacteria was increased. Static magnetic field exposure also caused an increased number of magnetic particles per cell, which could contribute to the increased cellular magnetism. The iron depletion in medium was slightly increased after static magnetic field exposure. The linearity of magnetosome chain was also affected by static magnetic field. Moreover, the applied intense magnetic field up‐regulated mamA, mms13, magA expression when cultures were inoculated with magnetic cells, and mms13 expression in cultures inoculated with non‐magnetic cells. The results implied that the interaction of the magnetic field created by magnetosomes in AMB‐1 was affected by the imposed magnetic field. The applied static magnetic field could affect the formation of magnetic crystals and the arrangement of the neighboring magnetosome. Bioelectromagnetics 30:313–321, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号