首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chitinase gene was molecularly characterized in five Bacillus thuringiensis Mexican isolates, MR10, MR11, MR21, MR33, and RN52. The proteins derived from these genes were tested for their chitinase activity using fluorogenic chitin derivatives. In order to verify if chitinase genes were functional, they were cloned, and enzymatic activity of recombinant chitinases was also tested. Results indicated that enzymes exhibited endochitinase activity. The highest hydrolytic activity shown against the chitin tetrameric derivative occurred at pH value of 6.5, and the optimum activity temperature was around 60 °C. The recombinant endochitinases showed a molecular mass of ~77 kDa with isoelectric points from 6.5 to 7.0. Analysis of the nucleotide sequences showed highly conserved sequences among all isolates (97–99 %). Gene sequence analysis revealed a putative promoter (?35 TTGAGA and ?10 TTAATA) and a Shine–Dalgarno sequence (5´-AGGAGA-3´) upstream from the open reading frame. The deduced amino acid sequence revealed that the proteins are modular enzymes composed by a family 18 glycosyl hydrolase domain located between amino acids 134 and 549, a fibronectin-binding domain (580 through 656), and a chitin-binding domain (664 through 771). The deduced amino acid sequences of our isolates showed a similarity close to 100 % respect to the sequences reported in the GenBank database.  相似文献   

2.
3.
The peritrophic membrane (PM) is a semi‐permeable lining of the insect midgut, broadly analogous to the mucous lining of vertebrate gut. The PM proteins are important achievements for the function of the PM. In this study, two chitin‐binding proteins (BmPM‐P43 and BmPM‐P41) from the PM of the silkworm, Bombyx mori, were identified and cloned. These proteins showed the molecular mass of 43 and 41 kDa, respectively. The deduced amino acid sequences codes for a protein of 381 amino acid residues and 364 amino acid residues, containing 12 and 14 cysteine residues followed by similar domain, both of them have 5 cysteine residues in similar position in the C‐terminal. The confirmation of these proteins was performed by western blot analysis of recombinant BmPM‐P43 and BmPM‐P41. The chitin‐binding activity analysis showed that the BmPM‐P43 and BmPM‐P41 could bind to chitin strongly. It is concluded that BmPM‐P43 and BmPM‐P41 contains a polysaccharide deacetylase domain instead of peritrophin domain, indicated that these two proteins may belong to a new chitin‐binding protein family. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Chitinolytic systems of anaerobic polycentric rumen fungi of genera Orpinomyces and Anaeromyces were investigated in three crude enzyme fractions - extracellular, cytosolic and cell-wall. Endochitinase was found as a dominant enzyme with highest activity in the cytosolic fraction. Endochitinases of both genera were stable at pH 4.5-7.0 with optimum at 6.5. The Orpinomyces endochitinase was stable up to 50 degrees C with an optimum for enzyme activity at 50 degrees C; similarly, Anaeromyces endochitinase was stable up to 40 degrees C with optimum at 40 degrees C. The most suitable substrate for both endochitinases was fungal cell-wall chitin. Enzyme activities were inhibited by Hg(2+) and Mn(2+), and activated by Mg(2+) and Fe(3+). Both endochitinases were inhibited by 10 mmol/L SDS and activated by iodoacetamide.  相似文献   

5.
Antimicrobial peptides are important components of the host innate immune responses by exerting broad‐spectrum microbicidal activity against pathogenic microbes. Cy‐AMP1 found in the cycad (Cycas revoluta) seeds has chitin‐binding ability, and the chitin‐binding domain was conserved in knottin‐type and hevein‐type antimicrobial peptides. The recombinant Cy‐AMP1 was expressed in Escherichia coli and purified to study the role of chitin‐binding domain. The mutants of Cy‐AMP1 lost chitin‐binding ability completely, and its antifungal activity was markedly decreased in comparison with native Cy‐AMP1. However, the antimicrobial activities of the mutant peptides are nearly identical to that of native one. It was suggested that the chitin‐binding domain plays an essential role in antifungal, but not antimicrobial, activity of Cy‐AMP1. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
Brown planthopper (Nilaparvata lugens Stål, BPH) causes huge economic losses in rice‐growing regions, and new strategies for combating BPH are required. To understand how BPHs respond towards BPH‐resistant plants, we systematically analysed the metabolic differences between BPHs feeding on the resistant and susceptible plants using NMR and GC‐FID/MS. We also measured the expression of some related genes involving glycolysis and biosyntheses of trehalose, amino acids, chitin and fatty acids using real‐time PCR. BPH metabonome was dominated by more than 60 metabolites including fatty acids, amino acids, carbohydrates, nucleosides/nucleotides and TCA cycle intermediates. After initial 12 h, BPHs feeding on the resistant plants had lower levels of amino acids, glucose, fatty acids and TCA cycle intermediates than on the susceptible ones. The levels of these metabolites recovered after 24 h feeding. This accompanied with increased level in trehalose, choline metabolites and nucleosides/nucleotides compared with BPH feeding on the susceptible plants. Decreased levels of BPH metabolites at the early feeding probably resulted from less BPH uptakes of sap from resistant plants and recovery of BPH metabolites at the later stage probably resulted from their adaptation to the adverse environment with their increased hopping frequency to ingest more sap together with contributions from yeast‐like symbionts in BPHs. Throughout 96 h, BPH feeding on the resistant plants showed significant up‐regulation of chitin synthase catalysing biosynthesis of chitin for insect exoskeleton, peritrophic membrane lining gut and tracheae. These findings provided useful metabolic information for understanding the BPH–rice interactions and perhaps for developing new BPH‐combating strategies.  相似文献   

7.
Polyglycine hydrolases are secreted fungal proteases that cleave glycine–glycine peptide bonds in the inter‐domain linker region of specific plant defense chitinases. Previously, we reported the catalytic activity of polyglycine hydrolases from the phytopathogens Epicoccum sorghi (Es‐cmp) and Cochliobolus carbonum (Bz‐cmp). Here we report the identity of their encoding genes and the primary amino acid sequences of the proteins responsible for these activities. Peptides from a tryptic digest of Es‐cmp were analyzed by LC‐MS/MS and the spectra obtained were matched to a draft genome sequence of E. sorghi. From this analysis, a 642 amino acid protein containing a predicted β‐lactamase catalytic region of 280 amino acids was identified. Heterologous strains of the yeast Pichia pastoris were created to express this protein and its homolog from C. carbonum from their cDNAs. Both strains produced recombinant proteins with polyglycine hydrolase activity as shown by SDS‐PAGE and MALDI‐MS based assays. Site directed mutagenesis was used to mutate the predicted catalytic serine of Es‐cmp to glycine, resulting in loss of catalytic activity. BLAST searching of publicly available fungal genomes identified full‐length homologous proteins in 11 other fungi of the class Dothideomycetes, and in three fungi of the related class Sordariomycetes while significant BLAST hits extended into the phylum Basidiomycota. Multiple sequence alignment led to the identification of a network of seven conserved tryptophans that surround the β‐lactamase‐like region. This is the first report of a predicted β‐lactamase that is an endoprotease.  相似文献   

8.
A bacterial strain secreting potent chitinolytic activity was isolated from shrimp-pond water by enrichment culture using colloidal crab-shell chitin as the major carbon source. The isolated bacterium, designated asAeromonas sp No. 16 exhibited a rod-like morphology with a polar flagellum. Under optimal culture conditions in 500-ml shaker flasks, it produced a chitinolytic activity of 1.4 U ml–1. A slightly higher enzymatic activity of 1.5 U ml–1 was obtained when cultivation was carried out in a 5-liter jar fermentor using a medium containing crystalline chitin as the carbon source. The secretion of the enzyme(s) was stimulated by several organic nitrogenous supplements. Most carbon sources tested (glucose, maltose, N-acetylglucosamine, etc) enhanced cell growth, but they slightly inhibited enzyme secretion. Glucosamine (0.5% w/v) severely inhibited cell growth (16% of the control), but it did not significantly affect enzyme secretion. The production of chitinolytic enzymes was pH sensitive and was enhanced by increasing the concentration of colloidal chitin to 1.5%. The observed chitinolytic activity could be attributed to the presence of -N-acetylglucosaminidase and chitinase. Chitinase was purified by ammonium sulfate fractionation and preparative gel electrophoresis to three major bands on SDS-PAGE. An in-gel enzymatic activity assay indicated that all three bands possessed chitinase activity. Analysis of the enzymatic products indicated that the purified enzyme(s) hydrolyzed colloidal chitin predominantly to N,N-diacetyl-chitobiose and, to a much lesser extent, the mono-, tri, and tetramer of N-acetylglucosamine, suggesting that they are mainly endochitinases.  相似文献   

9.
Lipopeptides constitute a structurally diverse group of metabolites produced by various bacterial and fungal genera. In the past decades, research on lipopeptides has been fueled by their surfactant activities. However, natural functions of lipopeptides compounds have received considerably less attention. The aim of this study was to isolate and identify the lipopeptides from Bacillus amyloliquefaciens An6, and further evaluate their biological activities. An6 lipopeptides were detected by PCR using degenerated primers and MALDI‐TOF‐MS. An6 strain was found to produce surfactin, fengycin, and bacillomycin. Following their purification, the in vitro antioxidant activity of An6 lipopeptides was studied through different assays. The scavenging effect on 1,1‐diphenyl‐2‐picrylhydrazyl radicals at a dosage of 0.75 mg/mL was 81%. Its reducing power was concentration‐dependant and reached a maximum of 1.07 at 2.5 mg/mL. Moreover, they showed a strong inhibition of β‐carotene bleaching. An6 lipopeptides mixture was also found to display significant antimicrobial activity against several Gram‐positive, Gram‐negative bacteria, and fungal strains. An6 lipopeptides were insensitive to proteolytic enzymes, stable between pH 4.0 and 12.0, and resistant to high temperature. Our results provided enough evidence proving that An6 lipopeptides could be used as functional‐food components.  相似文献   

10.
Soybean [Glycine max (L.) Merr.] is an economically important crop that is grown worldwide. Sudden death syndrome (SDS), caused by Fusarium virguliforme, is one of the top yield‐limiting diseases in soybean. However, the genetic basis of SDS resistance, especially with respect to epistatic interactions, is still unclear. To better understand the genetic architecture of soybean SDS resistance, genome‐wide association and epistasis studies were performed using a population of 214 germplasm accessions and 31 914 SNPs from the SoySNP50K Illumina Infinium BeadChip. Twelve loci and 12 SNP–SNP interactions associated with SDS resistance were identified at various time points after inoculation. These additive and epistatic loci together explained 24–52% of the phenotypic variance. Disease‐resistant, pathogenesis‐related and chitin‐ and wound‐responsive genes were identified in the proximity of peak SNPs, including stress‐induced receptor‐like kinase gene 1 (SIK1), which is pinpointed by a trait‐associated SNP and encodes a leucine‐rich repeat‐containing protein. We report that the proportion of phenotypic variance explained by identified loci may be considerably improved by taking epistatic effects into account. This study shows the necessity of considering epistatic effects in soybean SDS resistance breeding using marker‐assisted and genomic selection approaches. Based on our findings, we propose a model for soybean root defense against the SDS pathogen. Our results facilitate identification of the molecular mechanism underlying SDS resistance in soybean, and provide a genetic basis for improvement of soybean SDS resistance through breeding strategies based on additive and epistatic effects.  相似文献   

11.
Chitinolytic Serratia marcescens GPS 5 and non‐chitinolytic Pseudomonas aeruginosa GSE 18, with and without supplementation of chitin, were tested for their ability to activate defence‐related enzymes in groundnut leaves. Thirty‐day‐old groundnut (cv. TMV 2) plants pretreated with GPS 5 and GSE 18 (with and without supplementation of 1% colloidal chitin) were challenge inoculated after 24 h with Phaeoisariopsis personata, the causal agent of late leaf spot (LLS) disease of groundnut. GPS 5 and GSE 18, applied as a prophylactic spray, reduced the lesion frequency by 23% and 67%, respectively, compared with control. Chitin supplementation had no effect on the control of LLS by GSE 18, unlike GPS 5, which upon chitin supplementation reduced the lesion frequency by 64%, compared with chitin alone. In a time course study the activities of chitinase, β‐1,3‐glucanase, peroxidase and phenylalanine ammonia lyase were determined for the different treatments. There was an enhanced activity of the four defence‐related enzymes with all the bacterial treatments when compared with phosphate buffer and colloidal chitin‐treated controls. In correlation to disease severity in bacterial treatments, chitin‐supplemented GSE 18 was similar to GSE 18, whereas chitin‐supplemented GPS 5 was much more effective than GPS 5, in activation of the defence‐related enzymes. The high levels of enzyme activities following chitin‐supplemented GPS 5 application continued up to the measured 13 days after pathogen inoculation.  相似文献   

12.
Aims: To purify and characterize an exo‐acting chitinolytic enzyme produced from a Gram‐negative bacterium Pseudomonas fluorescens JK‐0412. Methods and Results: A chitinolytic bacterial strain that showed confluent growth on a minimal medium containing powder chitin as the sole carbon source was isolated and identified based on a 16S ribosomal DNA sequence analysis and named Ps. fluorescens JK‐0412. From the culture filtrates of this strain, a chito‐oligosaccharides‐degrading enzyme was purified to apparent homogeneity with a molecular mass of 50 kDa on SDS–PAGE gels. The kinetics, optimum pH and temperature, and substrate specificity of the purified enzyme (named as NagA) were determined. Conclusions: An extracellular chitinolytic enzyme was purified from the Ps. fluorescens JK‐0412 and shown to be an exo‐type β‐N‐acetylglucosaminidase yielding GlcNAc as the final product from the natural chito‐oligosaccharides, (GlcNAc)n, n = 2–5. Significance and Impact of the Study: As NagA is secreted extracellularly in the presence of colloidal chitin, Ps. fluorescens JK‐0412 can be recognized as a potent producer for industry‐level and cost‐effective production of chitinolytic enzyme. This enzyme appears to have potential applications as an efficient tool for the degradation of chitinous materials and industry‐level production of GlcNAc. To the best of our knowledge, this is the first report on an exo‐type chitinolytic enzyme of Pseudomonas species.  相似文献   

13.
Introduction – A variety of sample preparation protocols for plant proteomic analysis using two‐dimensional gel electrophoresis (2‐DE) have been reported. However, they usually have to be adapted and further optimised for the analysis of plant species not previously studied. Objective – This work aimed to evaluate different sample preparation protocols for analysing Carica papaya L. leaf proteins through 2‐DE. Methodology – Four sample preparation methods were tested: (1) phenol extraction and methanol–ammonium acetate precipitation; (2) no precipitation fractionation; and the traditional trichloroacetic acid–acetone precipitation either (3) with or (4) without protein fractionation. The samples were analysed for their compatibility with SDS–PAGE (1‐DE) and 2‐DE. Fifteen selected protein spots were trypsinised and analysed by matrix‐assisted laser desorption/ionisation time‐of‐flight tandem mass spectrometry (MALDI‐TOF‐MS/MS), followed by a protein search using the NCBInr database to accurately identify all proteins. Results – Methods number 3 and 4 resulted in large quantities of protein with good 1‐DE separation and were chosen for 2‐DE analysis. However, only the TCA method without fractionation (no. 4) proved to be useful. Spot number and resolution advances were achieved, which included having an additional solubilisation step in the conventional TCA method. Moreover, most of the theoretical and experimental protein molecular weight and pI data had similar values, suggesting good focusing and, most importantly, limited protein degradation. Conclusion – The described sample preparation method allows the proteomic analysis of papaya leaves by 2‐DE and mass spectrometry (MALDI‐TOF‐MS/MS). The methods presented can be a starting point for the optimisation of sample preparation protocols for other plant species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Drosophila melanogaster is one of the most widely used model organisms in life sciences. Mapping its proteome is of great significance for understanding the biological characteristics and tissue functions of this species. However, the comprehensive coverage of its proteome remains a challenge. Here, we describe a high‐coverage analysis of whole fly through a 1D gel electrophoresis and LC‐MS/MS approach. By combining the datasets of two types of SDS‐PAGE and two kinds of tagmata, the high‐coverage analysis resulted in the identification of 5262 genes, which correspond to 38.23% of the entire coding genes. Moreover, we found that the fly head and body have different molecular weight distributions of their proteomes when the proteins were resolved with SDS‐PAGE and image analysis of the stained gel. This phenomenon was further confirmed by both label‐free and isobaric tags for relative and absolute quantitation‐based quantitative approaches. The consistent results of the two different quantitation methods also demonstrated the stability and accuracy of the LC‐MS/MS platform. The MS proteomics data have been deposited to the ProteomeXchange with identifiers PXD000454 and PXD000455 ( http://proteomecentral.proteomexchange.org/dataset/PXD000454 ; ( http://proteomecentral.proteomexchange.org/dataset/PXD000455 ).  相似文献   

15.
16.
Plants can detect pathogen invasion by sensing microbe‐associated molecular patterns (MAMPs). This sensing process leads to the induction of defense responses. Numerous MAMP mechanisms of action have been described in and outside the guard cells. Here, we describe the effects of chitin, a MAMP found in fungal cell walls and insects, on the cellular osmotic water permeability (Pf) of the leaf vascular bundle‐sheath (BS) and mesophyll cells (MCs), and its subsequent effect on leaf hydraulic conductance (Kleaf). BS is a parenchymatic tissue that tightly encases the vascular system. BS cells (BSCs) have been shown to influence Kleaf through changes in their Pf, for example, after sensing the abiotic stress response‐regulating hormone abscisic acid. It was recently reported that, in Arabidopsis, the chitin receptors‐like kinases, chitin elicitor receptor kinase 1 (CERK1) and LYSINE MOTIF RECEPTOR KINASE 5 (LYK5) are highly expressed in the BS as well as the neighboring mesophyll. Therefore, we studied the possible impact of chitin on these cells. Our results revealed that BSCs and MCs exhibit a sharp decrease in Pf in response to chitin treatment. In addition, xylem‐fed chitin decreased Kleaf and led to stomatal closure. However, Atlyk5 mutant showed none of these responses. Complementing AtLYK5 in the BSCs (using the SCARECROW promoter) resulted in the response to chitin that was similar to that observed in the wild‐type. These results suggest that BS play a role in the perception of apoplastic chitin and in initiating chitin‐triggered immunity.  相似文献   

17.
Supplementation of the rumen ciliate Diploplastron affine growth medium with commercial chitin stimulated growth of ciliates and the density of their population was positively correlated with chitin doses (r = 0.95; p < 0.01). The cell-free extracts prepared from bacteria-free ciliates degraded chitin to N-acetyl-D: -glucosamine and chitobiose. Three exochitinases, two endochitinases and two beta-N-acetylglucosaminidases were identified in the cell-free extract of protozoa. The molar mass of exochitinases was 80, 65 and 30 kDa, and endochitinases 75 and 50 kDa; the molar mass of one of the identified beta-N-acetylglucosaminidases was 45 kDa.  相似文献   

18.
Aims: The goal of this study was to determine the antimicrobial susceptibility of bacteria isolated from three municipal wastewater treatment plants. Methods and Results: Numerous bacterial strains were isolated from three municipal wastewater treatment facilities on tetracycline‐ (n = 164) and ciprofloxacin‐amended (n = 65) growth media. These bacteria were then characterized with respect to their resistance to as many as 10 different antimicrobials, the presence of 14 common genes that encode resistance to tetracycline, the presence of integrons and/or the ability to transfer resistance via conjugation. All of the characterized strains exhibited some degree of multiple antimicrobial resistance, with nearly 50% demonstrating resistance to every antimicrobial that was tested. Genes encoding resistance to tetracycline were commonly detected among these strains, although intriguingly the frequency of detection was slightly higher for the bacteria isolated on ciprofloxacin‐amended growth media (62%) compared to the bacteria isolated on tetracycline‐amended growth media (53%). Class 1 integrons were also detected in 100% of the queried tetracycline‐resistant bacteria and almost half of the ciprofloxacin‐resistant strains. Conjugation experiments demonstrated that at least one of the tetracycline‐resistant bacteria was capable of lateral gene transfer. Conclusions: Our results demonstrate that multiple antimicrobial resistance is a common trait among tetracycline‐resistant and ciprofloxacin‐resistant bacteria in municipal wastewater. Significance and Impact of the Study: These organisms are potentially important in the proliferation of antimicrobial resistance because they appear to have acquired multiple genetic determinants that confer resistance and because they have the potential to laterally transfer these genetic determinants to strains of clinical importance.  相似文献   

19.
The administration of pan histone deacetylase (HDAC) inhibitors reduces ischemic damage to the CNS, both in vitro and in animal models of stroke, via mechanisms which we are beginning to understand. The acetylation of p53 is regulated by Class I HDACs and, because p53 appears to play a role in ischemic pathology, the purpose of this study was to discover, using an in vitro white matter ischemia model and an in vivo cerebral ischemia model, if neuroprotection mediated by HDAC inhibition depended on p53 expression. Optic nerves were excised from wild‐type and p53‐deficient mice, and then subjected to oxygen–glucose deprivation in the presence and absence of a specific inhibitor of Class I HDACs (MS‐275, entinostat) while compound action potentials were recorded. Furthermore, transient focal ischemia was imposed on wild‐type and p53‐deficient mice, which were subsequently treated with MS‐275. Interestingly, and in both scenarios, the beneficial effects of MS‐275 were most pronounced when p53 was absent. These results suggest that modulation of p53 activity is not responsible for MS‐275‐mediated neuroprotection, and further illustrate how HDAC inhibitors variably influence p53 and associated apoptotic pathways.

  相似文献   


20.
Abstract The three new full‐length cDNA sequences including the complete 5′‐and 3′‐ untranslated regions (UTR) coding for cytochrome P450s from Aedes albopictus have been obtained. The P450 proteins deduced from the nucleotide sequences shared 58.6% ‐ 62.4% amino acid identity with CYP6N1 and CYP6N2 from Anopheles gambiae, and 99% with each other. The three new complete sequences have been submitted and named as CYP6N3v1, CYP6N3v2 and CYP6N3v3 by the P450 Nomenclature Committee. The original cDNAs were obtained by rapid amplification of cDNA ends (RACE) approach with several pairs of gene specific primers based on the cDNA fragment previously obtained from deltamethrin‐resistant strain of Ae. albopictus. Further analysis showed that the three new sequences are present in both resistant strain and susceptible strain and might be effectively translated. In addition, the 5′‐ and 3′‐UTRs were compared between the CYP6N3vl‐v3 and other known insect P450s. The multiplicity of trans‐lational control of insect P450 genes was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号