首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Primary infection with human herpesvirus‐6 (HHV‐6), is followed by its lifelong persistence in the host. Most T‐cell responses to HHV‐6 have been characterized using peripheral blood from healthy adults; however, the role of HHV‐6 infection in immune modulation has not been elucidated for some diseases. Therefore, in this study the immune response to HHV‐6 infection in patients with B‐acute lymphoblastic leukemia (B‐ALL) was analyzed. HHV‐6 load was quantified in blood samples taken at the time of diagnosis of leukemia and on remission. The same concentrations of anti‐ and pro‐inflammatory cytokines (IL‐4, IL‐1, IL‐6, IL‐8, IL‐12p70, IL‐17a, TNF‐α and IFN‐γ) were detected in plasma samples from 20 patients with and 20 without detectable HHV‐6 virus loads in blood. Characterization of T‐cell responses to HHV‐6 showed low specific T‐cells frequencies of 2.08% and 1.46% in patients with and without detectable viral loads, respectively. IFN‐γ‐producing T cells were detected in 0.03%–0.23% and in 0%–0.2% of CD4+T cells, respectively. Strong production of IL‐6 was detected in medium supernatants of challenged T‐cells whatever the HHV‐6 status of the patients (973.51 ± 210.06 versus 825.70 ± 210.81 pg/mL). However, concentrations of TNF‐α and IFN‐γ were low. Thus, no association between plasma concentrations of cytokines and detection of HHV‐6 in blood was identified, suggesting that HHV‐6 is not strongly associated with development of B‐ALL. The low viral loads detected may correspond with latently infected cells. Alternatively, HHV‐6B specific immune responses may be below the detection threshold of the assays used.  相似文献   

2.
Despite progress in treating B‐cell precursor acute lymphoblastic leukemia (BCP‐ALL), disease recurrence remains the main cause of treatment failure. New strategies to improve therapeutic outcomes are needed, particularly in high‐risk relapsed patients. Che‐1/AATF (Che‐1) is an RNA polymerase II‐binding protein involved in proliferation and tumor survival, but its role in hematological malignancies has not been clarified. Here, we show that Che‐1 is overexpressed in pediatric BCP‐ALL during disease onset and at relapse, and that its depletion inhibits the proliferation of BCP‐ALL cells. Furthermore, we report that c‐Myc regulates Che‐1 expression by direct binding to its promoter and describe a strict correlation between Che‐1 expression and c‐Myc expression. RNA‐seq analyses upon Che‐1 or c‐Myc depletion reveal a strong overlap of the respective controlled pathways. Genomewide ChIP‐seq experiments suggest that Che‐1 acts as a downstream effector of c‐Myc. These results identify the pivotal role of Che‐1 in the control of BCP‐ALL proliferation and present the protein as a possible therapeutic target in children with relapsed BCP‐ALL.  相似文献   

3.
4.
5.
The role of Hedgehog signaling in human basal cell hyperplasia formation and its progressing towards tumorigenesis was investigated. Hedgehog signaling members including PTCH1, GLI1, GLI2, and GLI3 were found co-localized with p63 expression in most hyperplastic basal cells, but rarely in normal basal cells, suggesting Hedgehog involvement in basal cell hyperplasia formation. Both CK-14 and CK-8 markers were found co-localized in the majority of hyperplastic basal cells, but relatively few in the normal basal cells, indicating a Hedgehog-promoted transitory differentiation. Furthermore, CK-14 and PTCH1 were found co-localized with CD44 in the hyerplastic basal cells, in a way similar to the CD44 co-localization with PTCH1 and GLI1 in the cancer cells. Together, the present study indicated Hedgehog involvement in forming basal cell hyperplasia and its progressing towards cancer, presumably by transforming the normal basal stem cells into the cancer stem cells where persistent Hedgehog activation might be mandatory for tumorigenesis.  相似文献   

6.
Prion protein (PrPC), is a glycoprotein that is expressed on the cell surface. The current study examines the role of PrPC in early human embryogenesis using human embryonic stem cells (hESCs) and tetracycline‐regulated lentiviral vectors that up‐regulate or suppresses PrPC expression. Here, we show that expression of PrPC in pluripotent hESCs cultured under self‐renewal conditions induced cell differentiation toward lineages of three germ layers. Silencing of PrPC in hESCs undergoing spontaneous differentiation altered the dynamics of the cell cycle and changed the balance between the lineages of the three germ layers, where differentiation toward ectodermal lineages was suppressed. Moreover, over‐expression of PrPC in hESCs undergoing spontaneous differentiation inhibited differentiation toward lineages of all three germ layers and helped to preserve high proliferation activity. These results illustrate that PrPC is involved in key activities that dictate the status of hESCs including regulation of cell cycle dynamics, controlling the switch between self‐renewal and differentiation, and determining the fate of hESCs differentiation. This study suggests that PrPC is at the crossroads of several signaling pathways that regulate the switch between preservation of or departure from the self‐renewal state, control cell proliferation activity, and define stem cell fate.  相似文献   

7.

Objectives

FBXW7 acts as a tumour suppressor by targeting at various oncoproteins for ubiquitin‐mediated degradation. However, the clinical significance and the involving regulatory mechanisms of FBXW7 manipulation of NSCLC regeneration and therapy response are not clear.

Materials and Methods

Immunohistochemical staining and qRT‐PCR were applied to detect FBXW7 and Snai1 expression in 100 samples of NSCLC and matched tumour‐adjacent tissues. FBXW7 manipulation of cancer biological functions were studied by using MTT assay, immunoblotting, flow cytometry, transwells, wound healing assay, and sphere‐formation assays. Immunofluorescence and co‐immunoprecipitation were used to analyse the possible interaction between Snai1 and FBXW7.

Results

We detected the decreased FBXW7 expression in majority of the NSCLC tissues, and lower FBXW7 level was correlated with advanced TNM stage. Furthermore, those patients with decreased FBXW7 expression tend to have both poorer 5‐year survival outcomes, and shorter disease‐free survival, comparing to those with higher FBXW7 levels. Functionally, we found that FBXW7 enforcement suppressed NSCLC progression by inducing cell growth arrest, increasing chemo‐sensitivity and inhibiting Epithelial‐mesenchymal Transition (EMT) progress. Results further showed that FBXW7 could interact with Snai1 directly to degrade its expression through ubiquitylating alternation in NSCLC, which could be partially abrogated by restoring Snai1 expression.

Conclusions

FBXW7 conduction of tumour suppression was partly through degrading Snai1 directly for ubiquitylating regulation in NSCLC
  相似文献   

8.
Cancer stem‐like cells (CSCs) are rare subpopulations of cancer cells. The development of three‐dimensional tissues abundant in CSCs is important to both the understanding and establishment of novel therapeutics targeting them. Here, we describe the fabrication of multicellular tumor spheroids (MTSs) abundant in CSCs by employing alginate microcapsules with spherical cavities templated by cell‐enclosing gelatin microparticles. Encapsulated human pancreatic cancer cell line PANC‐1 cells grew for 14 days until they filled the cavities. The percentage of cells expressing reported CSC markers CD24, CD44, and epithelial‐specific antigen (ESA), increased during this growth period. The percentage at 24 days of incubation, 22%, was 1.6 times higher than that of MTSs formed on a nonadherent surface in the same period of incubation. The MTSs in microcapsules could be cryopreserved in liquid nitrogen using a conventional method. No significant difference in the content of CSC marker‐expressing cells was detected at 3 days of incubation when thawed after cryopreservation for 2 weeks, compared with cells incubated without prior cryopreservation. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1071–1076, 2015  相似文献   

9.
Most tumours contain a heterogeneous population of cancer cells, which harbour a range of genetic mutations and have probably undergone deregulated differentiation programmes that allow them to adapt to tumour microenvironments. Another explanation for tumour heterogeneity might be that the cells within a tumour are derived from tumour‐initiating cells through diverse differentiation programmes. Tumour‐initiating cells are thought to constitute one or more distinct subpopulations within a tumour and to drive tumour initiation, development and metastasis, as well as to be responsible for their recurrence after therapy. Recent studies have raised crucial questions about the nature, frequency and importance of melanoma‐initiating cells. Here, we discuss our current understanding of melanoma‐initiating cells and outline several approaches that the scientific community might consider to resolve the controversies surrounding these cells.  相似文献   

10.
B‐cell novel protein‐1 (BCNP1) or Family member of 129C (FAM129C) was identified as a B‐cell‐specific plasma‐membrane protein. Bioinformatics analysis predicted that BCNP1 might be heavily phosphorylated. The BCNP1 protein contains a pleckstrin homology (PH) domain, two proline‐rich (PR) regions and a Leucine Zipper (LZ) domain suggesting that it may be involved in protein‐protein interactions. Using The Cancer Genome Atlas (TCGA) data sets, we investigated the correlation of alteration of the BCNP1 copy‐number changes and mutations in several cancer types. We also investigated the function of BCNP1 in cellular signalling pathways. We found that BCNP1 is highly altered in some types of cancers and that BCNP1 copy‐number changes and mutations co‐occur with other molecular alteration events for TP53 (tumour protein P53), PIK3CA (Phosphatidylinositol‐4,5‐Bisphosphate 3‐Kinase, Catalytic Subunit Alpha), MAPK1 (mitogen‐activated protein kinase‐1; ERK: extracellular signal regulated kinase), KRAS (Kirsten rat sarcoma viral oncogene homolog) and AKT2 (V‐Akt Murine Thymoma Viral Oncogene Homolog 2). We also found that PI3K (Phoshoinositide 3‐kinase) inhibition and p38 MAPK (p38 mitogen‐activated protein kinase) activation leads to reduction in phosphorylation of BCNP1 at serine residues, suggesting that BCNP1 phosphorylation is PI3K and p38MAPK dependent and that it might be involved in cancer. Its degradation depends on a proteasome‐mediated pathway.  相似文献   

11.
To characterize the contributions of Dickkopf‐1 (DKK1) towards the induction of vasculogenic mimicry (VM) in non‐small cell lung cancer (NSCLC), we evaluated cohorts of primary tumours, performed in vitro functional studies and generated xenograft mouse models. Vasculogenic mimicry was observed in 28 of 205 NSCLC tumours, while DKK1 was detected in 133 cases. Notably, DKK1 was positively associated with VM. Statistical analysis showed that VM and DKK1 were both related to aggressive clinical course and thus were indicators of a poor prognosis. Moreover, expression of epithelial‐mesenchymal transition (EMT)‐related proteins (vimentin, Slug, and Twist), cancer stem‐like cell (CSC)‐related proteins (nestin and CD44), VM‐related proteins (MMP2, MMP9, and vascular endothelial‐cadherin), and β‐catenin‐nu were all elevated in VM‐positive and DKK1‐positive tumours, whereas the epithelial marker (E‐cadherin) was reduced in the VM‐positive and DKK1‐positive groups. Non‐small cell lung cancer cell lines with overexpressed or silenced DKK1 highlighted its role in the restoration of mesenchymal phenotypes and development of CSC characteristics. Moreover, DKK1 significantly promotes NSCLC tumour cells to migrate, invade and proliferate. In vivo animal studies demonstrated that DKK1 enhances the growth of transplanted human tumours cells, as well as increased VM formation, mesenthymal phenotypes and CSC properties. Our results suggest that DKK1 can promote VM formation via induction of the expression of EMT and CSC‐related proteins. As such, we feel that DKK1 may represent a novel target of NSCLC therapy.  相似文献   

12.
We have developed a novel three‐dimensional (3D) cellular microarray platform to enable the rapid and efficient tracking of stem cell fate and quantification of specific stem cell markers. This platform consists of a miniaturized 3D cell culture array on a functionalized glass slide for spatially addressable high‐throughput screening. A microarray spotter was used to deposit cells onto a modified glass surface to yield an array consisting of cells encapsulated in alginate gel spots with volumes as low as 60 nL. A method based on an immunofluorescence technique scaled down to function on a cellular microarray was also used to quantify specific cell marker protein levels in situ. Our results revealed that this platform is suitable for studying the expansion of mouse embryonic stem (ES) cells as they retain their pluripotent and undifferentiated state. We also examined neural commitment of mouse ES cells on the microarray and observed the generation of neuroectodermal precursor cells characterized by expression of the neural marker Sox‐1, whose levels were also measured in situ using a GFP reporter system. In addition, the high‐throughput capacity of the platform was tested using a dual‐slide system that allowed rapid screening of the effects of tretinoin and fibroblast growth factor‐4 (FGF‐4) on the pluripotency of mouse ES cells. This high‐throughput platform is a powerful new tool for investigating cellular mechanisms involved in stem cell expansion and differentiation and provides the basis for rapid identification of signals and conditions that can be used to direct cellular responses. Biotechnol. Bioeng. 2010; 106: 106–118. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
14.
15.
16.
Nuclear factor‐kappa B (NF‐κB) as a prognostic marker remains unclear in non‐small cell lung cancer (NSCLC). Here, we studied NF‐κB‐p65 (p65) expression and phosphorylated NF‐κB‐p105 (p‐p105) expression in NSCLC and correlated the finding with overall survival (OS) and clinicopathological features. A total of 186 archival samples from patients with surgically resectable NSCLC were probed with p65 and p‐p105 (Ser 932). The p65‐positive expression and p‐p105‐positive expression were defined as distinct nuclear p65 and cytoplasmic p‐p105 labelling in at least 1% of tumour cells, respectively. The positive staining of p65 alone, p‐p105 alone and co‐expression of p65 and p‐p105 were observed in 61 (32.8%), 90 (48.4%) and 35 (18.8%) patients, respectively. Co‐expression of p65 and p‐p105 but not of either p65 or p‐p105 alone was associated with a poor prognosis. Patients with co‐expression of p65 and p‐p105 had a shorter OS than others, median OS 26.5 months versus 64.1 months, HR 1.85 (95% CI: 1.18–2.91), P = 0.007. There was no statistically significant association between clinicopathological characteristics and either p65 or p‐p105 alone or co‐expression of p65 and p‐p105. This indicates that co‐expression of p65 and p‐p105 was a poor prognostic factor, and pathologic studies of NF‐κB expression could include multiple pathway components in NSCLC.  相似文献   

17.
For allogeneic cell therapies to reach their therapeutic potential, challenges related to achieving scalable and robust manufacturing processes will need to be addressed. A particular challenge is producing lot‐sizes capable of meeting commercial demands of up to 109 cells/dose for large patient numbers due to the current limitations of expansion technologies. This article describes the application of a decisional tool to identify the most cost‐effective expansion technologies for different scales of production as well as current gaps in the technology capabilities for allogeneic cell therapy manufacture. The tool integrates bioprocess economics with optimization to assess the economic competitiveness of planar and microcarrier‐based cell expansion technologies. Visualization methods were used to identify the production scales where planar technologies will cease to be cost‐effective and where microcarrier‐based bioreactors become the only option. The tool outputs also predict that for the industry to be sustainable for high demand scenarios, significant increases will likely be needed in the performance capabilities of microcarrier‐based systems. These data are presented using a technology S‐curve as well as windows of operation to identify the combination of cell productivities and scale of single‐use bioreactors required to meet future lot sizes. The modeling insights can be used to identify where future R&D investment should be focused to improve the performance of the most promising technologies so that they become a robust and scalable option that enables the cell therapy industry reach commercially relevant lot sizes. The tool outputs can facilitate decision‐making very early on in development and be used to predict, and better manage, the risk of process changes needed as products proceed through the development pathway. Biotechnol. Bioeng. 2014;111: 69–83. © 2013 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

18.
19.
Retrotransposons are ubiquitous mobile genetic elements constituting a major part of eukaryotic genomes. Yet, monitoring retrotransposition and subsequent copy number increases in multicellular eukaryotes is intrinsically difficult. By following the transgenerational accumulation of a newly activated retrotransposon EVADE (EVD) in Arabidopsis, we noticed fast expansion of activated elements transmitted through the paternal germ line but suppression when EVD‐active copies are maternally inherited. This parent‐of‐origin effect on EVD proliferation was still observed when gametophytes carried mutations for key epigenetic regulators previously shown to restrict EVD mobility. Therefore, the main mechanism preventing active EVD proliferation seems to act through epigenetic control in sporophytic tissues in the mother plant. In consequence, once activated, this retrotransposon proliferates in plant populations owing to suppressed epigenetic control during paternal transmission. This parental gateway might contribute to the occasional bursts of retrotransposon mobilization deduced from the genome sequences of many plant species.  相似文献   

20.
Melanoma, a lethal malignancy that arises from melanocytes, exhibits a multiplicity of clinico-pathologically distinct subtypes in sun-exposed and non-sun-exposed areas. Melanocytes are derived from multipotent neural crest cells and are present in diverse anatomical locations, including skin, eyes, and various mucosal membranes. Tissue-resident melanocyte stem cells and melanocyte precursors contribute to melanocyte renewal. Elegant studies using mouse genetic models have shown that melanoma can arise from either melanocyte stem cells or differentiated pigment-producing melanocytes depending on a combination of tissue and anatomical site of origin and activation of oncogenic mutations (or overexpression) and/or the repression in expression or inactivating mutations in tumor suppressors. This variation raises the possibility that different subtypes of human melanomas (even subsets within each subtype) may also be a manifestation of malignancies of distinct cells of origin. Melanoma is known to exhibit phenotypic plasticity and trans-differentiation (defined as a tendency to differentiate into cell lineages other than the original lineage from which the tumor arose) along vascular and neural lineages. Additionally, stem cell-like properties such as pseudo-epithelial-to-mesenchymal (EMT-like) transition and expression of stem cell-related genes have also been associated with the development of melanoma drug resistance. Recent studies that employed reprogramming melanoma cells to induced pluripotent stem cells have uncovered potential relationships between melanoma plasticity, trans-differentiation, and drug resistance and implications for cell or origin of human cutaneous melanoma. This review provides a comprehensive summary of the current state of knowledge on melanoma cell of origin and the relationship between tumor cell plasticity and drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号