首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The emergence of monoclonal antibody (mAb) therapies has created a need for faster and more efficient bioprocess development strategies in order to meet timeline and material demands. In this work, a high‐throughput process development (HTPD) strategy implementing several high‐throughput chromatography purification techniques is described. Namely, batch incubations are used to scout feasible operating conditions, miniature columns are then used to determine separation of impurities, and, finally, a limited number of lab scale columns are tested to confirm the conditions identified using high‐throughput techniques and to provide a path toward large scale processing. This multistep approach builds upon previous HTPD work by combining, in a unique sequential fashion, the flexibility and throughput of batch incubations with the increased separation characteristics for the packed bed format of miniature columns. Additionally, in order to assess the applicability of using miniature columns in this workflow, transport considerations were compared with traditional lab scale columns, and performances were mapped for the two techniques. The high‐throughput strategy was utilized to determine optimal operating conditions with two different types of resins for a difficult separation of a mAb monomer from aggregates. Other more detailed prediction models are cited, but the intent of this work was to use high‐throughput strategies as a general guide for scaling and assessing operating space rather than as a precise model to exactly predict performance. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:626–635, 2014  相似文献   

3.
4.
5.
Effective clone selection is a crucial step toward developing a robust mammalian cell culture production platform. Currently, clone selection is done by culturing cells in well plates and picking the highest producers. Ideally, clone selection should be done in a stirred tank bioreactor as this would best replicate the eventual production environment. The actual number of clones selected for future evaluation in bioreactors at bench‐scale is limited by the scale‐up and operational costs involved. This study describes the application of miniaturized stirred high‐throughput bioreactors (35 mL working volume; HTBRs) with noninvasive optical sensors for clone screening and selection. We investigated a method for testing several subclones simultaneously in a stirred environment using our high throughput bioreactors (up to 12 clones per HTBR run) and compared it with a traditional well plate selection approach. Importantly, it was found that selecting clones solely based on results from stationary well plate cultures could result in the chance of missing higher producing clones. Our approach suggests that choosing a clone after analyzing its performance in a stirred bioreactor environment is an improved method for clone selection. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

6.
A parallel batch screening technique was employed to identify chemically selective displacers which exhibited exclusive separation behavior for the protein pair α‐chymotrypsin/ribonuclease A on a strong cation exchange resin. Two selective displacers, 1‐(4‐chlorobenzyl)piperidin‐3‐aminesulfate and N′1′‐(4‐methyl‐quinolin‐2‐yl)‐ethane‐1,2‐diamine dinitrate, and one non‐selective displacer, spermidine, were selected as model systems to investigate the mechanism of chemically selective displacement chromatography. Saturation transfer difference (STD) NMR was used to directly evaluate displacer–protein binding. The results indicated that while binding occurred between the two chemically selective displacers and the more hydrophobic protein, α‐chymotrypsin, no binding was observed with ribonuclease A. Further, the non‐selective displacer, spermidine, was not observed to bind to either protein. Importantly, the binding event was observed to occur primarily on the aromatic portion of the selective displacers. Extensive molecular dynamic simulations of protein–displacer–water solution were also carried out. The MD results corroborated the NMR findings demonstrating that the binding of selective displacers occurred primarily on hydrophobic surface patches of α‐chymotrypsin, while no significant long term binding to ribonuclease A was observed. The non‐selective displacer did not show significant binding to either of the proteins. MD simulations also indicated that the charged amine group of the selective displacers in the bound state was primarily oriented towards the solvent, potentially facilitating their interaction with a resin surface. These results directly confirm that selective binding between a protein and displacer is the mechanism by which chemically selective displacement occurs. This opens up many possibilities for future molecular design of selective displacers for a range of applications. Biotechnol. Bioeng. 2009;102: 1428–1437. © 2008 Wiley Periodicals, Inc.  相似文献   

7.
A high‐cell‐density transient transfection system was recently developed in our laboratory based on a CHO‐GS‐KO cell line. This method yields monoclonal antibody titers up to 350 mg/L from a simple 7‐day process, in volumes ranging from 2 mL to 2 L. By performing transfections in 24‐deep‐well plates, a large number of mAbs can be expressed simultaneously. We coupled this new high‐throughput transfection process to a semiautomated protein A purification process. Using a Biomek FXp liquid handling robot, up to 72 unique mAbs can be simultaneously purified. Our primary goal was to obtain >0.25 mg of purified mAb at a concentration of >0.5 mg/mL, without any concentration or buffer‐exchange steps. We optimized both the batch‐binding and the batch elution steps. The length of the batch‐binding step was important to minimize mAb losses in the flowthrough fraction. The elution step proved to be challenging to simultaneously maximize protein recovery and protein concentration. We designed a variable volume elution strategy based on the average supernatant titer. Finally, we present two case studies. In the first study, we produced 56 affinity maturation mAb variants at an average yield of 0.33 ± 0.05 mg (average concentration of 0.65 ± 0.10 mg/mL). In a second study, we produced 42 unique mAbs, from an early‐stage discovery effort, at an average yield of 0.79 ± 0.31 mg (average concentration of 1.59 ± 0.63 mg/mL). The combination of parallel high‐yielding transient transfection and semiautomated high‐throughput protein A purification represents a valuable mAb drug discovery tool. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:239–247, 2015  相似文献   

8.
Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of acetylcholine, a neurotransmitter associated with muscle movement, cognition, and other neurobiological processes. Inhibition of AChE activity can serve as a therapeutic mechanism, but also cause adverse health effects and neurotoxicity. In order to efficiently identify AChE inhibitors from large compound libraries, homogenous cell‐based assays in high‐throughput screening platforms are needed. In this study, a fluorescent method using Amplex Red (10‐acetyl‐3,7‐dihydroxyphenoxazine) and the Ellman absorbance method were both developed in a homogenous format using a human neuroblastoma cell line (SH‐SY5Y). An enzyme‐based assay using Amplex Red was also optimized and used to confirm the potential inhibitors. These three assays were used to screen 1368 compounds, which included a library of pharmacologically active compounds (LOPAC) and 88 additional compounds from the Tox21 program, at multiple concentrations in a quantitative high‐throughput screening (qHTS) format. All three assays exhibited exceptional performance characteristics including assay signal quality, precision, and reproducibility. A group of inhibitors were identified from this study, including known (e.g. physostigmine and neostigmine bromide) and potential novel AChE inhibitors (e.g. chelerythrine chloride and cilostazol). These results demonstrate that this platform is a promising means to profile large numbers of chemicals that inhibit AChE activity.  相似文献   

9.
10.
Aberrant regulation of programmed cell death (PCD) has been tied to an array of human pathologies ranging from cancers to autoimmune disorders to diverse forms of neurodegeneration. Pharmacologic modulation of PCD signalling is therefore of central interest to a number of clinical and biomedical applications. A key component of PCD signalling involves the modulation of pro‐ and anti‐apoptotic Bcl‐2 family members. Among these, Bax translocation represents a critical regulatory phase in PCD. In the present study, we have employed a high‐content high‐throughput screen to identify small molecules which inhibit the cellular process of Bax re‐distribution to the mitochondria following commitment of the cell to die. Screening of 6246 Generally Recognized As Safe compounds from four chemical libraries post‐induction of cisplatin‐mediated PCD resulted in the identification of 18 compounds which significantly reduced levels of Bax translocation. Further examination revealed protective effects via reduction of executioner caspase activity and enhanced mitochondrial function. Consistent with their effects on Bax translocation, these compounds exhibited significant rescue against in vitro and in vivo cisplatin‐induced apoptosis. Altogether, our findings identify a new set of clinically useful small molecules PCD inhibitors and highlight the role which cAMP plays in regulating Bax‐mediated PCD.  相似文献   

11.
12.
The present paper describes the development and validation of a simple and sensitive micelle‐enhanced high‐throughput fluorometric method for the determination of niclosamide (NIC) in 96‐microwell plates. The proposed method is based on the reduction of the nitro group of niclosamide to an amino group using Zn/HCl to give a highly fluorescent derivative that was developed simultaneously and measured at λem 444 nm after excitation at λex 275 nm. Tween‐80 and carboxymethylcellulose (CMC) have been used as fluorescence enhancers and greatly enhanced the fluorescence by factors of 100–150%. The different experimental conditions affecting the fluorescence reaction were carefully investigated and optimized. The proposed method showed good linearity (r2≥ 0.9997) over the concentration ranges of 1–5 and 0.5–5 μg/ml with lower detection limits of 0.01 and 0.008 μg/ml and lower quantification limits of 0.04 and 0.03 μg/ml on using Tween‐80 and or CMC, respectively. The developed high‐throughput method was successfully applied for the determination of niclosamide in both tablets and spiked plasma. The capability of the method for measuring microvolume samples made it convenient for handling a very large number of samples simultaneously. In addition, it is considered an environmentally friendly method with lower consumption of chemicals and solvents.  相似文献   

13.
Protein purification essentially requires macroporous adsorbents matrices, which can provide high efficiency in packed bed and expanded bed (EB) even at high flow rates on account of reduced pore diffusion resistance resulting from finite intraparticle flow in the superpores. Rigid spherical superporous adsorbent beads with high carboxyl group density were prepared by crosslinking of cellulose. The matrix (diameter: 100–300 μm, mean pore size: 1–3 μm, pore volume: 57–59%, and bulk density: ~1,438 kg/m3) could be used in packed bed as well as EB for purification of various biomolecules. Attempts were made to use indigenously developed rigid, superporous crosslinked cellulose adsorbent for high‐throughput purification of lysozyme from chicken egg white's extract. A typical adsorption isotherm for lysozyme in crude was well correlated with the Langmuir isotherm model. Two maxima of binding capacity on celbeads bearing carboxymethyl (celbeads‐CM) group for lysozyme were observed at pH 4.5 and 7.5. Uptake kinetics showed that the diffusivity of lysozyme was 100 times higher than conventional matrices. Such superporous matrix can be used for high‐throughput purification of proteins from crude feedstocks and is reflected in leveling off of height equivalent to theoretical plate vs. flow curve after threshold velocity. Optimization of binding and elution conditions resulted in overall purification of lysozyme in a high yield and purity of 98.22 and 98.8%, respectively, with purification factor of 51.54 in a single step. The overall productivity (14.21 kg/m3 h) and specific activity (2.2 × 105 U/mg) were higher than that obtained with traditional particulate resins. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

14.
α‐Conotoxins are peptide neurotoxins that selectively inhibit various subtypes of nicotinic acetylcholine receptors. They are important research tools for studying numerous pharmacological disorders, with profound potential for developing drug leads for treating pain, tobacco addiction, and other conditions. They are characterized by the presence of two disulfide bonds connected in a globular arrangement, which stabilizes a bioactive helical conformation. Despite extensive structure–activity relationship studies that have produced α‐conotoxin analogs with increased potency and selectivity towards specific nicotinic acetylcholine receptor subtypes, the efficient production of diversity‐oriented α‐conotoxin combinatorial libraries has been limited by inefficient folding and purification procedures. We have investigated the optimized conditions for the reliable folding of α‐conotoxins using simplified oxidation procedures for use in the accelerated production of synthetic combinatorial libraries of α‐conotoxins. To this end, the effect of co‐solvent, redox reagents, pH, and temperature on the proportion of disulfide bond isomers was determined for α‐conotoxins exhibiting commonly known Cys loop spacing frameworks. In addition, we have developed high‐throughput ‘semi‐purification’ methods for the quick and efficient parallel preparation of α‐conotoxin libraries for use in accelerated structure–activity relationship studies. Our simplified procedures represent an effective strategy for the preparation of large arrays of correctly folded α‐conotoxin analogs and permit the rapid identification of active hits directly from high‐throughput pharmacological screening assays. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Recent advances in high‐throughput sequencing library preparation and subgenomic enrichment methods have opened new avenues for population genetics and phylogenetics of nonmodel organisms. To multiplex large numbers of indexed samples while sequencing predominantly orthologous, targeted regions of the genome, we propose modifications to an existing, in‐solution capture that utilizes PCR products as target probes to enrich library pools for the genomic subset of interest. The sequence capture using PCR‐generated probes (SCPP) protocol requires no specialized equipment, is highly flexible and significantly reduces experimental costs for projects where a modest scale of genetic data is optimal (25–100 genomic loci). Our alterations enable application of this method across a wider phylogenetic range of taxa and result in higher capture efficiencies and coverage at each locus. Efficient and consistent capture over multiple SCPP experiments and at various phylogenetic distances is demonstrated, extending the utility of this method to both phylogeographic and phylogenomic studies.  相似文献   

16.
17.
To reduce the amount of consumables and number of pipetting steps in high‐throughput screening, a constitutive expression system was developed that comprises four different promoters of varying strength. The system was validated by the expression of different sucrose phosphorylase enzymes from Leuconostoc mesenteroides, Lactobacillus acidophilus and Bifidobacterium adolescentis in 96‐deep‐ and low‐well plates at three temperatures. Drastically improved soluble expression in mini‐cultures was observed for the enzymes from L. mesenteroides strains by reducing the promoter strength from strong to intermediate and by expressing the proteins at lower temperatures. In contrast, the enzymes from B. adolescentis and L. acidophilus were expressed most efficiently with a strong promoter. The constitutive expression of sucrose phosphorylases in low‐well plates resulted in a level of activity that is equal or even better than what was achieved by inducible expression. Therefore, our plasmid set with varying constitutive promoters will be an indispensable tool to optimize enzyme expression for high‐throughput screening.  相似文献   

18.
19.
Quantifying the concentration and purity of a target protein is essential for high‐throughput protein expression test and rapid screening of highly soluble proteins. However, conventional methods such as PAGE and dot blot assay generally involve multiple time‐consuming tasks requiring hours or do not allow instant quantification. Here, we demonstrate a new method based on the Photoactive yellow protein turn Off/On Label (POOL) system that can instantly quantify the concentration and purity of a target protein. The main idea of POOL is to use Photoactive Yellow Protein (PYP), or its miniaturized version, as a fusion partner of the target protein. The characteristic blue light absorption and the consequent yellow color of PYP is absent when initially expressed without its chromophore, but can be turned on by binding its chromophore, p‐coumaric acid. The appearance of yellow color upon adding a precursor of chromophore to the co‐expressed PYP can be used to check the expression amount of the target protein via visual inspection within a few seconds as well as to quantify its concentration and purity with the aid of a spectrometer within a few minutes. The concentrations measured by the POOL method, which usually takes a few minutes, show excellent agreement with those by the BCA Kit, which usually takes ~1 h. We demonstrate the applicability of POOL in E. coli, insect, and mammalian cells, and for high‐throughput protein expression screening.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号