首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report herein the design and synthesis of several representative examples of novel mutual prodrugs containing nine distinct types of self-immolative drug-releasable disulfide linkers with urethane, ester, carbonate, or imide linkages between the linker and any two amine/amide/urea (primary or secondary) or carboxyl or hydroxyl (including phenolic)-containing drugs. We also report drug release profiles of a few representative mutual prodrugs in biological fluids such as simulated gastric fluid and human plasma. We also propose plausible mechanisms of drug release from these mutual prodrugs. We have also conducted a few mechanistic studies based on suggested sulfhydryl-assisted cleavage of mutual prodrugs and characterized a few important metabolites to give support to the proposed mechanism of drug release from the reported mutual prodrugs.  相似文献   

2.
A series of mutual prodrugs derived from gabapentin, pregabalin, memantine, venlafaxine were synthesized and their pharmacological properties to treat neuropathic pain were investigated in a rat model of chronic sciatic nerve constriction injury (CCI). In vivo evaluation demonstrated that the mutual prodrugs 2002413A, 2002823A composed of two gabapentins, 2002414 composed of gabapentin and pregabalin were effective in reversal tactile allodynia in CCI rats. The prodrugs 2002413A, 2002414 had no significant influence on the rotarod activity. The result suggest that the prodrugs may be possible candidates for further development.  相似文献   

3.
Reductively activated disulfide prodrugs of paclitaxel   总被引:1,自引:0,他引:1  
A series of unsymmetrical polar disulfide prodrugs 2–5 of paclitaxel were designed and synthesized as reductively activated prodrugs. These compounds behaved as prodrugs in vitro on L2987 lung carcinoma cells. In vivo evaluation in mice demonstrated that the mutual prodrug 5 with captopril exhibited significant regressions and cures.  相似文献   

4.
The discovery of the inducible isoform of cyclooxygenase enzyme (COX-2) spurred the search for anti-inflammatory agents devoid of the undesirable effects associated with classical NSAIDs. New chlorzoxazone ester prodrugs (68) of some acidic NSAIDs (13) were designed, synthesized and evaluated as mutual prodrugs with the aim of improving the therapeutic potency and retard the adverse effects of gastrointestinal origin. The structure of the synthesized mutual ester prodrugs (68) were confirmed by IR, 1H NMR, mass spectroscopy (MS) and their purity was ascertained by TLC and elemental analyses. In vitro chemical stability revealed that the synthesized ester prodrugs (68) are chemically stable in hydrochloric acid buffer pH 1.2 as a non-enzymatic simulated gastric fluid (SGF) and in phosphate buffer pH 7.4 as non-enzymatic simulated intestinal fluid (SIF). In 80% human plasma, the mutual prodrugs were found to be susceptible to enzymatic hydrolysis at relatively faster rate (t1/2  37 and 34 min for prodrugs 6 and 7, respectively). Mutual ester prodrugs (68) were evaluated for their anti-inflammatory and muscle relaxation activities. Scanning electromicrographs of the stomach showed that the ester prodrugs induced very little irritancy in the gastric mucosa of rats after oral administration for 4 days. In addition, docking of the mutual ester prodrugs (68) into COX-2 active site was conducted in order to predict the affinity and orientation of these prodrugs at the enzyme active site.  相似文献   

5.
The syntheses and preliminary evaluation of the first potential bioreductive paclitaxel prodrugs are described. These prodrugs were designed as potential candidates in more selective chemotherapy by targeting hypoxic tumour tissue. Aromatic nitro and azide groups were used as the bioreductive trigger. Generation of paclitaxel occurs after reduction and subsequent 1,6-elimination or 1,8-elimination. All prodrugs are stable in buffer and indeed give paclitaxel after chemical reduction of the aromatic nitro or azide functionality. In aerobic cytotoxicity assays several prodrugs exhibit diminished cytotoxicity. These compounds are interesting candidates for further biological evaluation.  相似文献   

6.
An inhibitor of the insulin receptor tyrosine kinase (IRTK), (hydroxy-2-naphthalenyl-methyl) phosphonic acid, was designed and synthesized and was shown to be an inhibitor of the biological effects of insulin in vitro. With a wheat germ purified human placental insulin receptor preparation, this compound inhibited the insulin-stimulated autophosphorylation of the 95-kDa beta-subunit of the insulin receptor (IC50 = 200 microM). The ability of the kinase to phosphorylate an exogenous peptide substrate, angiotensin II, was also inhibited. Half-maximal inhibition of basal and insulin-stimulated human placental IRTK activity was found at concentrations of 150 and 100 microM, respectively, with 2 mM angiotensin II as the peptide substrate. The inhibitor was found to be specific for tyrosine kinases over serine kinases and noncompetitive with ATP. The inhibitor was converted into various (acyloxy)methyl prodrugs in order to achieve permeability through cell membranes. These prodrugs inhibited insulin-stimulated autophosphorylation of the insulin receptor 95-kDa beta-subunit in intact CHO cells transfected with human insulin receptor. Inhibition of insulin-stimulated glucose oxidation in isolated rat adipocytes and 2-deoxyglucose uptake into CHO cells was observed with these prodrugs. Our data provide additional evidence for the involvement of the insulin receptor tyrosine kinase in the regulation of glucose uptake and metabolism. These results and additional data reported herein suggest that this class of prodrugs and inhibitors will be useful for modulating the activity of a variety of tyrosine kinases.  相似文献   

7.
A series of 6-hydrazinopurine 2'-methyl ribonucleosides was synthesized and tested for its inhibitory activity against the hepatitis C virus (HCV). The lack of antiviral activity of these nucleosides was associated with a poor affinity for adenosine kinase, which prompted us to synthesize several of their 5'-monophosphate prodrugs. Some of these prodrugs exhibited more than 1000-fold improvement in anti-HCV activity when compared to their parent nucleosides (EC(50) of 24 nM vs 92 microM for the parent).  相似文献   

8.
In the present study, 2 alternative strategies to optimize ketorolac transdermal delivery, namely, prodrugs (polyoxyethylene glycol ester derivatives, I–IV) and nanostructured lipid carriers (NLC) were investigated. The synthesized prodrugs were chemically stable and easily degraded to the parent drug in human plasma. Ketorolac-loaded NLC with high drug content could be successfully prepared. The obtained products formulated into gels showed a different trend of drug permeation through human stratum corneum and epidermis. Particularly, skin permeation of ester prodrugs was significantly enhanced, apart from ester IV, compared with ketorolac, while the results of drug release from NLC outlined that these carriers were ineffective in increasing ketorolac percutaneous absorption owing to a higher degree of mutual interaction between the drug and carrier lipid matrix. Polyoxyethylene glycol esterification confirmed to be a suitable approach to enhance ketorolac transdermal delivery, while NLC seemed more appropriate for sustained release owing to the possible formation of a drug reservoir into the skin. Published: August 4, 2006  相似文献   

9.
Troxacitabine is a cytotoxic deoxycytidine analogue with an unnatural L-configuration, which is activated by deoxycytidine kinase (dCK). The configuration is responsible for differences in the uptake and metabolism of troxacitabine compared to other deoxynucleoside analogues. The main drawback in the use of most nucleoside anticancer agents originates from their hydrophilic nature, which property requires a high and frequent dosage for an intravenous administration. To overcome this problem several troxacitabine prodrugs modified in the aminogroup with a linear aliphatic chain with a higher lipophilicity were developed. To determine whether these prodrugs have an advantage over Troxacitabine pancreatic cancer cell lines were exposed to Troxacitabine and the lipophilic prodrugs. The addition of linear aliphatic chains to troxacitabine increased sensitivity of pancreatic cancer cell lines to the drug > 100-fold, possibly due to a better uptake and retention of the drug.  相似文献   

10.
Nitroarylmethyl quaternary (NMQ) ammonium salts have potential as prodrugs for enzymatic or radiolytic reduction to release amine effectors under hypoxia. Earlier studies demonstrated one-electron release of the cytotoxic amine mechlorethamine (HN2) from 4-nitroimidazolyl and 2-nitropyrrolyl NMQ prodrugs (but not from nitrobenzyl analogs) through intramolecular electron transfer. In this study we determined whether this is a general feature of heterocyclic NMQ prodrugs of HN2 and examined the reductive pathways in detail using pulse and steady-state radiolysis. The kinetics of radical fragmentation varied by more than four orders of magnitude, independently of the one-electron reduction potential, within the series of eight nitroheterocycles examined. In addition to the compounds identified previously, new 2-nitropyrrole and 3-nitrothiophene NMQ prodrugs were found to provide efficient HN2 release (G > 0.5 micromol/J in anoxic formate buffer). However, the nitrothiophene was sensitive to nucleophilic displacement of HN2, making it less promising. Product analysis by HPLC/mass spectrometry identified symmetrical dimers arising from benzyl-type radical intermediates but also demonstrated that these dimers are not reliable markers for the intramolecular fragmentation of the initial nitro radical anion. This study elucidated multiple competing pathways for reductive fragmentation of NMQ prodrugs and identified the preferred electron acceptors for use in the development of analogs that release more potent cytotoxins.  相似文献   

11.
Herein, we report the synthesis, antiviral and cytostatic effects of nucleosides bearing a 3'-disulfide function as prodrugs of potentially active 3'-mercaptonucleotides. The lack of the anti-HIV effects in mutant CEM/TK-cells for most of the thymidine disulfides suggests that a phosphorylation step involving thymidine kinase is necessary for the eventual antiviral activity of the thymidine nucleosides. The comparable anti-HIV activities of most of the disulfides and their rapid reduction in CEM cell extracts imply an inhibitory effect of the 2',3'-dideoxy-3'-mercaptothymidine 5'-triphosphate metabolite. The cytostatic effects of the disulfides in CEM/0 and Molt4/C8 cells appeared to be strongly dependent on the nature of the non-nucleosidic disulfide moiety and were decreased in preserving the anti-retroviral activity.  相似文献   

12.
Novel phosphoramidates of acyclovir have been prepared and evaluated in vitro against acyclovir-sensitive and -resistant herpes simplex virus (HSV) types 1 and 2 and varicella-zoster virus (VZV). Unlike the parent nucleoside these novel phosphate prodrugs retain antiviral potency versus the ACV-resistant virus strain, suggesting an efficient bypass of the viral thymidine kinase.  相似文献   

13.
The synthesis of mutual prodrugs of nitrofurazone with primaquine, using specific and nonspecific spacer groups, has been previously attempted seeking selective antichagasic agents. The intermediate reaction product, hydroxymethylnitrofurazone (NFOH-121), was isolated and tested in LLC-MK(2) culture cells infected with trypomastigotes forms of Trypanosoma cruzi showing higher trypanocidal activity than nitrofurazone and benznidazol in all stages. The mutagenicity tests showed that the prodrug was less toxic than the parent drug. Degradation assays were carried out in pH 1.2 and 7.4.  相似文献   

14.
Since several decades, the prodrug concept has raised considerable interest in cancer research due to its potential to overcome common problems associated with chemotherapy. However, for small‐molecule tyrosine kinase inhibitors, which also cause severe side effects, hardly any strategies to generate prodrugs for therapeutic improvement have been reported so far. Here, we present the synthesis and biological investigation of a cathepsin B‐cleavable prodrug of the VEGFR inhibitor sunitinib. Cell viability assays and Western blot analyses revealed, that, in contrast to the non‐cathepsin B‐cleavable reference compound, the prodrug shows activity comparable to the original drug sunitinib in the highly cathepsin B‐expressing cell lines Caki‐1 and RU‐MH. Moreover, a cathepsin B cleavage assay confirmed the desired enzymatic activation of the prodrug. Together, the obtained data show that the concept of cathepsin B‐cleavable prodrugs can be transferred to the class of targeted therapeutics, allowing the development of optimized tyrosine kinase inhibitors for the treatment of cancer.  相似文献   

15.
A new class of phosphate and phosphonate prodrugs, called HepDirect prodrugs, has been developed to deliver drugs to the liver while simultaneously diminishing drug exposure to extra-hepatic tissues. The technology combines liver-selective cleavage and kinase by pass with high plasma and tissue stability to achieve increased drug levels in the liver. Lamivudine (LMV), a nucleoside analogue, is a currently approved treatment for hepatitis B infection, but shows modest efficacy and significant drug resistance due to inefficient phosphorylation. LMV is inadequately phosphorylated to the corresponding nucleoside triphosphate in rat and human hepatocytes. A HepDirect prodrug of LMV monophosphate generated 34-fold higher levels of the triphosphate in rat hepatocytes and 320-fold higher triphosphate levels in the liver of treated rats relative to LMV.  相似文献   

16.
Guanylate kinase (GMPK) is a nucleoside monophosphate kinase that catalyzes the reversible phosphoryl transfer from ATP to GMP to yield ADP and GDP. In addition to phosphorylating GMP, antiviral prodrugs such as acyclovir, ganciclovir, and carbovir and anticancer prodrugs such as the thiopurines are dependent on GMPK for their activation. Hence, structural information on mammalian GMPK could play a role in the design of improved antiviral and antineoplastic agents. Here we present the structure of the mouse enzyme in an abortive complex with the nucleotides ADP and GMP, refined at 2.1 A resolution with a final crystallographic R factor of 0.19 (R(free) = 0.23). Guanylate kinase is a member of the nucleoside monophosphate (NMP) kinase family, a family of enzymes that despite having a low primary structure identity share a similar fold, which consists of three structurally distinct regions termed the CORE, LID, and NMP-binding regions. Previous studies on the yeast enzyme have shown that these parts move as rigid bodies upon substrate binding. It has been proposed that consecutive binding of substrates leads to "closing" of the active site bringing the NMP-binding and LID regions closer to each other and to the CORE region. Our structure, which is the first of any guanylate kinase with both substrates bound, supports this hypothesis. It also reveals the binding site of ATP and implicates arginines 44, 137, and 148 (in addition to the invariant P-loop lysine) as candidates for catalyzing the chemical step of the phosphoryl transfer.  相似文献   

17.
A new class of phosphate and phosphonate prodrugs, called HepDirect? prodrugs, has been developed to deliver drugs to the liver while simultaneously diminishing drug exposure to extra-hepatic tissues. The technology combines liver-selective cleavage and kinase by pass with high plasma and tissue stability to achieve increased drug levels in the liver. Lamivudine (LMV), a nucleoside analogue, is a currently approved treatment for hepatitis B infection, but shows modest efficacy and significant drug resistance due to inefficient phosphorylation. LMV is inadequately phosphorylated to the corresponding nucleoside triphosphate in rat and human hepatocytes. A HepDirect prodrug of LMV monophosphate generated 34-fold higher levels of the triphosphate in rat hepatocytes and 320-fold higher triphosphate levels in the liver of treated rats relative to LMV.  相似文献   

18.
A novel prodrug strategy for cyclin-dependent kinase inhibitor JNJ-7706621 has been explored. Through N-acylation of a sulfonamide substituent, tails containing different solubilizing groups (amino, carboxyl, alkoxyl, and hydroxyl) were attached to JNJ-7706621. Most of the prodrugs exhibited good aqueous solubility and the N-acyl groups on the sulfonamide were metabolically cleaved to generate active drug in rat PK study.  相似文献   

19.
Protein malnutrition (PM) is a major health problem in the world. PM compromises antioxidant defense in the body. In particular, PM decreases tissue glutathione (GSH) levels. A high protein diet was found to restore tissue GSH levels in animal studies, however it is not recommended for the early phase of PM rehabilitation. Therefore, using dietary supplementation to restore tissue GSH without giving a high protein diet may be an adjunct therapy that helps improve antioxidant status during the early rehabilitation of PM. In this study, we systematically compared the efficacy of dietary supplementation of four cysteine prodrugs: N-acetylcysteine, L-2-oxo-4-thiazolidine-carboxylate, methionine, and GSH, on tissue GSH in mice fed a protein-deficient (0.5%) diet. Results showed that dietary supplementation of cysteine prodrugs to PM mice restored GSH levels in liver, lung, heart and spleen, but not in colon. GSH and GSSG levels in brain and kidney were not affected by cysteine prodrug or PM. Supplementation also restored the redox status in liver and heart (based on GSH/GSSG), and in liver and spleen (based on GSSG/2GSH reduction potential). This suggests that the restoration of GSH levels and redox status by cysteine prodrugs are tissue-specific, and that the two indicators of redox status are not always interchangeable. However, all four prodrugs exhibited similar GSH-enhancing capacities, showing no prodrug-specificity as seen in cell culture studies. In conclusion, this study provided information that may be useful in a clinical setting where a short-term oral supplementation of cysteine prodrugs is necessary for the early rehabilitation of PM patients.  相似文献   

20.
Human deoxycytidine kinase (dCK) phosphorylates the natural deoxyribonucleosides deoxycytidine (dC), deoxyguanosine (dG) and deoxyadenosine (dA) and is an essential enzyme for the phosphorylation of numerous nucleoside analog prodrugs routinely used in cancer and antiviral chemotherapy. For many of these compounds, the phosphorylation step catalyzed by dCK is the rate-limiting step in their overall activation pathway. To determine the factors that limit the phosphorylation efficiency of the prodrug, we solved the crystal structure of dCK to a resolution of 1.6 A in complex with its physiological substrate deoxycytidine and with the prodrugs AraC and gemcitabine. The structures reveal the determinants of dCK substrate specificity. Especially relevant to new prodrug development is the interaction between Arg128 and the hydrogen-bond acceptor at the sugar 2'-arabinosyl position of AraC and gemcitabine. On the basis of the structures, we designed a catalytically superior dCK variant that could be used in suicide gene-therapy applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号