首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ketogenesis, inferred by the production of acetoacetate plus ß‐hydroxybutyrate, in isolated perfused livers from 24‐h fasted diabetic rats submitted to short‐term insulin‐induced hypoglycemia (IIH) was investigated. For this purpose, alloxan‐diabetic rats that received intraperitoneal regular insulin (IIH group) or saline (COG group) injection were compared. An additional group of diabetic rats which received oral glucose (gavage) (100 mg kg?1) 15 min after insulin administration (IIH + glucose group) was included. The studies were performed 30 min after insulin (1.0 U kg?1) or saline injection. The ketogenesis before octanoate infusion was diminished (p < 0.05) in livers from rats which received insulin (COG vs. IIH group) or insulin plus glucose (COG vs. IIH + glucose group). However, the liver ketogenic capacity during the infusion of octanoate (0.3 mM) was maintained (COG vs. IIH group and COG vs. IIH + glucose group). In addition, the blood concentration of ketone bodies was not influenced by the administration of insulin or insulin plus glucose. Taken together, the results showed that inspite the fact that insulin and glucose inhibits ketogenesis, livers from diabetic rats submitted to short‐term IIH which received insulin or insulin plus glucose showed maintained capacity to produce acetoacetate and ß‐hydroxybutyrate from octanoate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Gluconeogenesis and ketogenesis of in situ rat perfused liver submitted to short-term insulin-induced hypoglycaemia (IIH) were investigated. For this purpose, 24-h fasted rats that received intraperitoneal (ip) regular insulin (1.0 U kg(-1)) or saline were compared. The studies were performed 30 min after insulin (IIH group) or saline (COG group) injection. For gluconeogenesis studies, livers from the IIH and COG groups were perfused with increasing concentrations (from basal blood concentrations until saturating concentration) of glycerol, L-lactate (Lac) or pyruvate (Pyr). Livers of the IIH group showed maintained efficiency to produce glucose from glycerol and higher efficiency to produce glucose from Lac and Pyr. In agreement with these results the oral administration of glycerol (100 mg kg(-1)), Lac (100 mg kg(-1)), Pyr (100 mg kg(-1)) or glycerol (100 mg kg(-1)) + Lac (100 mg kg(-1)) + Pyr (100 mg kg(-1)) promoted glycaemia recovery. It can be inferred that the increased portal availability of Lac, Pyr and glycerol could help glycaemia recovery by a mechanism mediated, partly at least, by a maintained (glycerol) or increased (Lac and Pyr) hepatic efficiency to produce glucose. Moreover, in spite of the fact that insulin inhibits ketogenesis, the capacity of the liver to produce ketone bodies from octanoate during IIH was maintained.  相似文献   

3.
We previously demonstrated an increased liver gluconeogenesis (LG) during insulin‐induced hypoglycaemia. Thus, an expected effect of sulphonylureas induced hypoglycaemia (SIH) could be the activation of LG. However, sulphonylureas infused directly in to the liver inhibits LG. Considering these opposite effects we investigated herein LG in rats submitted to SIH. For this purpose, 24 h fasted rats that received glibenclamide (10 mg kg?1) were used (SIH group). Control group received oral saline. Glycaemia at 30, 60, 90, 120 and 150 min after oral administration of glibenclamide were evaluated. Since the lowest glycaemia was obtained 120 min after glibenclamide administration, this time was chosen to investigate LG in situ perfused livers. The gluconeogenesis from precursors that enters in this metabolic pathway before the mitochondrial step, i.e. L ‐alanine (5 mM), L ‐lactate (2 mM), pyruvate (5 mM) and L ‐glutamine were decreased (p < 0·05). However, the gluconeogenic activity using glycerol (2 mM), which enters in the gluconeogenesis after the mitochondrial step was maintained. Taken together, the results suggest that the inhibition of LG promoted by SIH overcome the activation of this metabolic pathway promoted by IIH and could be attributed, at least in part, to its effect on mitochondrial function. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
The acute effects of isolated and combined L-alanine (L-Ala) and L-glutamine (L-Gln) on liver gluconeogenesis, ureagenesis and glycaemic recovery during short-term insulin-induced hypoglycaemia (IIH) were investigated. For this purpose, 24-h fasted rats that received intraperitoneal injection of regular insulin (1.0 U/Kg) were investigated. The control group (COG group) were represented by rats which received saline. The studies were performed 30 min after insulin (IIH group) or saline (COG group) injection. Livers from IIH and COG groups were perfused with basal or saturating levels of L-Ala, L-Gln or L-Gln + L-Ala (L-G + L-A). The production of glucose, urea, L-lactate and pyruvate in livers from IIH and COG group were markedly increased (p < 0.001) when perfused with saturating levels of L-Ala, L-Gln or L-G + L-A compared with basal levels of the same substrates. In addition, livers from IIH rats showed greater ability in producing glucose and urea from saturating levels of L-Ala compared with L-Gln or L-G + L-A. In agreement with these results, the oral administration of L-Ala (100 mg/kg) promoted better glycaemic recovery than L-Gln (100 mg/kg) or the combination of L-G (50 mg/kg) + L-A (50 mg/kg). It can be concluded that L-Ala, but not L-Gln or L-G + L-A could help glycaemic recovery by a mechanism mediated, partly at least, by the increased gluconeogenic and ureagenic efficiency of L-Ala.  相似文献   

5.
It is well established that the development of insulin resistance shows a temporal sequence in different organs and tissues. Moreover, considering that the main aspect of insulin resistance in liver is a process of glucose overproduction from gluconeogenesis, we investigated if this metabolic change also shows temporal sequence. For this purpose, a well‐established experimental model of insulin resistance induced by high‐fat diet (HFD) was used. The mice received HFD (HFD group) or standard diet (COG group) for 1, 7, 14 or 56 days. The HFD group showed increased (P < 0.05 versus COG) epididymal, retroperitoneal and inguinal fat weight from days 1 to 56. In agreement with these results, the HFD group also showed higher body weight (P < 0.05 versus COG) from days 7 to 56. Moreover, the changes induced by HFD on liver gluconeogenesis were progressive because the increment (P < 0.05 versus COG) in glucose production from l ‐lactate, glycerol, l ‐alanine and l ‐glutamine occurred 7, 14, 56 and 56 days after the introduction of the HFD schedule, respectively. Furthermore, glycaemia and cholesterolemia increased (P < 0.05 versus COG) 14 days after starting the HFD schedule. Taken together, the results suggest that the intensification of liver gluconeogenesis induced by an HFD is not a synchronous ‘all‐or‐nothing process’ but is specific for each gluconeogenic substrate and is integrated in a temporal manner with the progressive augmentation of fasting glycaemia. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, the contribution of liver glycogenolysis and gluconeogenesis in the defense against short-term insulin induced hypoglycemia (IIH) was investigated. For this purpose, we used an experimental model in which IIH was obtained by administering an IP injection of a pharmacological dose (1 U/kg) of regular insulin to rats that had been deprived of food for a period of six hours. This experimental model is suitable to study the simultaneous participation of glycogen breakdown and gluconeogenesis in the defense against IIH. The livers of IIH rats showed insignificant changes in the glycogen concentration, total phosphorylase, active phosphorylase, and percent of active phosphorylase. Our results also indicated that the livers of IIH rats that received the concentration of L-alanine, L-glutamine, L-lactate, or glycerol found in the blood during IIH (basal values) showed negligible glucose production. Nonetheless, glucose, urea, and pyruvate production increased (P<0.05) if the livers were perfused with a saturating concentration of gluconeogenic precursors. In agreement with these results, IIH rats that received intragastric L-alanine, L-glutamine, or L-lactate showed increased (P<0.05) glycemia 30 min after the administration of these substances. However, when using glycerol, higher glycemia (P<0.05) was observed at 2 and 5 min, but not 30 min after the administration of this hepatic gluconeogenic precursor. Thus, we can conclude that the oral availability of gluconeogenic precursors could allow for their use as important antidote in the defense against IIH.  相似文献   

7.
Summary. Our purpose was to determine the blood amino acid concentration during insulin induced hypoglycemia (IIH) and examine if the administration of alanine or glutamine could help glycemia recovery in fasted rats. IIH was obtained by an intraperitoneal injection of regular insulin (1.0 U/kg). The blood levels of the majority of amino acids, including alanine and glutamine were decreased (P < 0.05) during IIH and this change correlates well with the duration than the intensity of hypoglycemia. On the other hand, the oral and intraperitoneal administration of alanine (100 mg/kg) or glutamine (100 mg/kg) accelerates glucose recovery. This effect was partly at least consequence of the increased capacity of the livers from IIH group to produce glucose from alanine and glutamine. It was concluded that the blood amino acids availability during IIH, particularly alanine and glutamine, play a pivotal role in recovery from hypoglycemia.  相似文献   

8.
Synthesis of phosphoenolpyruvate (PEP) from oxaloacetate is an absolute requirement for gluconeogenesis from mitochondrial substrates. Generally, this reaction has solely been attributed to the cytosolic isoform of PEPCK (PEPCK-C), although loss of the mitochondrial isoform (PEPCK-M) has never been assessed. Despite catalyzing the same reaction, to date the only significant role reported in mammals for the mitochondrial isoform is as a glucose sensor necessary for insulin secretion. We hypothesized that this nutrient-sensing mitochondrial GTP-dependent pathway contributes importantly to gluconeogenesis. PEPCK-M was acutely silenced in gluconeogenic tissues of rats using antisense oligonucleotides both in vivo and in isolated hepatocytes. Silencing PEPCK-M lowers plasma glucose, insulin, and triglycerides, reduces white adipose, and depletes hepatic glycogen, but raises lactate. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knock-out livers, hepatocytes from PEPCK-M-deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis, and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism.  相似文献   

9.
The activities of glycogen phosphorylase and synthase during infusions of glucagon, isoproterenol, or cyanide in isolated liver of fed rats submitted to short-term insulin-induced hypoglycemia (IIH) was investigated. A condition of hyperinsulinemia/hypoglycemia was obtained with an intraperitoneal injection of regular insulin (1.0 U kg(-1)). The control group received ip saline. The experiments were carried out 60 min after insulin (IIH group) or saline (COG group) injection. The rats were anesthetized and after laparotomy, blood was collected from the vena cava for glucose and insulin measurements. The liver was then infused with glucagon (1 nM), isoproterenol (2 microM), or cyanide (0.5 mM) during 20 min and a sample of the organ was collected for determination of the activities of glycogen phosphorylase and synthase 5 min after starting and 10 min after stopping the infusions. The infusions of cyanide, glucagons, and isoproterenol did not change the activities of glycogen synthase and glycogen phosphorylase. However, glycogen catabolism was decreased during the infusions of glucagon and isoproterenol in IIH rats, being more intense with isoproterenol (p < 0.05), than glucagon. It was concluded that short-term IIH promoted changes in the liver responsiveness of glycogen degradation induced by glucagon and isoproterenol without a change in the activities of glycogen phosphorylase and synthase.  相似文献   

10.
The metabolic effects of sodium dichloroacetate in the starved rat   总被引:11,自引:10,他引:1       下载免费PDF全文
1. Sodium dichloroacetate (300mg/kg body wt. per h) was infused in 24h-starved rats for 4h. 2. Blood glucose decreased significantly, an effect that had previously only been noted in diabetic animals 3. Plasma insulin concentration decreased by 63%; blood lactate and pyruvate concentrations decreased by 50 and 33%, whereas concentrations of 3-hydroxybutyrate and acetoacetate increased by 81 and 73% respectively. 4. Livers were freeze-clamped at the end of the 4h infusion. There were significant decreases in hepatic [glucose], [glucose 6-phosphate], [2-phosphoglycerate], the [lactate]/[pyruvate] ratio, [citrate] and [malate], and also [alanine], [glutamate] and [glutamine], suggesting a diminished supply of gluconeogenic substrates. 5. Animals subjected to a functional hepatectomy at the end of 2h infusions showed no difference in blood-glucose disappearance but a highly significant decrease in the rate of accumulation of lactate, pyruvate, glycerol and alanine, compared with control animals. Dichloroacetate decreased ketone-body clearance. 6. After functional hepatectomy an increase in glutamine accumulation appeared to compensate for the decrease in alanine accumulation. 7. It is concluded that dichloroacetate causes hypoglycaemia by decreasing the net release of gluconeogenic precursors from extrahepatic tissues while inhibiting peripheral ketone-body uptake. 8. These findings are consistent with the activation of pyruvate dehydrogenase (EC 1.2.4.1) in rat muscle by dichloroacetate previously described by Whitehouse & Randle (1973).  相似文献   

11.
Summary Isolated hepatocyte preparations from fed immature American eels,Anguilla rostrata Le Sueur, were used to study gluconeogenic, lipogenic, glycogenic and oxidative rates of radioactively labelled lactate, glycerol, alanine and aspartate. Eel hepatocytes maintain membrane integrity and energy charge during a 2 h incubation period and are considered a viable preparation for studying fish liver metabolism.Incubating eel hepatocytes with 10 mM substrates, the following results were obtained: glycerol, alanine and lactate, in that order, were effective gluconeogenic substrates; these three substrates reduced glucose release from glycogen stores, while aspartate had no such effect; lactate, alanine and aspartate led to high rates of glycerol production, with subsequent incorporation into lipid; incorporation into glycogen was low from all substrates; and, alanine oxidation was seven times higher than that observed with other substrates.When eel hepatocytes were incubated with low or physiological substrate concentrations gluconeogenic rates from lactate were twice those from alanine; rates from aspartate were very low. Glucagon stimulated lactate gluconeogenesis, but not amino acid gluconeogenesis, and had no significant effect on glycogenolysis. Cortisol increased gluconeogenic rates from 1 mM lactate.Thus, in the presence of adequate substrate, eel liver gluconeogenesis is preferentially stimulated relative to glycogenolysis to produce plasma glucose. These data support three important roles for gluconeogenesis: the recycling of muscle lactate, the synthesis of glucose from dietary amino acids to supplement glucose levels, and the production of glycerol for lipogenesis.This work was supported from operating grants to TWM from the National Research Council of Canada (A6944)  相似文献   

12.
Tumor necrosis factor α (TNFα) is a cytokine involved in many metabolic responses in both normal and pathological states. Considering that the effects of TNFα on hepatic gluconeogenesis are inconclusive, we investigated the influence of this cytokine in gluconeogenesis from various glucose precursors. TNFα (10 μg/kg) was intravenously injected in rats; 6 h later, gluconeogenesis from alanine, lactate, glutamine, glycerol, and several related metabolic parameters were evaluated in situ perfused liver. TNFα reduced the hepatic glucose production (p < 0.001), increased the pyruvate production (p < 0.01), and had no effect on the lactate and urea production from alanine. TNFα also reduced the glucose production (p < 0.01), but had no effect on the pyruvate production from lactate. In addition, TNFα did not alter the hepatic glucose production from glutamine nor from glycerol. It can be concluded that the TNFα inhibited hepatic gluconeogenesis from alanine and lactate, which enter in gluconeogenic pathway before the pyruvate carboxylase step, but not from glutamine and glycerol, which enter in this pathway after the pyruvate carboxylase step, suggesting an important role of this metabolic step in the changes mediated by TNFα.  相似文献   

13.
C W Kamp  K R Hornbrook 《Life sciences》1977,21(8):1067-1073
Gluconeogenesis was measured in parenchymal cells isolated from livers of rats 24 hours after carbon tetrachloride treatment. Glucose production from alanine and pyruvate was depressed, but glucose synthesis from lactate, glycerol, and fructose was unchanged by the haloalkane. Glucose-6-phosphatase activity was reduced 45%, but P-pyruvate carboxykinase and pyruvate carboxylase were not altered in activity. These results establish the gluconeogenic capabilities of cells which survive CCl4 treatment and suggest that the cells isolated are representative of damaged cells rather than a normal population.  相似文献   

14.
Rajasekar P  Anuradha CV 《Life sciences》2007,80(13):1176-1183
High fructose feeding (60 g/100 g diet) in rodents induces alterations in both glucose and lipid metabolism. The present study was aimed to evaluate whether intraperitoneal carnitine (CA), a transporter of fatty acyl-CoA into the mitochondria, could attenuate derangements in carbohydrate metabolizing enzymes and glucose overproduction in high fructose-diet fed rats. Male Wistar rats of body weight 150-160 g were divided into 4 groups of 6 rats each. Groups 1 and 4 animals received control diet while the groups 2 and 3 rats received high fructose-diet. Groups 3 and 4 animals were treated with CA (300 mg/Kg body weight/day, i.p.) for 30 days. At the end of the experimental period, levels of carnitine, glucose, insulin, lactate, pyruvate, glycerol, triglycerides and free fatty acids in plasma were determined. The activities of carbohydrate metabolizing enzymes and glycogen content in liver and muscle were assayed. Hepatocytes isolated from liver were studied for the gluconeogenic activity in the presence of substrates such as pyruvate, lactate, glycerol, fructose and alanine. Fructose-diet fed animals showed alterations in glucose metabolizing enzymes, increased circulating levels of gluconeogenic substrates and depletion of glycogen in liver and muscle. There was increased glucose output from hepatocytes of animals fed fructose-diet alone with all the gluconeogenic substrates. The abnormalities associated with fructose feeding such as increased gluconeogenesis, reduced glycogen content and other parameters were brought back to near normal levels by CA. Hepatocytes from these animals showed significant inhibition of glucose production from pyruvate (74.3%), lactate (65.4%), glycerol (69.6%), fructose (56.2%) and alanine (63.6%) as compared to CA untreated fructose-fed animals. The benefits observed could be attributed to the effect of CA on fatty acyl-CoA transport.  相似文献   

15.
The urea cycle was evaluated in perfused livers isolated from cachectic tumor-bearing rats (Walker-256 tumor). Urea production in livers of tumor-bearing rats was decreased in the presence of the following substrates: alanine, alanine + ornithine, alanine + aspartate, ammonia, ammonia + lactate, ammonia + pyruvate and glutamine. Urea production from arginine was higher in livers of tumor-bearing rats. No difference was found with aspartate, aspartate + ammonia, citrulline, citrulline + aspartate and glutamine + aspartate. Ammonia consumption was smaller in livers from cachectic rats when the substance was infused together with lactate and pyruvate. Glucose production was smaller in the cachectic condition only when alanine was the gluconeogenic substrate. Blood urea was higher in tumor-bearing rats, suggesting higher rates of urea production. The availability of aspartate seems to be critical for urea synthesis in the liver of tumor-bearing rats, which is possibly unable to produce this amino acid in sufficient amounts from endogenous sources. The liver of tumor-bearing rats may have a different exogenous substrate supply of nitrogenous compounds. Arginine could be one of these compounds in addition to aspartate which seems to be essential for an efficient ureogenesis in tumor-bearing rats.  相似文献   

16.
Rates of glucose synthesis from several substrates were examined in renal tubule fragments from hyperthyroid rats. A hyperthyroid state was induced by daily intraperitoneal injections of thyroxine (T4) (100 microg/100 g body weight) for 14 days. At the end of the experimental period, plasma triiodothyronine and T4 levels were six and eight times higher, respectively, than initial values. Hyperthyroid rats gained less weight and had lower blood glucose despite an increased food intake. In both control and hyperthyroid rats, rates of glucose production by renal tubule fragments were higher with glutamine and glycerol than with lactate, alanine, or glutamate. T4 treatment induced a significant increase in the de novo glucose synthesis from all substrates, except glutamine. The highest percent increase was obtained with alanine (64%), compared with 31-40% for glutamate, lactate, and glycerol. The T4 treatment induced increase in glucose synthesis by renal tubule fragments suggests that renal gluconeogenesis contributes to enhance glucose production in hyperthyroidism.  相似文献   

17.
Although metformin has been used to treat type 2 diabetes for several decades, the mechanism of its action on glucose metabolism remains controversial. To further assess the effect of metformin on glucose metabolism this work was undertaken to investigate the acute actions of metformin on glycogenolysis, glycolysis, gluconeogenesis, and ureogenesis in perfused rat livers. Metformin (5 mM) inhibited oxygen consumption and increased glycolysis and glycogenolysis in livers from fed rats. In perfused livers of fasted rats, the drug (concentrations higher than 1.0 mM) inhibited oxygen consumption and glucose production from lactate and pyruvate. Gluconeogenesis and ureogenesis from alanine were also inhibited. The cellular levels of ATP were decreased by metformin whereas the AMP levels of livers from fasted rats were increased. Taken together our results indicate that the energy status of the cell is probably compromised by metformin. The antihyperglycemic effect of metformin seems to be the result of a reduced oxidative phosphorylation without direct inhibition of key enzymatic activities of the gluconeogenic pathway. The AMP-activated protein kinase cascade could also be a probable target for metformin, which switches on catabolic pathways such as glycogenolysis and glycolysis, while switches off ATP consuming processes.  相似文献   

18.
Extrahepatic glucose release was evaluated during the anhepatic phase of liver transplantation in 14 recipients for localized hepatocarcinoma with mild or absent cirrhosis, who received a bolus of [6,6-2H2]glucose and l-[3-13C]alanine or l-[1,2-13C2]glutamine to measure glucose kinetics and to prove whether gluconeogenesis occurred from alanine and glutamine. Twelve were studied again 7 mo thereafter along with seven healthy subjects. At the beginning of the anhepatic phase, plasma glucose was increased and then declined by 15%/h. The right kidney released glucose, with an arteriovenous gradient of -3.7 mg/dl. Arterial and portal glucose concentrations were similar. The glucose clearance was 25% reduced, but glucose uptake was similar to that of the control groups. Glucose production was 9.5 +/- 0.9 micromol.kg-1. min-1, 30% less than in controls. Glucose became enriched with 13C from alanine and especially glutamine, proving the extrahepatic gluconeogenesis. The gluconeogenic precursors alanine, glutamine, lactate, pyruvate, and glycerol, insulin, and the counterregulatory hormones epinephrine, cortisol, growth hormone, and glucagon were increased severalfold. Extrahepatic organs synthesize glucose at a rate similar to that of postabsorptive healthy subjects when hepatic production is absent, and gluconeogenic precursors and counterregulatory hormones are markedly increased. The kidney is the main, but possibly not the unique, source of extrahepatic glucose production.  相似文献   

19.
Glucose production was studied in isolated hepatocytes using various substrates and with increasing substrate concentrations (0-10 mM). Fructose was the best gluconeogenic substrate while other substrates studied stimulated net glucose production in the following decreasing order: lactate, pyruvate, glycerol, galactose, alanine, and succinate. Studies on oxygen consumption showed that endogenous respiration was linear for 60 min and was not altered by extracellular calcium. Studies on the incorporation of 14C-leucine into protein was linear for only 3-4 hr in cells containing low glycogen. However, cells containing high glycogen incorporated 14C-leucine into protein linearly for 8-10 hr. About 3 mg of protein per g per hr was synthesized by isolated cells when incubated for 4 hr with amino acids mixture, glucose, lactate, and insulin.  相似文献   

20.
Dietary iron deficiency in rats results in increased blood glucose turnover and recycling. We measured the rates of glucose production in isolated hepatocytes from iron-sufficient (Fe+) and iron-deficient (Fe-) rats to assess the intrinsic capacity of the Fe- liver to carry out gluconeogenesis. Low-iron and control diets were given to 21-day-old female rats. After 4-5 wk, hemoglobin concentrations averaged 4.1 g/dl in the Fe- and 14.3 g/dl in the Fe+ animals. In the hepatocytes from Fe- rats, there was a 35% decrease in the rate of glucose production from 1 mM pyruvate + 10 mM lactate, a 48% decrease from 0.1 mM pyruvate + 1 mM lactate, a 39% decrease from 1 mM alanine, and a 48% decrease from 1 mM glycerol. The addition of 5 microM norepinephrine or 0.5 microM glucagon to the incubation media produced stimulatory effects on hepatocytes from both Fe- and Fe+ rats, resulting in the maintenance of an average difference of 38% in the rates of gluconeogenesis between the two groups. Studies on isolated liver mitochondria and cytosol revealed alpha-glycerophosphate-cytochrome c reductase and phospho(enol)pyruvate carboxykinase activities to be decreased by 27% in Fe- rats. We conclude that because severe dietary iron deficiency decreases gluconeogenesis in isolated rat hepatocytes, the increased gluconeogenesis demonstrated by Fe- rats in vivo is attributable to increased availability of gluconeogenic substrates and upregulation of the pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号