首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because of safety concerns and product consistency issues with the use of animal‐derived collagen, several recombinant protein expression hosts have been considered for recombinant collagen corn seed. Full length, triple‐helical, recombinant collagen (rCIα1) is expressed as a fusion with a foldon domain, which must later be removed. Here we have examined integration of purification and foldon removal by comparing advantages of removal before or after purification, using salt precipitation as the main purification step. Because expression levels in available maize lines are low, Pichia‐produced recombinant collagens, both with and without foldon, were added to corn seed germ at the extraction step. Salt precipitation of an acidic corn seed extract yielded 100% of the collagen without foldon at >70% purity without the pepsin pretreatment. With pepsin pretreatment, yield was 94.0% with purity of 76.5%. Analysis of the protein molecular weight distribution of the pre‐ and post‐treatment extracts showed that the corn proteins are largely resistant to pepsin proteolysis, explaining why little benefit was obtained by pepsin treatment. In the absence of pepsin treatment, the recovery of rCIα1 with foldon was still above 90% but the purity was only 44%. This still represented at about 13‐fold purification with a 2.7‐fold volume reduction which would reduce the pepsin requirement for post‐recovery foldon cleavage. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:98–107, 2016  相似文献   

2.
Corn continues to be considered an attractive transgenic host for producing recombinant therapeutic and industrial proteins because of its potential for producing recombinant proteins at large volume and low cost as coproducts of corn seed‐based biorefining. Efforts to reduce production costs have been primarily devoted to increasing accumulation level, optimizing protein extraction conditions, and simplifying the purification. In the present work, we evaluated two grain fractionation methods, dry milling and wet milling, to enrich two recombinant collagen‐related proteins; thereby, reducing the amount and type of corn‐derived impurities in subsequent protein extraction and purification steps. The two proteins were a full‐length human recombinant collagen type I alpha 1(rCIα1) chain with telopeptides and peptide foldon to effect triple helix formation and a 44‐kDa rCIα1 fragment. For each, ~60% of the rCIα1s in the seed was recovered in the dry‐milled germ‐rich fractions making up ca. 25% of the total kernel mass. For wet milling, ~60% of each was recovered in three fractions accounting for 20–25% of the total kernel mass. The rCIα1s in the dry‐milled germ‐rich fractions were enriched three to six times compared with the whole corn kernel, whereas the rCIα1s were enriched 4–10 times in selected wet‐milled fractions. The recovered starch from wet milling was almost free of rCIα1. Therefore, it was possible to generate rCIα1‐enriched fractions by both dry and wet milling along with rCIα1‐free starch using wet milling. Because of its simplicity, the dry milling procedure could be accomplished on‐farm thus minimizing the risk of inadvertent release of viable transgenic seeds. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

3.
Collagen mimetic peptides (CMPs) have been used to elucidate the structure and stability of the triple helical conformation of collagen molecules. Although CMP homotrimers have been widely studied, very little work has been reported regarding CMP heterotrimers because of synthetic difficulties. Here, we present the synthesis and characterization of homotrimers and ABB type heterotrimers comprising natural and synthetic CMP sequences that are covalently tethered to a template, a tris(2‐aminoethyl) amine (TREN) succinic acid derivative. Various tethered heterotrimers comprising synthetic CMPs [(ProHypGly)6, (ProProGly)6] and CMPs representing specific domains of type I collagen were synthesized and characterized in terms of triple helical structure, thermal melting behavior, and refolding kinetics. The results indicated that CMPs derived from natural type I collagen sequence can form stable heterotrimeric helical complexes with artificial CMPs and that the thermal stability and the folding rate increase with the increasing number of helical stabilizing amino acids (e.g. Hyp) in the peptide chains. Covalent tethering enhanced the thermal stability and refolding kinetics of all CMPs; however, their relative values were not affected suggesting that the tethered system can be used for comparative study of heterotrimeric CMP's folding behavior in regards to chain composition and for characterization of thermally unstable CMPs. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 94–104, 2011.  相似文献   

4.
Collagen is the most abundant protein in the human body and thereby a structural protein of considerable biotechnological interest. The complex maturation process of collagen, including essential post-translational modifications such as prolyl and lysyl hydroxylation, has precluded large-scale production of recombinant collagen featuring the biophysical properties of endogenous collagen. The characterization of new prolyl and lysyl hydroxylase genes encoded by the giant virus mimivirus reveals a method for production of hydroxylated collagen. The coexpression of a human collagen type III construct together with mimivirus prolyl and lysyl hydroxylases in Escherichia coli yielded up to 90 mg of hydroxylated collagen per liter culture. The respective levels of prolyl and lysyl hydroxylation reaching 25 % and 26 % were similar to the hydroxylation levels of native human collagen type III. The distribution of hydroxyproline and hydroxylysine along recombinant collagen was also similar to that of native collagen as determined by mass spectrometric analysis of tryptic peptides. The triple helix signature of recombinant hydroxylated collagen was confirmed by circular dichroism, which also showed that hydroxylation increased the thermal stability of the recombinant collagen construct. Recombinant hydroxylated collagen produced in E. coli supported the growth of human umbilical endothelial cells, underlining the biocompatibility of the recombinant protein as extracellular matrix. The high yield of recombinant protein expression and the extensive level of prolyl and lysyl hydroxylation achieved indicate that recombinant hydroxylated collagen can be produced at large scale for biomaterials engineering in the context of biomedical applications.  相似文献   

5.
Bovine type I collagen consists of two α1 and one α2 chains, containing the internal triple helical regions and the N- and C-terminal telopeptides. In industries, it is frequently digested with porcine pepsin to produce a triple helical collagen without the telopeptides. However, the digestion mechanism is not precisely understood. Here, we performed a mass spectrometric analysis of the pepsin digest of the N-terminal telopeptide pQLSYGYDEKSTGISVP (1–16) in the α1 chain. When purified collagen was digested, pQLSYGY (1–6) and pQLSYGYDEKSTG (1–12) were identified, while DEKSTG (7–12) was not. When the N-terminal telopeptide mimetic synthetic peptide pQLSK(MOCAc)GYDEKSTGISK(Dnp)P-NH2 was digested, pQLSK(MOCAc)GYDEKSTG (1–12) and ISK(Dnp)P-NH2 (13?16) were readily identified, pQLSK(MOCAc)GY (1?6) and DEKSTGISK(Dnp)P-NH2 (7?16) were weakly detected, and DEKSTG (7–12) was hardly identified. These results suggest that pepsin preferentially cleaves Tyr6–Asp7 and less preferentially Gly12–Ile13. They also suggest that the former cleavage requires native collagen structure, while the latter cleavage does not.  相似文献   

6.
We generated transgenic silkworms that synthesized human type I collagen α1 chain [α1(I) chain] in the middle silk glands and secreted it into cocoons. The initial content of the recombinant α1(I) chain in the cocoons of the transgenic silkworms was 0.8%. The IE1 gene, a trans‐activator from the baculovirus, was introduced into the transgenic silkworm to increase the content of the chain. We also generated silkworms homozygous for the transgenes. These manipulations increased the α1(I) chain content to 8.0% (4.24 mg per cocoon). The α1(I) chain was extracted and purified from the cocoons using a very simple method. The α1(I) chain contained no hydroxyprolines due to the absence of prolyl‐hydroxylase activity in the silk glands. Circular dichroism analysis showed that the secondary structure of the α1(I) chain is similar to that of denatured type I collagen, demonstrating the absence of the triple helical structure. Human skin fibroblasts were seeded on the α1(I) chain‐coated dishes. The cells attached and spread, although at decreased chain concentrations the spreading rate was lower than that of the collagen and gelatin. Cynomolgus monkey embryonic stem cells cultured on the α1(I) chain‐coated dishes maintained an undifferentiated state after 30 passages, and their pluripotency was confirmed by teratoma formation in severe combined immunodeficient mice. These results show that the recombinant human α1(I) chain is a promising candidate biomaterial as a high‐quality and safe gelatin substitute for cell culture. Biotechnol. Bioeng. 2010;106: 860–870. © 2010 Wiley Periodicals, Inc.  相似文献   

7.
It has been previously shown that dermis from subjects with hydroxylysine-deficient collagen contains approximately 5% of normal levels of hydroxylysine and sonicates of skin fibroblasts contain less than 15% of normal levels of collagen lysyl hydroxylase activity. However, cultures of dermal fibroblasts from two siblings with hydroxylysine-deficient collagen (Ehlers-Danlos Syndrome Type VI) compared to fibroblasts from normal subjects synthesize collagen containing approximately 50% of normal amounts of hydroxylysine. The lysyl hydroxylase deficient cultures synthesize both Type I and Type III collagen in the same proportion as control cultures. Both α1(I) and α2 chains are similarly reduced in hydroxylysine content. Collagen prolyl hydroxylation by normal and mutant cells is severely depressed without ascorbate but in all cultures collagen lysyl hydroxylation is the same with or without ascorbate supplementation. In mutant cells the rate of prolyl hydroxylation measured after release of inhibition by α,α′-dipyridyl is the same as in control cells. The rate of lysyl hydroxylation is reduced in mutant cells but only to approximately 50% of normal.  相似文献   

8.
Collagen biosynthesis is a complex process that begins with the association of three procollagen chains. A series of conserved intra- and interchain disulfide bonds in the carboxyl-terminal region of the procollagen chains, or C-propeptide, has been hypothesized to play an important role in the nucleation and alignment of the chains. We tested this hypothesis by analyzing the ability of normal and cysteine-mutated pro-α2(I) chains to assemble into type I collagen heterotrimers when expressed in a cell line (D2) that produces only endogenous pro-α1(I). Pro-α2(I) chains containing single or double cysteine mutations that disrupted individual intra- or interchain disulfide bonds were able to form pepsin resistant type I collagen with pro-α1(I), indicating that individual disulfide bonds were not critical for assembly of the pro-α2(I) chain with pro-α1(I). Pro-α2(I) chains containing a triple cysteine mutation that disrupted both intrachain disulfide bonds were not able to form pepsin resistant type I collagen with pro-α1(I). Therefore, disruption of both pro-α2(I) intrachain disulfide bonds prevented the production and secretion of type I collagen heterotrimers. Although none of the individual disulfide bonds is essential for assembly of the procollagen chains, the presence of at least one intrachain disulfide bond may be necessary as a structural requirement for chain association or to stabilize the protein to prevent intracellular degradation. J.Cell. Biochem. 71:233–242, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
Collagen is a potent adhesive substrate for cells, an event essentially mediated by the integrins alpha 1 beta 1 and alpha 2 beta 1. Collagen fibrils also bind to the integrin alpha 2 beta 1 and the platelet receptor glycoprotein VI to activate and aggregate platelets. The distinct triple helical recognition motifs for these receptors, GXOGER and (GPO)n, respectively, all contain hydroxyproline. Using unhydroxylated collagen I produced in transgenic plants, we investigated the role of hydroxyproline in the receptor-binding properties of collagen. We show that alpha 2 beta 1 but not alpha 1 beta 1 mediates cell adhesion to unhydroxylated collagen. Soluble recombinant alpha 1 beta 1 binding to unhydroxylated collagen is considerably reduced compared with bovine collagens, but binding can be restored by prolyl hydroxylation of recombinant collagen. We also show that platelets use alpha 2 beta 1 to adhere to the unhydroxylated recombinant molecules, but the adhesion is weaker than on fully hydroxylated collagen, and the unhydroxylated collagen fibrils fail to aggregate platelets. Prolyl hydroxylation is thus required for binding of collagen to platelet glycoprotein VI and to cells by alpha 1 beta 1. These observations give new insights into the molecular basis of collagen-receptor interactions and offer new selective applications for the recombinant unhydroxylated collagen I.  相似文献   

10.
Summary The action of hydralazine on collagen prolyl hydroxylation was studied in a cell culture system using WI-38 fibroblasts. The prolyl hydroxylation level was determined by a method involving the digestion of collagen by bacterial collagenase and the examination of specific peptides. The presence of low concentrations of hydralazine (0.2 mM) in both “young” and “old” fibroblast cultures strongly inhibited collagen prolyl hydroxylation. The degree of inhibition was greater in serum-deficient cultures. No significant improvement in the degree of hydroxylation was observed by increasing either ascorbate or iron levels in the hydralazine-containing cultures in which hydroxylation was inhibited. Some of the reported side effects of hydralazine seen in patients might be related to its inhibitory effects on mixed function oxidative (MFO) hydroxylation systems. While the ascorbate dependence of the prolyl hydroxylase system of WI-38 decreased with the “age” of the culture, hydralazine inhibition of hydroxylation was dramatic with cultures of all “ages”. This work was supported by NIH grants nos. AM15671, AM1675 and HD07376, and fellowship no. HD01998.  相似文献   

11.
The fibrillar collagen types I, II, and V/XI have recently been shown to have partially 3-hydroxylated proline (3Hyp) residues at sites other than the established primary Pro-986 site in the collagen triple helical domain. These sites showed tissue specificity in degree of hydroxylation and a pattern of D-periodic spacing. This suggested a contributory role in fibril supramolecular assembly. The sites in clade A fibrillar α1(II), α2(V), and α1(I) collagen chains share common features with known prolyl 3-hydroxylase 2 (P3H2) substrate sites in α1(IV) chains implying a role for this enzyme. We pursued this possibility using the Swarm rat chondrosarcoma cell line (RCS-LTC) found to express high levels of P3H2 mRNA. Mass spectrometry determined that all the additional candidate 3Hyp substrate sites in the pN type II collagen made by these cells were highly hydroxylated. In RNA interference experiments, P3H2 protein synthesis was suppressed coordinately with prolyl 3-hydroxylation at Pro-944, Pro-707, and the C-terminal GPP repeat of the pNα1(II) chain, but Pro-986 remained fully hydroxylated. Furthermore, when P3H2 expression was turned off, as seen naturally in cultured SAOS-2 osteosarcoma cells, full 3Hyp occupancy at Pro-986 in α1(I) chains was unaffected, whereas 3-hydroxylation of residue Pro-944 in the α2(V) chain was largely lost, and 3-hydroxylation of Pro-707 in α2(V) and α2(I) chains were sharply reduced. The results imply that P3H2 has preferred substrate sequences among the classes of 3Hyp sites in clade A collagen chains.  相似文献   

12.
Ascorbic acid stimulates secretion of type I collagen because of its role in 4-hydroxyproline synthesis, but there is some controversy as to whether secretion of type IV collagen is similarly affected. This question was examined in differentiated F9 cells, which produce only type IV collagen, by labeling proteins with [14C]proline and measuring collagen synthesis and secretion. Hydroxylation of proline residues in collagen was inhibited to a greater extent in cells treated with the iron chelator α,α′-dipyridyl (97.7%) than in cells incubated without ascorbate (63.1%), but both conditions completely inhibited the rate of collagen secretion after 2–4 h, respectively. Neither treatment affected laminin secretion. Collagen synthesis was not stimulated by ascorbate even after treatment for 2 days. On SDS polyacrylamide gels, collagen produced by α,α′-dipyridyl-treated cells consisted mainly of a single band that migrated faster than either fully (+ ascorbate) or partially (− ascorbate) hydroxylated α1(IV) or α2(IV) chains. It did not contain interchain disulfide bonds or asn-linked glycosyl groups, and was completely digested by pepsin at 15°C. These results suggested that it was a degraded product lacking the 7 S domain and that it could not form a triple helical structure. In contrast, the partially hydroxylated molecule contained interchain disulfide bonds and it was cleaved by pepsin to collagenous fragments similar in size to those obtained from the fully hydroxylated molecule, but at a faster rate. Kinetic experiments and monensin treatment suggested that completely unhydroxylated type IV collagen was degraded intracellularly in the endoplasmic reticulum or cis Golgi. These studies indicate that partial hydroxylation of type IV collagen confers sufficient helical structure to allow interchain disulfide bond formation and resistance to pepsin and intracellular degradation, but not sufficient for optimal secretion. J Cell. Biochem. 67:338–352, 1997. Published 1997 Wiley-Liss, Inc.  相似文献   

13.
We established stably transfected insect cell lines containing cDNAs encoding the alpha and beta subunits of human prolyl 4-hydroxylase in both Trichoplusia ni and Drosophila melanogaster S2 cells. The expression level and enzymatic activity of recombinant prolyl 4-hydroxylase produced in the Drosophila expression system were significantly higher than those produced in the T. ni system. We further characterized the involvement of prolyl 4-hydroxylase in the assembly of the three alpha chains to form trimeric type XXI minicollagen, which comprises the intact C-terminal non-collagenous (NC1) and collagenous domain (COL1), in the Drosophila system. When minicollagen XXI was stably expressed in Drosophila S2 cells alone, negligible amounts of interchain disulfide-bonded trimers were detected in the culture media. However, minicollagen XXI was secreted as disulfide-bonded homotrimers by coexpression with prolyl 4-hydroxylase in the stably transfected Drosophila S2 cells. Minicollagen XXI coexpressed with prolyl 4-hydroxylase contained sufficient amounts of hydroxyproline to form thermal stable pepsin-resistant triple helices consisting of both interchain and non-interchain disulfide-bonded trimers. These results demonstrate that a sufficient amount of active prolyl 4-hydroxylase is required for the assembly of type XXI collagen triple helices in Drosophila cells and the trimeric assembly is governed by the C-terminal collagenous domain.  相似文献   

14.
The single‐crystal structure of the collagen‐like peptide (Pro‐Pro‐Gly)4‐Hyp‐Asp‐Gly‐(Pro‐Pro‐Gly)4, was analyzed at 1.02 Å resolution. The overall average helical twist (θ = 49.6°) suggests that this peptide adopts a 7/2 triple‐helical structure and that its conformation is very similar to that of (Gly‐Pro‐Hyp)9, which has the typical repeating sequence in collagen. High‐resolution studies on other collagen‐like peptides have shown that imino acid‐rich sequences preferentially adopt a 7/2 triple‐helical structure (θ = 51.4°), whereas imino acid‐lean sequences adopt relaxed conformations (θ < 51.4°). The guest Gly‐Hyp‐Asp sequence in the present peptide, however, has a large helical twist (θ = 61.1°), whereas that of the host Pro‐Pro‐Gly sequence is small (θ = 46.7°), indicating that the relationship between the helical conformation and the amino acid sequence of such peptides is complex. In the present structure, a strong intermolecular hydrogen bond between two Asp residues on the A and B strands might induce the large helical twist of the guest sequence; this is compensated by a reduced helical twist in the host, so that an overall 7/2‐helical symmetry is maintained. The Asp residue in the C strand might interact electrostatically with the N‐terminus of an adjacent molecule, causing axial displacement, reminiscent of the D‐staggered structure in fibrous collagens. © 2013 Wiley Periodicals, Inc. Biopolymers 99: 436–447, 2013.  相似文献   

15.
We have identified an infant with the perinatal lethal form of osteogenesis imperfecta (type II) whose cells synthesize in equal amounts two different pro alpha 1(I) chains of type I procollagen: one chain is normal in length, the other contains an insertion of approximately 50-70 amino acid residues within the triple helical domain defined by amino acids 123-220. The structure of the insertion is consistent with duplication of an approximately 600-base pair segment in one allele of the alpha 1(I) gene (COL1A1). These cells synthesize normal type I procollagen molecules as well as molecules that contain one or two mutant chains. Unlike type I procollagen molecules synthesized by cells from most other infants with osteogenesis imperfecta type II which contain increased lysyl hydroxylation and hydroxylysyl glycosylation along the triple helical domain, the abnormal molecules synthesized by these cells are not overmodified. The lethal effect of this mutation may result from secretion of about one-quarter the normal amount of normal type I procollagen and secretion of a large amount of a molecule which has a lowered melting temperature, is extended asymmetrically, and which has altered structure in domains important for cross-link formation and bone mineralization.  相似文献   

16.
Posttranslational modifications can cause profound changes in protein function. Typically, these modifications are reversible, and thus provide a biochemical on-off switch. In contrast, proline residues are the substrates for an irreversible reaction that is the most common posttranslational modification in humans. This reaction, which is catalyzed by prolyl 4-hydroxylase (P4H), yields (2S,4R)-4-hydroxyproline (Hyp). The protein substrates for P4Hs are diverse. Likewise, the biological consequences of prolyl hydroxylation vary widely, and include altering protein conformation and protein–protein interactions, and enabling further modification. The best known role for Hyp is in stabilizing the collagen triple helix. Hyp is also found in proteins with collagen-like domains, as well as elastin, conotoxins, and argonaute 2. A prolyl hydroxylase domain protein acts on the hypoxia inducible factor α, which plays a key role in sensing molecular oxygen, and could act on inhibitory κB kinase and RNA polymerase II. P4Hs are not unique to animals, being found in plants and microbes as well. Here, we review the enzymic catalysts of prolyl hydroxylation, along with the chemical and biochemical consequences of this subtle but abundant posttranslational modification.  相似文献   

17.
It has proven challenging to obtain collagen‐mimetic fibrils by protein design. We recently reported the self‐assembly of a mini‐fibril showing a 35 nm, D‐period like, axially repeating structure using the designed triple helix Col108. Peptide Col108 was made by bacterial expression using a synthetic gene; its triple helix domain consists of three pseudo‐identical units of amino acid sequence arranged in tandem. It was postulated that the 35 nm d‐period of Col108 mini‐fibrils originates from the periodicity of the Col108 primary structure. A mutual staggering of one sequence unit of the associating Col108 triple helices can maximize the inter‐helical interactions and produce the observed 35 nm d‐period. Based on this unit‐staggered model, a triple helix consisting of only two sequence units is expected to have the potential to form the same d‐periodic mini‐fibrils. Indeed, when such a peptide, peptide 2U108, was made it was found to self‐assemble into mini‐fibrils having the same d‐period of 35 nm. In contrast, no d‐periodic mini‐fibrils were observed for peptide 1U108, which does not have long‐range repeating sequences in its primary structure. The findings of the periodic mini‐fibrils of Col108 and 2U108 suggest a way forward to create collagen‐mimetic fibrils for biomedical and industrial applications.  相似文献   

18.
T Kimura  D J Prockop 《Biochemistry》1982,21(22):5482-5488
[14C]Proline-labeled protocollagen, the unhydroxylated form of procollagen, was isolated from cartilage cells incubated with alpha, alpha'-dipyridyl. For examination of the initial steps in the hydroxylation of the protein, it was incubated in vitro with prolyl hydroxylase so that an average of 1.3-2.7 prolyl residues per chain was hydroxylated. The partially hydroxylated alpha chain were cleaved with cyanogen bromide, and the fragments were separated by polyacrylamide gel electrophoresis or column chromatography. The cyanogen bromide fragments were hydroxylated to the same degree. The results indicated, therefore, that in the initial hydroxylation of alpha chains in vitro, there was no preferential hydroxylation of any specific regions of the protein. In a second series of experiments, cartilage cells were incubated with [14C]proline and alpha, alpha'-dipyridyl so that prolyl hydroxylase in the cells was extensively, but not completely, inhibited. Partially hydroxylated alpha chains were isolated, and cyanogen bromide fragments of the alpha chains from the cells were assayed for hydroxy[14C]proline. The alpha chains contained an average of two residues of hydroxyproline per chain, and the cyanogen bromide fragments were hydroxylated to about the same degree. The results indicated, therefore, that when prolyl hydroxylase activity in cells is low relative to the rate at which pro alpha chains are synthesized, hydroxylation of prolyl residues occurs as it does in vitro, and there is no preferential hydroxylation of a specific region of the protein.  相似文献   

19.
The C-propeptides of the pro alpha chains of type I and type III procollagens are believed to be essential for correct chain recognition and chain assembly in these molecules. We studied here whether the 30-kDa C-propeptides of the human pC alpha 1(I), pC alpha 2(I), and pC alpha 1(III) chains, i.e. pro alpha chains lacking their N-propeptides, can be replaced by foldon, a 29-amino acid sequence normally located at the C terminus of the polypeptide chains in the bacteriophage T4 fibritin. The alpha foldon chains were expressed in Pichia pastoris cells that also expressed the two types of subunit of human prolyl 4-hydroxylase; the foldon domain was subsequently removed by pepsin treatment, which also digests non-triple helical collagen chains, whereas triple helical collagen molecules are resistant to it. The foldon domain was found to be very effective in chain assembly, as expression of the alpha 1(I)foldon or alpha 1(III)foldon chains gave about 2.5-3-fold the amount of pepsin-resistant type I or type III collagen homotrimers relative to those obtained using the authentic C-propeptides. In contrast, expression of chains with no oligomerization domain led to very low levels of pepsin-resistant molecules. Expression of alpha 2(I)foldon chains gave no pepsin-resistant molecules at all, indicating that in addition to control at the level of the C-propeptide other restrictions at the level of the collagen domain exist that prevent the formation of stable [alpha 2(I)]3 molecules. Co-expression of alpha 1(I)foldon and alpha 2(I)foldon chains led to an efficient assembly of heterotrimeric molecules, their amounts being about 2-fold those obtained with the authentic C-propeptides and the alpha 1(I) to alpha 2(I) ratio being 1.91 +/- 0.31 (S.D.). As the foldon sequence contains no information for chain recognition, our data indicate that chain assembly is influenced not only by the C-terminal oligomerization domain but also by determinants present in the alpha chain domains.  相似文献   

20.
Substantial evidence supports the role of the procollagen C-propeptide in the initial association of procollagen polypeptides and for triple helix formation. To evaluate the role of the propeptide domains on triple helix formation, human recombinant type I procollagen, pN-collagen (procollagen without the C-propeptides), pC-collagen (procollagen without the N-propeptides), and collagen (minus both propeptide domains) heterotrimers were expressed in Saccharomyces cerevisiae. Deletion of the N- or C-propeptide, or both propeptide domains, from both proalpha-chains resulted in correctly aligned triple helical type I collagen. Protease digestion assays demonstrated folding of the triple helix in the absence of the N- and C-propeptides from both proalpha-chains. This result suggests that sequences required for folding of the triple helix are located in the helical/telopeptide domains of the collagen molecule. Using a strain that does not contain prolyl hydroxylase, the same folding mechanism was shown to be operative in the absence of prolyl hydroxylase. Normal collagen fibrils were generated showing the characteristic banding pattern using this recombinant collagen. This system offers new opportunities for the study of collagen expression and maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号