首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bantu languages are widely distributed throughout sub‐Saharan Africa. Genetic research supports linguists and historians who argue that migration played an important role in the spread of this language family, but the genetic data also indicates a more complex process involving substantial gene flow with resident populations. In order to understand the Bantu expansion process in east Africa, mtDNA hypervariable region I variation in 352 individuals from the Taita and Mijikenda ethnic groups was analyzed, and we evaluated the interactions that took place between the Bantu‐ and non‐Bantu‐speaking populations in east Africa. The Taita and Mijikenda are Bantu‐speaking agropastoralists from southeastern Kenya, at least some of whose ancestors probably migrated into the area as part of Bantu migrations that began around 3,000 BCE. Our analyses indicate that they show some distinctive differences that reflect their unique cultural histories. The Taita are genetically more diverse than the Mijikenda with larger estimates of genetic diversity. The Taita cluster with other east African groups, having high frequencies of haplogroups from that region, while the Mijikenda have high frequencies of central African haplogroups and cluster more closely with central African Bantu‐speaking groups. The non‐Bantu speakers who lived in southeastern Kenya before Bantu speaking groups arrived were at least partially incorporated into what are now Bantu‐speaking Taita groups. In contrast, gene flow from non‐Bantu speakers into the Mijikenda was more limited. These results suggest a more complex demographic history where the nature of Bantu and non‐Bantu interactions varied throughout the area. Am J Phys Anthropol 150:482–491, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
East Africa (EA) has witnessed pivotal steps in the history of human evolution. Due to its high environmental and cultural variability, and to the long‐term human presence there, the genetic structure of modern EA populations is one of the most complicated puzzles in human diversity worldwide. Similarly, the widespread Afro‐Asiatic (AA) linguistic phylum reaches its highest levels of internal differentiation in EA. To disentangle this complex ethno‐linguistic pattern, we studied mtDNA variability in 1,671 individuals (452 of which were newly typed) from 30 EA populations and compared our data with those from 40 populations (2970 individuals) from Central and Northern Africa and the Levant, affiliated to the AA phylum. The genetic structure of the studied populations—explored using spatial Principal Component Analysis and Model‐based clustering—turned out to be composed of four clusters, each with different geographic distribution and/or linguistic affiliation, and signaling different population events in the history of the region. One cluster is widespread in Ethiopia, where it is associated with different AA‐speaking populations, and shows shared ancestry with Semitic‐speaking groups from Yemen and Egypt and AA‐Chadic‐speaking groups from Central Africa. Two clusters included populations from Southern Ethiopia, Kenya and Tanzania. Despite high and recent gene‐flow (Bantu, Nilo‐Saharan pastoralists), one of them is associated with a more ancient AA‐Cushitic stratum. Most North‐African and Levantine populations (AA‐Berber, AA‐Semitic) were grouped in a fourth and more differentiated cluster. We therefore conclude that EA genetic variability, although heavily influenced by migration processes, conserves traces of more ancient strata. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

3.
The current distribution of Bantu languages is commonly considered to be a consequence of a relatively recent population expansion (3-5kya) in Central Western Africa. While there is a substantial consensus regarding the centre of origin of Bantu languages (the Benue River Valley, between South East Nigeria and Western Cameroon), the identification of the area from where the population expansion actually started, the relation between the processes leading to the spread of languages and peoples and the relevance of local migratory events remain controversial. In order to shed new light on these aspects, we studied Y chromosome variation in a broad dataset of populations encompassing Nigeria, Cameroon, Gabon and Congo. Our results evidence an evolutionary scenario which is more complex than had been previously thought, pointing to a marked differentiation of Cameroonian populations from the rest of the dataset. In fact, in contrast with the current view of Bantu speakers as a homogeneous group of populations, we observed an unexpectedly high level of interpopulation genetic heterogeneity and highlighted previously undetected diversity for lineages associated with the diffusion of Bantu languages (E1b1a (M2) sub-branches). We also detected substantial differences in local demographic histories, which concord with the hypotheses regarding an early diffusion of Bantu languages into the forest area and a subsequent demographic expansion and migration towards eastern and western Africa.  相似文献   

4.
This study analyzes the distribution of ten protein genetic polymorphisms in eighteen populations from the most densely inhabited areas of Cameroon. The languages spoken belong to three different linguistic families [Afro-Asiatic (AA), Nilo-Saharan (NS) and Niger-Kordofanian (NK)]. The analysis of variation of allele frequencies indicates that the level of genetic interpopulation differentiation is rather low (F(st) = 0.011 +/- 0.006) but statistically significant (p < 0.001). This result is not unexpected because of the relatively small geographic area covered by our survey. This value is also significantly lower than the one estimated for other groups of African populations. Among the factors responsible for this, we discuss the possible role of gene flow. There is a considerable genetic differentiation among the AA populations of north Cameroon as is to be expected because they all originated from the first agriculturists of the farming "savanna complex." The Podowko and Uldeme are considerably different from all the other AA groups, probably due to the combined effect of genetic drift and isolation. In the case of the Wandala and Massa, our analyses suggest that genetic admixture with allogeneous groups (especially with the Kanuri) played an important role in determining their genetic differentiation from other AA speaking groups. The Bantu speaking populations (Bakaka, Bamileke Bassa and Ewondo, NK family, Benué Congo subfamily) settled in western and southern Cameroon are more tightly clustered than AA speaking groups. This result shows that the linguistic affinity among these four populations coincides with a substantial genetic similarity despite their different origin. Finally, the Fulbe are genetically distinct from all the populations that belong to their same linguistic phylum (NK), and closer to the neighboring Fali and Tupuri, eastern Adamawa speaking groups of north Cameroon.  相似文献   

5.
Little is known about the history of click-speaking populations in Africa. Prior genetic studies revealed that the click-speaking Hadza of eastern Africa are as distantly related to click speakers of southern Africa as are most other African populations. The Sandawe, who currently live within 150 km of the Hadza, are the only other population in eastern Africa whose language has been classified as part of the Khoisan language family. Linguists disagree on whether there is any detectable relationship between the Hadza and Sandawe click languages. We characterized both mtDNA and Y chromosome variation of the Sandawe, Hadza, and neighboring Tanzanian populations. New genetic data show that the Sandawe and southern African click speakers share rare mtDNA and Y chromosome haplogroups; however, common ancestry of the 2 populations dates back >35,000 years. These data also indicate that common ancestry of the Hadza and Sandawe populations dates back >15,000 years. These findings suggest that at the time of the spread of agriculture and pastoralism, the click-speaking populations were already isolated from one another and are consistent with relatively deep linguistic divergence among the respective click languages.  相似文献   

6.
The expansion of Bantu languages represents one of the most momentous events in the history of Africa. While it is well accepted that Bantu languages spread from their homeland (Cameroon/Nigeria) approximately 5000 years ago (ya), there is no consensus about the timing and geographical routes underlying this expansion. Two main models of Bantu expansion have been suggested: The 'early-split' model claims that the most recent ancestor of Eastern languages expanded north of the rainforest towards the Great Lakes region approximately 4000 ya, while the 'late-split' model proposes that Eastern languages diversified from Western languages south of the rainforest approximately 2000 ya. Furthermore, it is unclear whether the language dispersal was coupled with the movement of people, raising the question of language shift versus demic diffusion. We use a novel approach taking into account both the spatial and temporal predictions of the two models and formally test these predictions with linguistic and genetic data. Our results show evidence for a demic diffusion in the genetic data, which is confirmed by the correlations between genetic and linguistic distances. While there is little support for the early-split model, the late-split model shows a relatively good fit to the data. Our analyses demonstrate that subsequent contact among languages/populations strongly affected the signal of the initial migration via isolation by distance.  相似文献   

7.
An understanding of the genetic affinity and the past history of the tribal populations of India requires the untangling of the confounding influences of language, ethnicity, and geography on the extant diverse tribes. The present study examines the genetic relationship of linguistically (Dravidian, Austro‐Asiatic, and Tibeto‐Burman) and ethnically (Australian and East Asian) diverse tribal populations (46) inhabiting different regions of the Indian subcontinent. For the purpose, we have utilized the published data on allele frequency of 15 autosomal STR loci of our study on six Adi sub‐tribes of Arunachal Pradesh and compared the same with the reported allele frequency data, for nine common autosomal STR loci, of 40 other tribes. Phylogenetic and principal component analyses exhibit geography based clustering of Tibeto‐Burman speakers and separation of the Mundari and Mon‐Khmer speaking Austro‐Asiatic populations. The combined analyses of all 46 populations show clustering of the groups belonging to same ethnicity and inhabiting contiguous geographic regions, irrespective of their different languages. These results help us to reconstruct and understand three plausible scenarios of the antiquity of Indian tribal populations: the Dravidian and Austro‐Asiatic (Mundari) tribes were possibly derived from common early settlers; the Tibeto‐Burman tribes possibly belonged to a different ancestry and the Mon‐Khmer speaking Austro‐Asiatic populations share a common ancestry with some of the Tibeto‐Burman speakers. Am J Phys Anthropol, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
The transformation from a foraging way of life to a reliance on domesticated plants and animals often led to the expansion of agropastoralist populations at the expense of hunter‐gatherers (HGs). In Africa, one of these expansions involved the Niger‐Congo Bantu‐speaking populations that started to spread southwards from Cameroon/Nigeria ~4,000 years ago, bringing agricultural technologies. Genetic studies have shown different degrees of gene flow (sometimes involving sex‐biased migrations) between Bantu agriculturalists and HGs. Although these studies have covered many parts of sub‐Saharan Africa, the central part (e.g. Zambia) was not yet studied, and the interactions between immigrating food‐producers and local HGs are still unclear. Archeological evidence from the Luangwa Valley of Zambia suggests a long period of coexistence (~1,700 years) of early food‐producers and HGs. To investigate if this apparent coexistence was accompanied by genetic admixture, we analyzed the mtDNA control region, Y chromosomal unique event polymorphisms, and 12 associated Y‐ short tandem repeats in two food‐producing groups (Bisa and Kunda) that live today in the Luangwa Valley, and compared these data with available published data on African HGs. Our results suggest that both the Bisa and Kunda experienced at most low levels of admixture with HGs, and these levels do not differ between the maternal and paternal lineages. Coalescent simulations indicate that the genetic data best fit a demographic scenario with a long divergence (62,500 years) and little or no gene flow between the ancestors of the Bisa/Kunda and existing HGs. This scenario contrasts with the archaeological evidence for a long period of coexistence between the two different communities in the Luangwa Valley, and suggests a process of sociocultural boundary maintenance may have characterized their interaction. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
《PloS one》2015,10(9)
The Slavic branch of the Balto-Slavic sub-family of Indo-European languages underwent rapid divergence as a result of the spatial expansion of its speakers from Central-East Europe, in early medieval times. This expansion–mainly to East Europe and the northern Balkans–resulted in the incorporation of genetic components from numerous autochthonous populations into the Slavic gene pools. Here, we characterize genetic variation in all extant ethnic groups speaking Balto-Slavic languages by analyzing mitochondrial DNA (n = 6,876), Y-chromosomes (n = 6,079) and genome-wide SNP profiles (n = 296), within the context of other European populations. We also reassess the phylogeny of Slavic languages within the Balto-Slavic branch of Indo-European. We find that genetic distances among Balto-Slavic populations, based on autosomal and Y-chromosomal loci, show a high correlation (0.9) both with each other and with geography, but a slightly lower correlation (0.7) with mitochondrial DNA and linguistic affiliation. The data suggest that genetic diversity of the present-day Slavs was predominantly shaped in situ, and we detect two different substrata: ‘central-east European’ for West and East Slavs, and ‘south-east European’ for South Slavs. A pattern of distribution of segments identical by descent between groups of East-West and South Slavs suggests shared ancestry or a modest gene flow between those two groups, which might derive from the historic spread of Slavic people.  相似文献   

10.
Linguistic divergence occurs after speech communities divide, in a process similar to speciation among isolated biological populations. The resulting languages are hierarchically related, like genes or species. Phylogenetic methods developed in evolutionary biology can thus be used to infer language trees, with the caveat that 'borrowing' of linguistic elements between languages also occurs, to some degree. Maximum-parsimony trees for 75 Bantu and Bantoid African languages were constructed using 92 items of basic vocabulary. The level of character fit on the trees was high (consistency index was 0.65), indicating that a tree model fits Bantu language evolution well, at least for the basic vocabulary. The Bantu language tree reflects the spread of farming across this part of sub-Saharan Africa between ca. 3000 BC and AD 500. Modern Bantu subgroups, defined by clades on parsimony trees, mirror the earliest farming traditions both geographically and temporally. This suggests that the major subgroups of modern Bantu stem from the Neolithic and Early Iron Age, with little subsequent movement by speech communities.  相似文献   

11.
The Khoisan populations of southern Africa are known to harbor some of the deepest‐rooting lineages of human mtDNA; however, their relationships are as yet poorly understood. Here, we report the results of analyses of complete mtDNA genome sequences from nearly 700 individuals representing 26 populations of southern Africa who speak diverse Khoisan and Bantu languages. Our data reveal a multilayered history of the indigenous populations of southern Africa, who are likely to be the result of admixture of different genetic substrates, such as resident forager populations and pre‐Bantu pastoralists from East Africa. We find high levels of genetic differentiation of the Khoisan populations, which can be explained by the effect of drift together with a partial uxorilocal/multilocal residence pattern. Furthermore, there is evidence of extensive contact, not only between geographically proximate groups, but also across wider areas. The results of this contact, which may have played a role in the diffusion of common cultural and linguistic features, are especially evident in the Khoisan populations of the central Kalahari. Am J Phys Anthropol 153:435–448, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Among the deepest-rooting clades in the human mitochondrial DNA (mtDNA) phylogeny are the haplogroups defined as L0d and L0k, which are found primarily in southern Africa. These lineages are typically present at high frequency in the so-called Khoisan populations of hunter-gatherers and herders who speak non-Bantu languages, and the early divergence of these lineages led to the hypothesis of ancient genetic substructure in Africa. Here we update the phylogeny of the basal haplogroups L0d and L0k with 500 full mtDNA genome sequences from 45 southern African Khoisan and Bantu-speaking populations. We find previously unreported subhaplogroups and greatly extend the amount of variation and time-depth of most of the known subhaplogroups. Our major finding is the definition of two ancient sublineages of L0k (L0k1b and L0k2) that are present almost exclusively in Bantu-speaking populations from Zambia; the presence of such relic haplogroups in Bantu speakers is most probably due to contact with ancestral pre-Bantu populations that harbored different lineages than those found in extant Khoisan. We suggest that although these populations went extinct after the immigration of the Bantu-speaking populations, some traces of their haplogroup composition survived through incorporation into the gene pool of the immigrants. Our findings thus provide evidence for deep genetic substructure in southern Africa prior to the Bantu expansion that is not represented in extant Khoisan populations.  相似文献   

13.
There is disagreement about the routes taken by populations speaking Bantu languages as they expanded to cover much of sub-Saharan Africa. Here, we build phylogenetic trees of Bantu languages and map them onto geographical space in order to assess the likely pathway of expansion and test between dispersal scenarios. The results clearly support a scenario in which groups first moved south through the rainforest from a homeland somewhere near the Nigeria–Cameroon border. Emerging on the south side of the rainforest, one branch moved south and west. Another branch moved towards the Great Lakes, eventually giving rise to the monophyletic clade of East Bantu languages that inhabit East and Southeastern Africa. These phylogenies also reveal information about more general processes involved in the diversification of human populations into distinct ethnolinguistic groups. Our study reveals that Bantu languages show a latitudinal gradient in covering greater areas with increasing distance from the equator. Analyses suggest that this pattern reflects a true ecological relationship rather than merely being an artefact of shared history. The study shows how a phylogeographic approach can address questions relating to the specific histories of certain groups, as well as general cultural evolutionary processes.  相似文献   

14.
We use archaeological data and spatial methods to reconstruct the dispersal of farming into areas of sub-Saharan Africa now occupied by Bantu language speakers, and introduce a new large-scale radiocarbon database and a new suite of spatial modelling techniques. We also introduce a method of estimating phylogeographic relationships from archaeologically-modelled dispersal maps, with results produced in a format that enables comparison with linguistic and genetic phylogenies. Several hypotheses are explored. The ‘deep split’ hypothesis suggests that an early-branching eastern Bantu stream spread around the northern boundary of the equatorial rainforest, but recent linguistic and genetic work tends not to support this. An alternative riverine/littoral hypothesis suggests that rivers and coastlines facilitated the migration of the first farmers/horticulturalists, with some extending this to include rivers through the rainforest as conduits to East Africa. More recently, research has shown that a grassland corridor opened through the rainforest at around 3000–2500 BP, and the possible effect of this on migrating populations is also explored. Our results indicate that rivers and coasts were important dispersal corridors, but do not resolve the debate about a ‘Deep Split’. Future work should focus on improving the size, quality and geographical coverage of the archaeological 14C database; on augmenting the information base to establish descent relationships between archaeological sites and regions based on shared material cultural traits; and on refining the associated physical geographical reconstructions of changing land cover.  相似文献   

15.
Native Americans are characterized by specific and unique patterns of genetic and cultural/linguistic diversities, and this information has been used to understand patterns of geographic dispersion, and the relationship between these peoples. Particularly interesting are the Tupi and Je speaker dispersions. At present, a large number of individuals speak languages of these two stocks; for instance, Tupi‐Guarani is one of the official languages in Paraguay, Bolivia, and the Mercosul economic block. Although the Tupi expansion can be compared in importance to the Bantu migration in Africa, little is known about this event relative to others. Equal and even deeper gaps exist concerning the Je‐speakers' expansion. This study aims to elucidate some aspects of these successful expansions. To meet this purpose, we analyzed Native American mtDNA complete control region from nine different populations and included HVS‐I sequences available in the literature, resulting in a total of 1,176 samples investigated. Evolutionary relationships were explored through median‐joining networks and genetic/geographic/linguistic correlations with Mantel tests and spatial autocorrelation analyses. Both Tupi and Je showed general traces of ancient or more recent fission – fusion processes, but a very different pattern of demographic expansion. Tupi populations displayed a classical isolation‐by‐distance pattern, while Je groups presented an intricate and nonlinear mode of dispersion. We suggest that the collective memory and other cultural processes could be important factors influencing the fission – fusion events, which likely contributed to the genetic structure, evolution, and dispersion of Native American populations. Am J Phys Anthropol, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
We study the major levels of Y-chromosome haplogroup variation in 15 Sudanese populations by typing major Y-haplogroups in 445 unrelated males representing the three linguistic families in Sudan. Our analysis shows Sudanese populations fall into haplogroups A, B, E, F, I, J, K, and R in frequencies of 16.9, 7.9, 34.4, 3.1, 1.3, 22.5, 0.9, and 13% respectively. Haplogroups A, B, and E occur mainly in Nilo-Saharan speaking groups including Nilotics, Fur, Borgu, and Masalit; whereas haplogroups F, I, J, K, and R are more frequent among Afro-Asiatic speaking groups including Arabs, Beja, Copts, and Hausa, and Niger-Congo speakers from the Fulani ethnic group. Mantel tests reveal a strong correlation between genetic and linguistic structures (r = 0.31, P = 0.007), and a similar correlation between genetic and geographic distances (r = 0.29, P = 0.025) that appears after removing nomadic pastoralists of no known geographic locality from the analysis. The bulk of genetic diversity appears to be a consequence of recent migrations and demographic events mainly from Asia and Europe, evident in a higher migration rate for speakers of Afro-Asiatic as compared with the Nilo-Saharan family of languages, and a generally higher effective population size for the former. The data provide insights not only into the history of the Nile Valley, but also in part to the history of Africa and the area of the Sahel.  相似文献   

17.
The Lemba are a traditionally endogamous group speaking a variety of Bantu languages who live in a number of locations in southern Africa. They claim descent from Jews who came to Africa from "Sena." "Sena" is variously identified by them as Sanaa in Yemen, Judea, Egypt, or Ethiopia. A previous study using Y-chromosome markers suggested both a Bantu and a Semitic contribution to the Lemba gene pool, a suggestion that is not inconsistent with Lemba oral tradition. To provide a more detailed picture of the Lemba paternal genetic heritage, we analyzed 399 Y chromosomes for six microsatellites and six biallelic markers in six populations (Lemba, Bantu, Yemeni-Hadramaut, Yemeni-Sena, Sephardic Jews, and Ashkenazic Jews). The high resolution afforded by the markers shows that Lemba Y chromosomes are clearly divided into Semitic and Bantu clades. Interestingly, one of the Lemba clans carries, at a very high frequency, a particular Y-chromosome type termed the "Cohen modal haplotype," which is known to be characteristic of the paternally inherited Jewish priesthood and is thought, more generally, to be a potential signature haplotype of Judaic origin. The Bantu Y-chromosome samples are predominantly (>80%) YAP+ and include a modal haplotype at high frequency. Assuming a rapid expansion of the eastern Bantu, we used variation in microsatellite alleles in YAP+ sY81-G Bantu Y chromosomes to calculate a rough date, 3,000-5,000 years before the present, for the start of their expansion.  相似文献   

18.
The Austroasiatic linguistic family disputes its origin between two geographically distant regions of Asia, India, and Southeast Asia, respectively. As genetic studies based on classical and gender-specific genetic markers provided contradictory results to this debate thus far, we investigated the HLA diversity (HLA-A, -B, and -DRB1 loci) of an Austroasiatic Munda population from Northeast India and its relationships with other populations from India and Southeast Asia. Because molecular methods currently used to test HLA markers often provide ambiguous results due to the high complexity of this polymorphism, we applied two different techniques (reverse PCR-SSO typing on microbeads arrays based on Luminex technology, and PCR-SSP typing) to type the samples. After validating the resulting frequency distributions through the original statistical method described in our companion article ( Nunes et al. 2011 ), we compared the HLA genetic profile of the sampled Munda to those of other Asiatic populations, among which Dravidian and Indo-European-speakers from India and populations from East and Southeast Asia speaking languages belonging to different linguistic families. We showed that the Munda from Northeast India exhibit a peculiar genetic profile with a reduced level of HLA diversity compared to surrounding Indian populations. They also exhibit less diversity than Southeast Asian populations except at locus DRB1. Several analyses using genetic distances indicate that the Munda are much more closely related to populations from the Indian subcontinent than to Southeast Asian populations speaking languages of the same Austroasiatic linguistic family. On the other hand, they do not share a closer relationship with Dravidians compared with Indo-Europeans, thus arguing against the idea that the Munda share a common and ancient Indian origin with Dravidians. Our results do not favor either a scenario where the Munda would be representative of an ancestral Austroasiatic population giving rise to an eastward Austroasiatic expansion to Southeast Asia. Rather, their peculiar genetic profile is better explained by a decrease in genetic diversity through genetic drift from an ancestral population having a genetic profile similar to present-day Austroasiatic populations from Southeast Asia (thus suggesting a possible southeastern origin), followed by intensive gene flow with neighboring Indian populations. This conclusion is in agreement with archaeological and linguistic information. The history of the Austroasiatic family represents a fascinating example where complex interactions among culturally distinct human populations occurred in the past.  相似文献   

19.
Situated along a corridor linking the Asian continent with the outer islands of the Pacific, Papua New Guinea has long played a key role in understanding the initial peopling of Oceania. The vast diversity in languages and unique geographical environments in the region have been central to the debates on human migration and the degree of interaction between the Pleistocene settlers and newer migrants. To better understand the role of Papua New Guinea in shaping the region's prehistory, we sequenced the mitochondrial DNA (mtDNA) control region of three populations, a total of 94 individuals, located in the East Sepik Province of Papua New Guinea. We analyzed these samples with a large data set of Oceania populations to examine the role of geography and language in shaping population structure within New Guinea and between the region and Island Melanesia. Our results from median‐joining networks, star‐cluster age estimates, and population genetic analyses show that while highland New Guinea populations seem to be the oldest settlers, there has been significant gene flow within New Guinea with little influence from geography or language. The highest genetic division is between Papuan speakers of New Guinea versus East Papuan speakers located outside of mainland New Guinea. Our study supports the weak language barriers to genetic structuring among populations in close contact and highlights the complexity of understanding the genetic histories of Papua New Guinea in association with language and geography. Am J Phys Anthropol 142:613–624, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
The hypothesis that both genetic and linguistic similarities among Eurasian and North African populations are due to demic diffusion of neolithic farmers is tested against a wide database of allele frequencies. Demic diffusion of farming and languages from the Near East should have determined clines in areas defined by linguistic criteria; the alternative hypothesis of cultural transmission does not predict clines. Spatial autocorrelation analysis shows significant gradients in three of the four linguistic families supposedly affected by neolithic demic diffusion; the Afroasiatic family is the exception. Many such gradients are not observed when populations are jointly analyzed, regardless of linguistic classification. This is incompatible with the hypothesis that major cultural transformations in Eurasia (diffusion of related languages and spread of agriculture) took place without major demographic changes. The model of demic diffusion seems therefore to provide a mechanism explaining coevolution of linguistic and biological traits in much of the Old World. Archaeological, linguistic, and genetic evidence agree in suggesting a multidirectional process of gene flow from the Near East in the neolithic. However, the possibility should be envisaged that some allele frequency patterns can predate the neolithic and depend on the initial spread of Homo sapiens sapiens from Africa into Eurasia. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号