首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent molecular studies have incorporated the parametric bootstrap method to test a priori hypotheses when the results of molecular based phylogenies are in conflict with these hypotheses. The parametric bootstrap requires the specification of a particular substitutional model, the parameters of which will be used to generate simulated, replicate DNA sequence data sets. It has been both suggested that, (a) the method appears robust to changes in the model of evolution, and alternatively that, (b) as realistic model of DNA substitution as possible should be used to avoid false rejection of a null hypothesis. Here we empirically evaluate the effect of suboptimal substitution models when testing hypotheses of monophyly with the parametric bootstrap using data sets of mtDNA cytochrome oxidase I and II (COI and COII) sequences for Macaronesian Calathus beetles, and mitochondrial 16S rDNA and nuclear ITS2 sequences for European Timarcha beetles. Whether a particular hypothesis of monophyly is rejected or accepted appears to be highly dependent on whether the nucleotide substitution model being used is optimal. It appears that a parameter rich model is either equally or less likely to reject a hypothesis of monophyly where the optimal model is unknown. A comparison of the performance of the Kishino–Hasegawa (KH) test shows it is not as severely affected by the use of suboptimal models, and overall it appears to be a less conservative method with a higher rate of failure to reject null hypotheses.  相似文献   

2.
Summary Permutation tests based on distances among multivariate observations have found many applications in the biological sciences. Two major testing frameworks of this kind are multiresponse permutation procedures and pseudo‐F tests arising from a distance‐based extension of multivariate analysis of variance. In this article, we derive conditions under which these two frameworks are equivalent. The methods and equivalence results are illustrated by reanalyzing an ecological data set and by a novel application to functional magnetic resonance imaging data.  相似文献   

3.
4.
Recently, although advances were made on modeling multivariate count data, existing models really has several limitations: (i) The multivariate Poisson log‐normal model (Aitchison and Ho, 1989) cannot be used to fit multivariate count data with excess zero‐vectors; (ii) The multivariate zero‐inflated Poisson (ZIP) distribution (Li et al., 1999) cannot be used to model zero‐truncated/deflated count data and it is difficult to apply to high‐dimensional cases; (iii) The Type I multivariate zero‐adjusted Poisson (ZAP) distribution (Tian et al., 2017) could only model multivariate count data with a special correlation structure for random components that are all positive or negative. In this paper, we first introduce a new multivariate ZAP distribution, based on a multivariate Poisson distribution, which allows the correlations between components with a more flexible dependency structure, that is some of the correlation coefficients could be positive while others could be negative. We then develop its important distributional properties, and provide efficient statistical inference methods for multivariate ZAP model with or without covariates. Two real data examples in biomedicine are used to illustrate the proposed methods.  相似文献   

5.
In scientific research, many hypotheses relate to the comparison of two independent groups. Usually, it is of interest to use a design (i.e., the allocation of sample sizes m and n for fixed ) that maximizes the power of the applied statistical test. It is known that the two‐sample t‐tests for homogeneous and heterogeneous variances may lose substantial power when variances are unequal but equally large samples are used. We demonstrate that this is not the case for the nonparametric Wilcoxon–Mann–Whitney‐test, whose application in biometrical research fields is motivated by two examples from cancer research. We prove the optimality of the design in case of symmetric and identically shaped distributions using normal approximations and show that this design generally offers power only negligibly lower than the optimal design for a wide range of distributions.  相似文献   

6.
Population multiple components is a statistical tool useful for the analysis of time-dependent hybrid data. With a small number of parameters, it is possible to model and to predict the periodic behavior of a population. In this article, we propose two methods to compare among populations rhythmometric parameters obtained by multiple component analysis. The first is a parametric method based in the usual statistical techniques for comparison of mean vectors in multivariate normal populations. The method, through MANOVA analysis, allows comparison of the MESOR and amplitude-acrophase pair of each component among two or more populations. The second is a nonparametric method, based in bootstrap techniques, to compare parameters from two populations. This test allows one to compare the MESOR, the amplitude, and the acrophase of each fitted component, as well as the global amplitude, orthophase, and bathyphase estimated when all fitted components are harmonics of a fundamental period. The idea is to calculate a confidence interval for the difference of the parameters of interest. If this interval does not contain zero, it can be concluded that the parameters from the two models are different with high probability. An estimation of p-value for the corresponding test can also be calculated. Both methods are illustrated with an example, based on clinical data. The nonparametric test can also be applied to paired data, a special situation of great interest in practice. By the use of similar bootstrap techniques, we illustrate how to construct confidence intervals for any rhythmometric parameter estimated from population multiple components models, including the orthophase, bathyphase, and global amplitude. These tests for comparison of parameters among populations are a needed tool when modeling the nonsinusoidal rhythmic behavior of hybrid data by population multiple component analysis.  相似文献   

7.
Incomplete data are a serious problem in the multivariate analysis of clinical trials. Usually a complete-case analysis is performed: All incomplete observation vectors are excluded from the analysis. Provided that observations are missing randomly, an easy-to-handle available-case analysis is introduced, allowing the analysis of all data without insertion or deletion of observations. This method is applied to parametric and nonparametric test procedures of the O'Brien type, which are more powerful than the conventional Hotelling's T2 for detecting alternatives where the (treatment) effect has the same direction for all observed variables. In addition, the applicability of these so-called directional tests, especially in the case of small samples, and their pros and cons are discussed.  相似文献   

8.
Pulsatilla vulgaris Mill. (Ranunculaceae) is a rare and rapidly declining grassland community species that was once widespread at a time when Central Germany was covered by steppe vegetation. Through the course of this study, the patterns of random-amplified polymorphic DNA (RAPD) variation among 11 populations of varying size were analysed to assess any possible local differentiation, in relation to spatial isolation, resulting from random genetic drift brought on by reduced population size and lack of migration between geographically isolated populations. Following results attained from methods including: multivariate analysis based on asymmetric Soerensen similarity, φST-statistics, and analysis of molecular variance, we were able to conclude that there is a high within-population variability (84.4%) and a weak, but significant, differentiation among populations (φST=0.17). A matrix correlation between genetic and geographical distances revealed that geographical differentiation was reflected in the RAPD profile (Mantel test: r=0.47,p=0.002). Further significant correlations were noted between population size and both percentage of polymorphic loci (p=0.02) and genetic diversity (p=0.03). An additional analysis of seed production showed that mean seed set, seed number, and mean seed mass per population could be attributed to differences in population size, whereas only seed mass was related to genetic variation.  相似文献   

9.
Free‐roaming cats (FRCs) form nondomiciliary population groups that might lead to adverse environmental effects, as well as to welfare impairment of the cats themselves. Though criticized by ecologists, for the last two decades, the trap–neuter–return (TNR) programs were often employed aiming to manage these populations. At present, no accepted and accessible monitoring scheme exists to determine the effectiveness of those programs. In the current study, we present the reliability and validity of an applicable monitoring scheme, as an adjunct tool for a TNR program of FRC in an urban environment. The monitoring scheme is based on cat observation counts along randomly chosen transects. Fifty‐four transects were repeatedly walked for three years, between 2012‐2014, in 27 neighborhoods within an urban area of 19.3 Km2. Cat numbers counted in the 2014 observations were significantly higher than cat numbers found in the 2012 observations (prevalence ratio = 1.258, CI95%= 1.198–1.322, p < 0.001). The method revealed high reliability when different observers and different transects in the same neighborhood were compared (R2 = 0.548 and R2 = 0.391, respectively, for measuring cat counts per km, p < 0.001; and R2 = 0.5 and R2 = 0.74, respectively, for measuring neutering percentage, p < 0.001). This scheme was constructively validated by measurements of municipal data on the number of neutered cats and demonstrated high correlation (R2 = 0.59, p < 0.001). Conducting cat observations using friendly calling and feeding resulted in an increased number of FRC observed per km walk (by 79% and 22%–30%, respectively). However, these manipulations did not alter the recorded percentage of neutered cats. The proposed scheme provides spatio‐temporal data that can contribute to the management programs of such cat metapopulations in an urban environment.  相似文献   

10.
Needle in a haystack: microdissecting the proteome of a tissue   总被引:1,自引:0,他引:1  
Ball HJ  Hunt NH 《Amino acids》2004,27(1):1-7
Summary. Laser-assisted microdissection is a recent technology that enables cells to be harvested from tissue sections. Proteins can be extracted from the dissected cells for molecular analysis. This enables the analysis of proteins in specific cell types in an in vivo system. Although quantities of protein obtained from the dissected material can be small, it is possible to use established methods such as Western Blotting and 2D-PAGE, as well as newer technologies such as SELDI-MS, to analyse the proteins. This review describes the applications and technical considerations for using laser-assisted dissected cells in proteomics research.  相似文献   

11.
The Accelerated Failure Time Model Under Biased Sampling   总被引:1,自引:0,他引:1  
Summary Chen (2009, Biometrics) studies the semi‐parametric accelerated failure time model for data that are size biased. Chen considers only the uncensored case and uses hazard‐based estimation methods originally developed for censored observations. However, for uncensored data, a simple linear regression on the log scale is more natural and provides better estimators.  相似文献   

12.
Summary The median failure time is often utilized to summarize survival data because it has a more straightforward interpretation for investigators in practice than the popular hazard function. However, existing methods for comparing median failure times for censored survival data either require estimation of the probability density function or involve complicated formulas to calculate the variance of the estimates. In this article, we modify a K ‐sample median test for censored survival data ( Brookmeyer and Crowley, 1982 , Journal of the American Statistical Association 77, 433–440) through a simple contingency table approach where each cell counts the number of observations in each sample that are greater than the pooled median or vice versa. Under censoring, this approach would generate noninteger entries for the cells in the contingency table. We propose to construct a weighted asymptotic test statistic that aggregates dependent χ2 ‐statistics formed at the nearest integer points to the original noninteger entries. We show that this statistic follows approximately a χ2 ‐distribution with k? 1 degrees of freedom. For a small sample case, we propose a test statistic based on combined p ‐values from Fisher’s exact tests, which follows a χ2 ‐distribution with 2 degrees of freedom. Simulation studies are performed to show that the proposed method provides reasonable type I error probabilities and powers. The proposed method is illustrated with two real datasets from phase III breast cancer clinical trials.  相似文献   

13.
14.
When modeling survival data, it is common to assume that the (log-transformed) survival time (T) is conditionally independent of the (log-transformed) censoring time (C) given a set of covariates. There are numerous situations in which this assumption is not realistic, and a number of correction procedures have been developed for different models. However, in most cases, either some prior knowledge about the association between T and C is required, or some auxiliary information or data is/are supposed to be available. When this is not the case, the application of many existing methods turns out to be limited. The goal of this paper is to overcome this problem by developing a flexible parametric model, that is a type of transformed linear model. We show that the association between T and C is identifiable in this model. The performance of the proposed method is investigated both in an asymptotic way and through finite sample simulations. We also develop a formal goodness-of-fit test approach to assess the quality of the fitted model. Finally, the approach is applied to data coming from a study on liver transplants.  相似文献   

15.
Anderson MJ 《Biometrics》2006,62(1):245-253
Summary The traditional likelihood‐based test for differences in multivariate dispersions is known to be sensitive to nonnormality. It is also impossible to use when the number of variables exceeds the number of observations. Many biological and ecological data sets have many variables, are highly skewed, and are zero‐inflated. The traditional test and even some more robust alternatives are also unreasonable in many contexts where measures of dispersion based on a non‐Euclidean dissimilarity would be more appropriate. Distance‐based tests of homogeneity of multivariate dispersions, which can be based on any dissimilarity measure of choice, are proposed here. They rely on the rotational invariance of either the multivariate centroid or the spatial median to obtain measures of spread using principal coordinate axes. The tests are straightforward multivariate extensions of Levene's test, with P‐values obtained either using the traditional F‐distribution or using permutation of either least‐squares or LAD residuals. Examples illustrate the utility of the approach, including the analysis of stabilizing selection in sparrows, biodiversity of New Zealand fish assemblages, and the response of Indonesian reef corals to an El Niño. Monte Carlo simulations from the real data sets show that the distance‐based tests are robust and powerful for relevant alternative hypotheses of real differences in spread.  相似文献   

16.
Summary For most patients, the HIV viral load can be made undetectable by highly active antiretroviral treatments highly active antiretroviral therapy: the virus, however, cannot be eradicated. Thus, the major problem is to try to reduce the side effects of the treatment that patients have to take during their life time. We tackle the problem of monitoring the treatment dose, with the aim of giving the minimum dose that yields an undetectable viral load. The approach is based on mechanistic models of the interaction between virus and the immune system. It is shown that the “activated cells model,” allows making good predictions of the effect of dose changes and, thus, could be a good basis for treatment monitoring. Then, we use the fact that in dynamical models, there is a nontrivial equilibrium point, that is with a virus load larger than zero, only if the reproductive number R0 is larger than one. For reducing side effects, we may give a dose just above the critical dose corresponding to R0 equal to 1. A prior distribution of the parameters of the model can be taken as the posterior arising from the analysis of previous clinical trials. Then the observations for a given patient can be used to dynamically tune the dose so that there is a high probability that the reproductive number is below one. The advantage of the approach is that it does not depend on a cost function, weighing side effects and efficiency of the drug. It is shown that it is possible to approach the critical dose if the model is correct. A sensitivity analysis assesses the robustness of the approach.  相似文献   

17.
Aim A great deal of information on distribution and diversity can be extracted from presence–absence matrices (PAMs), the basic analytical tool of many biogeographic studies. This paper presents numerical procedures that allow the analysis of such information by taking advantage of mathematical relationships within PAMs. In particular, we show how range–diversity (RD) plots summarize much of the information contained in the matrices by the simultaneous depiction of data on distribution and diversity. Innovation We use matrix algebra to extract and process data from PAMs. Information on the distribution of species and on species richness of sites is computed using the traditional R (by rows) and Q (by columns) procedures, as well as the new Rq (by rows, considering the structure of columns) and Qr (by columns, considering the structure by rows) methods. Matrix notation is particularly suitable for summarizing complex calculations using PAMs, and the associated algebra allows the implementation of efficient computational programs. We show how information on distribution and species richness can be depicted simultaneously in RD plots, allowing a direct examination of the relationship between those two aspects of diversity. We explore the properties of RD plots with a simple example, and use null models to show that while parameters of central tendency are not affected by randomization, the dispersion of points in RD plots does change, showing the significance of patterns of co‐occurrence of species and of similarity among sites. Main conclusion Species richness and range size are both valid measures of diversity that can be analysed simultaneously with RD plots. A full analysis of a system requires measures of central tendency and dispersion for both distribution and species richness.  相似文献   

18.
A recent article of Zavrel et al. in this journal (Eng. Life Sci. 2010, 10, 191–200) described a comparison of several computer programs for progress‐curve analysis with respect to different computational approaches for parameter estimation. The authors applied both algebraic and dynamic parameter estimations, although they omitted time‐course analysis through the integrated rate equation. Recently, it was demonstrated that progress‐curve analysis through the integrated rate equation can be considered a simple and useful alternative for enzymes that obey the generalized Michaelis–Menten reaction mechanism. To complete this gap, the time‐dependent solution of the generalized Michaelis–Menten equation is here fitted to the progress curves from the Zavrel et al. reference article. This alternative rate‐integration approach for determining the kinetics parameters of Michaelis–Menten‐type enzymes yields the values with the greatest accuracy, as compared with the results obtained by other (algebraic or dynamic) parameter estimations.  相似文献   

19.
20.
Wang C  Daniels MJ 《Biometrics》2011,67(3):810-818
Summary Pattern mixture modeling is a popular approach for handling incomplete longitudinal data. Such models are not identifiable by construction. Identifying restrictions is one approach to mixture model identification ( Little, 1995 , Journal of the American Statistical Association 90 , 1112–1121; Little and Wang, 1996 , Biometrics 52 , 98–111; Thijs et al., 2002 , Biostatistics 3 , 245–265; Kenward, Molenberghs, and Thijs, 2003 , Biometrika 90 , 53–71; Daniels and Hogan, 2008 , in Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis) and is a natural starting point for missing not at random sensitivity analysis ( Thijs et al., 2002 , Biostatistics 3 , 245–265; Daniels and Hogan, 2008 , in Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis). However, when the pattern specific models are multivariate normal, identifying restrictions corresponding to missing at random (MAR) may not exist. Furthermore, identification strategies can be problematic in models with covariates (e.g., baseline covariates with time‐invariant coefficients). In this article, we explore conditions necessary for identifying restrictions that result in MAR to exist under a multivariate normality assumption and strategies for identifying sensitivity parameters for sensitivity analysis or for a fully Bayesian analysis with informative priors. In addition, we propose alternative modeling and sensitivity analysis strategies under a less restrictive assumption for the distribution of the observed response data. We adopt the deviance information criterion for model comparison and perform a simulation study to evaluate the performances of the different modeling approaches. We also apply the methods to a longitudinal clinical trial. Problems caused by baseline covariates with time‐invariant coefficients are investigated and an alternative identifying restriction based on residuals is proposed as a solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号