首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because over expression of Hsp70 molecular chaperones suppresses the toxicity of aberrantly folded proteins that occur in Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis, and various polyQ‐diseases (Huntington's disease and ataxias), Hsp70 is garnering attention as a possible therapeutic agent for these various diseases. Here, I review progress in this fascinating field of molecular chaperones and neurodegeneration and describe our current understanding of the mechanisms by which Hsp70 protects cells from the PD‐related protein called alpha‐synuclein (α‐syn). © 2009 Wiley Periodicals, Inc. Biopolymers 93: 218–228, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
The existence of an “RNA world” as an early step in the history of life increases the interest for the characterization of these biomolecules. The hairpin ribozyme studied here is a self‐cleaving/ligating motif found in the minus strand of the satellite RNA associated with Tobacco ringspot virus. Surface‐enhanced Raman spectroscopy (SERS) is a powerful tool to study trace amounts of RNA. In controlled conditions, a SERS signal is proportional to the amount of free residues adsorbed on the metal surface. On RNA cleavage, residues are unpaired and free to interact with metal. SERS procedures are used to monitor and quantify the catalysis of ribozyme cleavage at biological concentrations in real time; thus, they propose an interesting alternative to electrophoretic methods. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 384–390, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
Nucleic acid recognition is often mediated by α‐helices or disordered regions that fold into α‐helix on binding. A peptide bearing the DNA recognition helix of HPV16 E2 displays type II polyproline (PII) structure as judged by pH, temperature, and solvent effects on the CD spectra. NMR experiments indicate that the canonical α‐helix is stabilized at the N‐terminus, while the PII forms at the C‐terminus half of the peptide. Re‐examination of the dihedral angles of the DNA binding helix in the crystal structure and analysis of the NMR chemical shift indexes confirm that the N‐terminus half is a canonical α‐helix, while the C‐terminal half adopts a 310 helix structure. These regions precisely match two locally driven folding nucleii, which partake in the native hydrophobic core and modulate a conformational switch in the DNA binding helix. The peptide shows only weak and unspecific residual DNA binding, 104‐fold lower affinity, and 500‐fold lower discrimination capacity compared with the domain. Thus, the precise side chain conformation required for modulated and tight physiological binding by HPV E2 is largely determined by the noncanonical strained α‐helix conformation, “presented” by this unique architecture. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 432–443, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

4.
Human immunodeficiency virus type 1 integrase (IN) is an essential enzyme in the life cycle of this virus and also an important target for the study of anti‐HIV drugs. In this work, the binding modes of the wild type IN core domain and the two mutants, that is, W132G and C130S, with the 4‐hydroxycoumarin compound NSC158393 were evaluated by using the “relaxed complex” molecular docking approach combined with molecular dynamics (MD) simulations. Based on the monomer MD simulations, both of the two substitutions affect not only the stability of the 128–136 peptides, but also the flexibility of the functional 140s loop. In principle, NSC158393 binds the 128–136 peptides of IN; however, the specific binding modes for the three systems are various. According to the binding mode of NSC158393 with WT, NSC158393 can effectively interfere with the stability of the IN dimer by causing a steric hindrance around the monomer interface. Additionally, through the comparative analysis of the MD trajectories of the wild type IN and the IN‐NSC158393 complex, we found that NSC15893 may also exert its inhibitory function by diminishing the mobility of the function loop of IN. Three key binding residues, that is, W131, K136, and G134, were discovered by energy decomposition calculated with the Molecular Mechanics Generalized Born Surface Area method. Characterized by the largest binding affinity, W131 is likely to be indispensable for the ligand binding. All the above results are consistent with experiment data, providing us some helpful information for understanding the mechanism of the coumarin‐based inhibitors. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 700–709, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

5.
Many studies have examined consensus sequences required for protein‐glycosaminoglycan interactions. Through the synthesis of helical heparin binding peptides, this study probes the relationship between spatial arrangement of positive charge and heparin binding affinity. Peptides with a linear distribution of positive charge along one face of the α‐helix had the highest affinity for heparin. Moving the basic residues away from a single face resulted in drastic changes in heparin binding affinity of up to three orders of magnitude. These findings demonstrate that amino acid sequences, different from the known heparin binding consensus sequences, will form high affinity protein‐heparin binding interactions when the charged residues are aligned linearly. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 290–298, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
Is linker DNA bent in the 30‐nm chromatin fiber at physiological conditions? We show here that electrostatic interactions between linker DNA and histone tails including salt condensation and release may bend linker DNA, thus affecting the higher order organization of chromatin. © 2005 Wiley Periodicals, Inc. Biopolymers 81: 20–28, 2006 This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

7.
The insulin‐linked polymorphic region (ILPR) is a VNTR region located upstream of the insulin (INS) gene consisting of the repeat 5′‐ACAGGGGTGTGGGG (repeat a) and several less abundant sequence repeats (b–n). Here, we have investigated the structural polymorphism of G‐quadruplexes formed from the most common repeat sequences (a–c) and their effect on insulin protein binding. We first established that the ILPR repeats “b” and “c” can form quadruplex structures. Insulin has previously been shown to bind a G‐quadruplex formed by a dimer of the repeat “a”. Our findings show that insulin binds preferentially to the repeat “a” G‐quadruplex (Kd = 0.17 ± 0.03 μM) over G‐quadruplexes formed from other ILPR repeats that were tested (Kds from 0.71 ± 0.15 to 1.07 ± 0.09 μM). Additionally, the Watson‐Crick complementary relationship between the loop regions of repeat “a” (ACA and TGT) seemingly play an important role in favoring a specific G‐quadruplex conformation, which based on our data is critical for insulin binding. Affinity for insulin is reduced in sequences lacking the putative WC complementarity, however upon engineered restoration of complementarity, insulin binding is recovered. A DMS footprinting assay on the repeat “a” G‐quadruplex in the presence of insulin, combined with binding affinities for ILPR mutants led to identification of a loop nucleotide critical for binding. Uniquely, insulin shows clear preference for binding to the G‐quadruplexes with the more antiparallel feature. Collectively, our results illustrate the specific nature of insulin binding to the ILPR G‐quadruplexes and begin to provide molecular details on such interactions. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 21–31, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

8.
In vivo cell division protein FtsZ from E. coli forms rings and spirals which have only been observed by low resolution light microscopy. We show that these suprastructures are likely formed by molecular crowding which is a predominant factor in prokaryotic cells and enhances the weak lateral bonds between proto‐filaments. Although FtsZ assembles into single proto‐filaments in dilute aqueous buffer, with crowding agents above a critical concentration, it forms polymorphic supramolecular structures including rings and toroids (with multiple protofilaments) about 200 nm in diameter, similar in appearance to DNA toroids, and helices with pitches of several hundred nm as well as long, linear bundles. Helices resemble those observed in vivo, whereas the rings and toroids may represent a novel energy minimized state of FtsZ, at a later stage of Z‐ring constriction. We shed light on the molecular arrangement of FtsZ filaments within these suprastructures using high resolution electron microscopy. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 340–350, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
A structure‐based comparison of the ligand‐binding domains of 35 nuclear receptors from five different subfamilies is presented. Their ligand and coactivator binding sites are characterized using knowledge‐based contact preference fields for hydrophobic and hydrophilic interactions implemented in the MOE modeling environment. Additionally, for polar knowledge‐based field points the preference for negative or positive electrostatic interactions is estimated using the Poisson‐Boltzmann equation. These molecular‐interaction fields are used to cluster the nuclear receptor family based on similarities of their binding sites. By analyzing the similarities and differences of hydrophobic and polar fields in binding pockets of related receptors it is possible to identify conserved interactions in ligand and coactivator binding pockets, which support e.g. design of specific ligands during lead optimization or virtual screening as docking filter. Examples of remarkable similarities between ligand binding sites of members from phylogenetically different nuclear receptor families (RXR, RAR, HNF4, NR5) and differences between closely related subtypes (LXR, RAR, TR) are discussed in more detail. Significant similarities and differences of coactivator binding sites are shown for NR3Cs, LXRs and PPARs. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 884–894, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
Recently, ubiquitin was suggested as a promising anti‐inflammatory protein therapeutic. We found that a peptide fragment corresponding to the ubiquitin50–59 sequence (LEDGRTLSDY) possessed the immunosuppressive activity comparable with that of ubiquitin. CD and NMR spectroscopies were used to determine the conformational preferences of LEDGRTLSDY in solution. The peptide mixture, obtained by pepsin digestion of ubiquitin, was even more potent than the intact protein. Although the peptide exhibited a well‐defined conformation in methanol, its structure was distinct from the corresponding 50–59 fragment in the native ubiquitin molecule. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 423–431, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

11.
In a seminal paper, Pakula and Sauer (Nature, 1990, 344, 363–364) demonstrated that the increase in side‐chain hydrophobicity has a reverse relationship with protein stability. We have addressed this problem with several examples of mutants that span at different locations in protein structure based on secondary structure and solvent accessibility. We confirmed that the stability change upon single coil mutation at exposed region is reversely correlated with hydrophobicity with a single exception. In addition, we found the existence of such relationship in partially buried coil mutants. The stability of exposed helical mutants is governed by conformational properties. In buried and partially buried helical and strand mutants properties reflecting hydrophobicity have direct relationship with stability, whereas an opposite relationship was obtained with entropy and flexibility. The structural analysis of partially buried/exposed mutants showed that the surrounding residues are important for the stability change upon mutation. These results provide insights to understand the general behavior for the stability of proteins upon amino acid substitutions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 591–599, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

12.
Among the pathological hallmarks of Alzheimer's disease (AD) is the deposition of amyloid‐β (Aβ) peptides, primarily Aβ (1–40) and Aβ (1–42), in the brain as senile plaques. A large body of evidence suggests that cognitive decline and dementia in AD patients arise from the formation of various aggregated forms of Aβ, including oligomers, protofibrils and fibrils. Hence, there is increasing interest in designing molecular agents that can impede the aggregation process and that can lead to the development of therapeutically viable compounds. Here, we demonstrate the ability of the specifically designed α,β‐dehydroalanine (ΔAla)‐containing peptides P1 (K‐L‐V‐F‐ΔA‐I‐ΔA) and P2 (K‐F‐ΔA‐ΔA‐ΔA‐F) to inhibit Aβ (1–42) aggregation. The mechanism of interaction of the two peptides with Aβ (1–42) seemed to be different and distinct. Overall, the data reveal a novel application of ΔAla‐containing peptides as tools to disrupt Aβ aggregation that may lead to the development of anti‐amyloid therapies not only for AD but also for many other protein misfolding diseases. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 456–465, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
On the basis of an all‐atom multiscale analysis theory of nanosystem dynamics, a multiscale molecular dynamics/order parameter extrapolation (MD/OPX) approach has recently been developed. It accelerates MD for long‐time simulation of large bionanosystems and addresses rapid atomistic fluctuations and slowly varying coherent dynamics simultaneously. In this study, MD/OPX is optimized and implemented to simulate viral capsid structural transitions. Specifically, 200 ns MD/OPX simulation of the swollen state of cowpea chlorotic mottle virus capsid reveals that it undergoes significant energy‐driven shrinkage in vacuum, which is a symmetry‐breaking process involving local initiation and front propagation. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 61–73, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
Mucins form a group of heavily O‐glycosylated biologically important glycoproteins that are involved in a variety of biological functions, including modulating immune response, inflammation, and adhesion. Mucins are also involved in cancer and metastasis and often express diagnostic cancer antigens. Recently, a modified porcine submaxillary mucin (Tn‐PSM) containing GalNAcα1‐O‐Ser/Thr residues was shown to bind to soybean agglutinin (SBA) with ~106‐fold enhanced affinity relative to GalNAcα1‐O‐Ser, the pancarcinoma carbohydrate antigen. In this study, dynamic force spectroscopy is used to investigate molecular pairs of SBA and Tn‐PSM. A number of force jumps that demonstrate unbinding or rebinding events were observed up to a distance equal to 2.0 μm, consistent with the length of the mucin chain. The unbinding force increased from 103 to 402 pN with increasing force loading rate. The position of the activation barrier in the energy landscape of the interaction was 0.1 nm. The lifetime of the SBA–TnPSM complex in the absence of applied force was determined to be in the range 1.3–1.9 s. Kinetic parameters describing the rate of dissociation of other sugar lectin interactions are in the range 3.3 × 10?3–2.5 × 10?3 s. The long lifetime of the SBA‐TnPSM complex is compatible with a binding model in which lectin molecules “bind and jump” from α‐GalNAc residue to α‐GalNAc residue along the polypeptide chain of Tn‐PSM before dissociating. These findings have important implications for the molecular recognition properties of mucins. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 719–728, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
It has been reported that the complexes formed by hemin and some G‐quadruplexes can be developed as a new class of DNAzyme with peroxidase activity. This kind of DNAzyme has received a great deal of attention. But to date, the actual G‐quadruplex structure that can provide hemin with enhanced peroxidase activity is in doubt. Herein, the G‐quadruplex structure of CatG4, a 21‐nucleotide DNA oligomer which was previously reported to bind hemin and the resulting complex exhibiting enhanced peroxidase activity, was characterized by fluorescence and circular dichroism measurements. The results suggest that the catalytically active form of CatG4 may be a unimolecular parallel quadruplex rather than a unimolecular chair‐type antiparallel quadruplex or a multistranded parallel quadruplex. In addition, the fluorescence analysis of labeled oligonucleotides may be developed as a supplementary tool for the study of DNA conformations. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 331–339, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

16.
Amelogenin is a unique protein that self‐assembles into spherical aggregates called “nanospheres” and is believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin onto substrates is of great interest because protein‐surface interactions are critical to its function. We report studies of the adsorption of amelogenin onto self‐assembled monolayers containing COOH end group functionality as well as single crystal fluoroapatite, a biologically relevant surface. We found that although our solutions contained only nanospheres of narrow size distribution, smaller structures such as dimers or trimers were observed on the hydrophilic surfaces. This suggests that amelogenin can adsorb onto surfaces as small structures that “shed” or disassemble from the nanospheres that are present in solution. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 103–107, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
Clusters of closely spaced oxidative DNA lesions present challenges to the cellular repair machinery. When located in opposing strands, base excision repair (BER) of such lesions can lead to double strand DNA breaks (DSB). Activation of BER and DSB repair pathways has been implicated in inducing enhanced expansion of triplet repeat sequences. We show here that energy coupling between distal lesions (8oxodG and/or abasic sites) in opposing DNA strands can be modulated by a triplet repeat bulge loop located between the lesion sites. We find this modulation to be dependent on the identity of the lesions (8oxodG vs. abasic site) and the positions of the lesions (upstream vs. downstream) relative to the intervening bulge loop domain. We discuss how such bulge loop‐mediated lesion crosstalk might influence repair processes, while favoring DNA expansion, the genotype of triplet repeat diseases. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 355–369, 2010. This article was originally published online as an acceptedpreprint. The “Published Online” date corresponds to the preprint version. You can reqest a copy of the preprint byemailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

18.
The article describes the use of a PNA duplex (PNA zipper) as a tool to dimerize or bring in close proximity two polypeptides or protein domains. The amino acid sequence to be dimerized is covalently bound to complementary PNA sequences. Annealing of the PNA strands results in dimer formation. To test the ability of the “PNA‐zipper” as a dimerization tool, we designed a GCN4 mimetic, where the leucine‐zipper dimerization domain was replaced by the PNA zipper, whereas the basic DNA‐binding domain was covalently attached to the PNA. The molecule was assembled by chemical ligation of the peptide corresponding to the DNA‐binding domain of GCN4 modified with a succinyl thioester with two complementary PNAs harboring a cysteine residue. Electromobility‐shift experiments show the ability of the PNA zipper‐GCN4 to bind selected DNA duplexes. The PNA zipper‐GCN4 binds both the TRE and CRE DNA sites, but it does not bind TRE and CRE mutants containing even a single base mutation, as the native GCN4. The ability to fold upon complexation with DNA was investigated by CD. A good correlation between the ability of the PNA zipper‐GCN4 to fold into α helices and the ability to bind DNA was found. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 434–441, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

19.
Hsp90 molecular chaperones are required for the stability and activity of a diverse range of client proteins that have critical roles in signal transduction, cellular trafficking, chromatin remodeling, cell growth, differentiation, and reproduction. Mammalian cells contain three types of Hsp90s: cytosolic Hsp90, mitochondrial Trap‐1, and Grp94 of the endoplasmic reticulum. Each of the Hsp90s, as well as the bacterial homolog, HtpG, hydrolyze ATP and undergo similar conformational changes. Unlike the other forms of Hsp90, cytosolic Hsp90 function is dependent on a battery of co‐chaperone proteins that regulate the ATPase activity of Hsp90 or direct Hsp90 to interact with specific client proteins. This review will summarize what is known about Hsp90's ability to mediate the folding and activation of diverse client proteins that contribute to human diseases, such as cancer and fungal and viral infections. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 211–217, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
Vitor H. Pomin 《Biopolymers》2009,91(8):601-609
Efforts in both structural and biological studies of sulfated polysaccharides from marine organisms have increased significantly over the last 10 years. Marine invertebrates have been demonstrated to be a source of glycans with particularly well‐defined chemical structures, although ordered structural patterns can also be found occasionally in algal sources such as red seaweeds. Clear and regular structural features are essential for a good understanding of the biological activities of these marine homopolysaccharides of which sulfated fucans and sulfated galactans are the most studied. Herein, the main structural features (sugar type, sulfation and glycosylation sites, and orientational binding preferences) of both sulfated fucans and galactans are individually reviewed with regard to their specific contributions to two frequently described biological functions: the acrosome reaction (a physiological event of sea‐urchin fertilization), and the anticoagulant and antithrombotic activities (an alternative and highly desirable pharmacological application). © 2009 Wiley Periodicals, Inc. Biopolymers 91: 601–609, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号