首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate cancer (PC) is the second most commonly occurring cancer in men. Conventional chemotherapy has wide variety of disadvantages such as high systemic toxicity and low selectivity. Targeted drug delivery is a promising approach to decrease side effects of therapy. Prostate specific membrane antigen (PSMA) is overexpressed in prostate cancer cells while low level of expression is observed in normal cells. In this study we describe the development of Glu-urea-Lys based PSMA-targeting conjugates with paclitaxel. A series of new PSMA targeting conjugates with paclitaxel was designed and synthesized. The cytotoxicity of conjugates was evaluated against prostate (LNCaP, 22Rv1 and PC-3) and non-prostate (Hek293T, VA13, A549 and MCF-7) cell lines. The most promising conjugate 21 was examined in vivo using 22Rv1 xenograft mice model. It demonstrated good efficiency comparable with paclitaxel, while reduced toxicity. 3D molecular docking study was also performed to understand underlying mechanism of binding and further optimization of the linker substructure and conjugates structure for improving the target affinity. These conjugates may be useful for further design of novel PSMA targeting delivery systems for PC.  相似文献   

2.
Polymer-directed enzyme prodrug therapy (PDEPT) is a novel two-step antitumor approach that uses a combination of a polymeric prodrug and polymer-enzyme conjugate to generate a cytotoxic drug rapidly and selectively at the tumor site. Previously we have shown that N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-bound cathepsin B can release doxorubicin intratumorally from an HPMA copolymer conjugate PK1. Here we describe for the first time the synthesis and biological characterization of a PDEPT model combination that uses an HPMA-copolymer-methacryloyl-glycine-glycine-cephalosporin-doxorubicin (HPMA-co-MA-GG-C-Dox) as the macromolecular prodrug and an HPMA copolymer conjugate containing the nonmammalian enzyme beta-lactamase (HPMA-co-MA-GG-beta-L) as the activating component. HPMA-co-MA-GG-C-Dox had a molecular weight of approximately 31 600 Da and a C-Dox content of 5.85 wt %. Whereas free beta-L has a molecular weight of 45 kDa, the HPMA-co-MA-GG-beta-L conjugate had a molecular weight in the range of 75-150 kDa, and following purification no free enzyme was detectable. Against the cephalosporin C or HPMA-co-MA-GG-C-Dox substrates, the HPMA-co-MA-GG-beta-L conjugate retained 70% and 80% of its activity, respectively. In vivo (125)I-labeled HPMA-co-MA-GG-beta-L showed prolonged plasma concentration and greater tumor targeting than (125)I-labeled beta-L due to the enhanced permeability and retention (EPR) effect. Moreover, administration of HPMA-co-MA-GG-C-Dox iv to mice bearing sc B16F10 melanoma followed after 5 h by HPMA-co-MA-GG-beta-L led to release of free Dox. The PDEPT combination caused a significant decrease in tumor growth (T/C = 132%) whereas neither free Dox nor HPMA-co-MA-GG-C-Dox alone displayed activity. The PDEPT combination displayed no toxicity at the doses used, so further evaluation of this approach to establish the maximum tolerated dose (MTD) is recommended.  相似文献   

3.
Asialoglycoprotein receptor (ASGP-R) belongs to a wide family of C-type lectins and it is currently regarded as an attractive protein in the field of targeted drug delivery (TDD). It is abundantly expressed in hepatocytes and can be found predominantly on the sinusoidal surface especially of HepG2 cells. Therefore, ASGP-R can be used for the TDD of anticancer therapeutics against HCC and molecular diagnostic tools. To date, a variety of mono- and multivalent selective ASGP-R ligands have been discovered. Although many of these compounds have demonstrated a relatively high binding affinity towards the target, the reported synthetic schemes are not handled, complicated and include many non-trivial steps. In the current study, we describe a convenient and versatile synthetic approach to novel monovalent drug-conjugates containing N-acetyl-2-deoxy-2-aminogalactopyranose fragment as an ASGP-R-recognition “core-head” and well-known nonselective cytostatic – Doxorubicin (Dox). This is the first example of the direct conjugation of a drug molecule to the ASGP-targeted warhead by a really convenient manner via a simple linker sequence. The performed MTS-based biological evaluation in HepG2 cells revealed the novel conjugates as having anticancer activity. Confocal microscopy showed that the molecules readily penetrated HepG2 membrane and were mainly localized within the cytoplasm instead of the nucleus. Per contra, Dox under the same conditions demonstrated good anticancer activity and was predominantly concentrated in the nucleus. Therefore, we speculate that the amide “trigger” that we have used in this study for linker attachment is a sufficiently stable inside the cells to be enzymatically or spontaneously degraded. As a consequence, we did not observe the release of the drug. Ligands containing triggers that are more liable towards endogenous hydrolysis within the tissue of targeting are strongly required.  相似文献   

4.
Polymer-drug conjugates (polymer therapeutics) are finding increasing use as novel anticancer agents. Here a series of poly(ethylene glycol) PEG-doxorubicin (Dox) conjugates were synthesized using polymers of linear or branched architecture (molecular weight 5000-20000 g/mol) and with different peptidyl linkers (GFLG, GLFG, GLG, GGRR, and RGLG). The resultant conjugates had a drug loading of 2.7-8.0 wt % Dox and contained <2.0% free drug (% total drug). All conjugates containing a GFLG linker showed approximately 30% release of Dox at 5 h irrespective of PEG molecular weight or architecture. The GLFG linker was degraded more quickly (approximately 57% Dox release at 5 h), and the other linkers more slowly (<16% release at 5 h), by lysosomal enzymes in vitro. In vitro there was no clear relationship between cytotoxicity toward B16F10 cells and the observed Dox release rate. All PEG conjugates were more than 10-fold less toxic (IC50 values > 2 microg/mL) than free Dox (IC50 value = 0.24 microg/mL). Biodistribution in mice bearing sc B16F10 tumors was assessed after administration of PEGs (5000, 10000, or 20000 g/mol) radioiodinated using the Bolton and Hunter reagent or PEG-Dox conjugates by HPLC. The 125I-labeled PEGs showed a clear relationship between Mw and blood clearance and tumor accumulation. The highest Mw PEG had the longest plasma residence time and consequently the greatest tumor targeting. The PEG-Dox conjugates showed a markedly prolonged plasma clearance and greater tumor targeting compared to free Dox, but there was no clear molecular weight-dependence on biodistribution. This was consistent with the observation that the PEG-Dox conjugates formed micelles in aqueous solution comprising 2-20 PEG-Dox molecules depending on polymer Mw and architecture. Although PEG-Dox showed greater tumor targeting than free Dox, PEG conjugation led to significantly lower anthracycline levels in heart. Preliminary experiments to assess antitumor activity against sc B16F10 in vivo showed the PEG5000linear (L)-GFLG-Dox and PEG10000branched (B)-GLFG-Dox (both 5 mg/kg Dox-equiv) to be the most active with T/C values of 146 and 143%, respectively. Free Dox did not show significant activity in this model (T/C = 121%). Dose escalation of PEG5000(L)-GFLG-Dox to 10 mg/kg Dox-equiv prolonged further animal survival (T/C = 161%). Using the Dox-sensitive model ip L1210 (where Dox displayed a T/C = 150% after single ip dose), the PEG5000(L)-GFLG-Dox displayed a maximum T/C of 141% (10 mg/kg Dox-equiv) using a once a day (x3) schedule. Further studies are warranted with PEG5000(L)-GFLG-Dox to determine its spectrum of antitumor activity and also the optimum dosing schedule before clinical testing.  相似文献   

5.
Hepatocellular carcinoma (HCC) is the third leading cause of death due to cancer worldwide with over 500,000 people affected annually. Although chemotherapy has been widely used to treat patients with HCC, alternate modalities to specifically deliver therapeutic cargos to cancer cells have been sought in recent years due to the severe side effects of chemotherapy. In this respect, aptamer-based tumor targeted drug delivery has emerged as a promising approach to increase the efficacy of chemotherapy and reduce or eliminate drug toxicity. In this study, we developed a new HepG2-specific aptamer (HCA#3) by a procedure known as systematic evolution of ligands by exponential enrichment (SELEX) and exploited its role as a targeting ligand to deliver doxorubicin (Dox) to HepG2 cells in vitro. The selected 76-base nucleotide aptamer preferentially bound to HepG2 hepatocellular carcinoma cells but not to control cells. The aptamer HCA#3 was modified with paired CG repeats at the 5′-end to carry and deliver a high payload of intercalated Dox molecules at the CG sites. Four Dox molecules (mol/mol) were fully intercalated in each conjugate aptamer-Dox (ApDC) molecule. Biostability analysis showed that the ApDC molecules are stable in serum. Functional analysis showed that ApDC specifically targeted and released Dox within HepG2 cells but not in control cells, and treatment with HCA#3 ApDC induced HepG2 cell apoptosis but had minimal effect on control cells. Our study demonstrated that HCA#3 ApDC is a promising aptamer-targeted therapeutic that can specifically deliver and release a high doxorubicin payload in HCC cells.  相似文献   

6.
The synthesis of a novel water-soluble polymer drug carrier system based on biodegradable poly(ethylene glycol) block copolymer is described in this paper. The copolymer consisting of PEG blocks of molecular weight 2000 linked by means of an oligopeptide with amino end groups was prepared by interfacial polycondensation of the diamine and PEG bis(succinimidyl carbonate). The structure of the oligopeptide diamine consisting of glutamic acid and lysine residues was designed as a substrate for cathepsin B, a lysosomal enzyme, which was assumed to be one of the enzymes responsible for the degradation of the polymer carrier in vivo. Each of the oligopeptide blocks incorporated in the carrier contained three carboxylic groups of which some were used for attachment of an anti-cancer drug, doxorubicin (Dox), via a tetrapeptide spacer Gly-Phe-Leu-Gly. This tetrapeptide spacer is susceptible to enzymatic hydrolysis. In vitro release of Dox and the degradation of the polymer chain by cathepsin B as well as preliminary evaluation of in vivo anti-cancer activity of the conjugate are also demonstrated.  相似文献   

7.
Our past research developed two N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-doxorubicin (Dox) conjugates that became the first synthetic polymer-anticancer conjugates to be evaluated clinically. The first, FCE28068, contained Dox bound to the polymeric carrier via a tetrapeptidic linker (glycine-phenylalanine-leucine-glycine (GFLG)) (Mw approximately 30,000 g/mol; approximately 8 wt % drug), and the second, FCE28069, contained additionally galactosamine (Gal) (Mw approximately 30,000 g/mol; approximately 7.5 wt % Dox) again bound by a GFLG linker. Galactosamine was included to promote hepatocyte/hepatoma targeting via the asialoglycoprotein receptor. Both conjugates showed antitumor activity and were clinically less toxic than free Dox (2-5 fold). However, despite their similar chemical characteristics, the conjugates displayed a significantly different maximum-tolerated dose (MTD) in patients. The aim of this study, therefore, was to use small-angle neutron scattering (SANS) to explore the solution behavior of a small library of HPMA polymer conjugates including FCE28068, FCE28069, and their pharmaceutical formulations, plus as reference compounds HPMA copolymer-GFLG conjugates containing aminopropanol (Ap) or galactosamine (Gal) alone (i.e., without Dox). The SANS data obtained showed that HPMA copolymer-GFLG-Ap conjugates (containing 5 and 10 mol % side chains) showed evidence of polymer aggregation, however, no indication of aggregation was observed for FCE28068 and FCE28069 over the concentration range studied (2.5-50 mg/mL). Clear differences in the scattering behavior for the two conjugates were observed at equivalent concentration. Data were best fitted by a model for polydisperse Gaussian coils, and the HPMA copolymer-Dox conjugate with Gal (FCE28069) exhibited a larger radius of gyration (Rg) (by approximately 2.5 nm) compared to FCE28068. In conclusion, we have shown that SANS will be a valuable tool to elucidate conformation-performance relationships for polymer-drug conjugates.  相似文献   

8.
A sensitive, noninvasive method to detect localized prostate cancer, particularly for early detection and repetitive study in patients undergoing active surveillance, remains an unmet need. Here, we propose a molecular photoacoustic (PA) imaging approach by targeting the prostate‐specific membrane antigen (PSMA), which is over‐expressed in the vast majority of prostate cancers. We performed spectroscopic PA imaging in an experimental model of prostate cancer, namely, in immunocompromised mice bearing PSMA+ (PC3 PIP) and PSMA? (PC3 flu) tumors through administration of the known PSMA‐targeted fluorescence agent, YC‐27. Differences in contrast between PSMA+ and isogenic control tumors were observed upon PA imaging, with PSMA+ tumors showing higher contrast in average of 66.07‐fold with 5 mice at the 24‐hour postinjection time points. These results were corroborated using standard near‐infrared fluorescence imaging with YC‐27, and the squared correlation between PA and fluorescence intensities was 0.89. Spectroscopic PA imaging is a new molecular imaging modality with sufficient sensitivity for targeting PSMA in vivo, demonstrating the potential applications for other saturable targets relevant to cancer and other disorders.   相似文献   

9.
The development of targeting approaches to selectively release chemotherapeutic drugs into malignant tissue is a major challenge in anticancer therapy. We have synthesized an N-(2-hydroxypropyl)-methacrylamide (HPMA) copolymer–drug conjugate with an AB3 self-immolative dendritic linker. HPMA copolymers are known to accumulate selectively in tumors. The water-soluble polymer–drug conjugate was designed to release a triple payload of the hydrophobic drug paclitaxel as a result of cleavage by the endogenous enzyme cathepsin B. The polymer–drug conjugate exhibited enhanced cytotoxicity on murine prostate adenocarcinoma (TRAMP C2) cells in comparison to a classic monomeric drug–polymer conjugate.  相似文献   

10.
Tumor-directed drug delivery is a promising strategy in cancer treatment, and in this field, monoclonal antibodies constitute an important class of targeting vehicles. A critical issue in the design of targeting conjugates is the timing of the release of the cytotoxic payload, with the ideal situation being the release at the maximum tumor uptake of the targeting molecule. A site-specific radiolabeling technique was used to elucidate the biodistribution and in vivo drug release pattern of an antibody conjugate of paclitaxel (PTX, 1, Figure 1) in which the drug and the antibody moieties were connected by a succinate (SX) linker. In this new method, a metabolite of PTX, 3'-(4-hydroxyphenyl)paclitaxel (3'-OH-PTX, 2, Figure 1) was used as a tyrosine mimic for the synthesis of the drug site-labeled conjugate (DSL, [(125)I]-3'-OH-PTXSXC225). This was achieved by iodogen (125)I-labeling of 3'-OH-PTXSX and subsequent conjugation to C225. The antibody site-labeled conjugate (ASL, PTXSX-[(125)I]-C225) was prepared by direct radioiodination of PTXSXC225. Biodistribution of these compounds was studied in Balb/c nude mice bearing DU-145 human prostate carcinoma xenografts. While the 4 and 24 h tumor uptake (in percent injected dose per gram of tissue, %ID/g) for [(125)I]-3'-OH-PTXSXC225 were 3.3 +/- 1.5 and 1.7 +/- 0.6%ID/g, the PTXSX-[(125)I]-C225 showed tumor uptake values of 3.8 +/- 4.2 and 14.8 +/- 4.2%ID/g at these time points. This difference in the tumor uptake over time indicates an early cleavage of the drug with respect to the antibody tumor localization. This was further confirmed by an in vitro drug release kinetics study leading to a half-life of about 2 h for PTXSXC225 under physiological conditions. To increase the stability of the PTX-MAb bond, a new conjugate (PTXGLC225) with glutaric acid (GL) as the linker was synthesized. Under the same conditions, the PTXGLC225 showed a 16-fold increase in the half-life (t(1/2)) of the drug release. The effect of the increased t(1/2) of this compound on the antitumor activity of the conjugate was tested in a DU-145 human prostate tumor-implanted mouse model. In comparison to a previous similar experiment with PTXSXC225, better antitumor activity was observed for the PTXGLC225 conjugate as compared to controls. These results demonstrated the first time use of radioiodinated 3'-OH-PTX for in vivo tracing of a paclitaxel conjugate and application of the resulting information to the design of a therapeutically more useful PTX-MAb linker.  相似文献   

11.
Glutamate carboxypeptidase II (GCPII), also known as prostate specific membrane antigen (PSMA), is an established prostate cancer marker and is considered a promising target for specific anticancer drug delivery. Low-molecular-weight inhibitors of GCPII are advantageous specific ligands for this purpose. However, they must be modified with a linker to enable connection of the ligand with an imaging molecule, anticancer drug, and/or nanocarrier. Here, we describe a structure–activity relationship (SAR) study of GCPII inhibitors with linkers suitable for imaging and drug delivery. Structure-assisted inhibitor design and targeting of a specific GCPII exosite resulted in a 7-fold improvement in Ki value compared to the parent structure. X-ray structural analysis of the inhibitor series led to the identification of several inhibitor binding modes. We also optimized the length of the inhibitor linker for effective attachment to a biotin-binding molecule and showed that the optimized inhibitor could be used to target nanoparticles to cells expressing GCPII.  相似文献   

12.
Conventional drug delivery systems of docetaxel (DTX) are challenged with low drug loading efficiency and potential carriers-induced toxicity. In this work, a docetaxel prodrug self-assembled nanosystem was designed and synthesized by conjugating docetaxel with oleic acid (OA) exploring a thioether as the linker, which is redox-sensitive to the redox environment within tumor cells. Notably, the carrier-free nanomedicine which does not need any carrier has obviously high drug loading that reaches 58%. Moreover, the cytotoxicity of DTX-S-OA maintains an equal level with DTX. The novel prodrug conjugate therefore has a promising perspective as carrier-free nanomedicine for cancer therapy due to its high drug loading property, redox-sensitive release and long circulation mechanism.  相似文献   

13.
Antibody-drug conjugates are now of considerable interest and are recommended for the treatment of cancers. Linkers are having a crucial role in potency and efficacy of these drugs. Herein, for the first time, we have used a water-soluble poly-ethylene glycol based linker (succinimidyl-[(N-maleimido propionamido)-diethyleneglycol] [SM(PEG)2]) for lysine amide coupling of DM1 drug to trastuzumab considering evaluation of the effect of using a hydrophilic linker on physicochemical and biological properties of the resulting conjugate in comparison to the conjugate containing succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) linker, which has a relative hydrophobic nature. The physicochemical properties of synthesized conjugates were investigated in terms of drug to antibody ratio, size variants and free drug quantities. In vitro biological activity of trastuzumab-DM1 conjugates was assessed on breast cancer cell lines expressing different levels of HER2 using binding affinity, antiproliferative, apoptosis, and antibody-dependent cell-mediated cytotoxicity (ADCC) assays. Synthesized conjugate containing hydrophilic linker, showed higher drug to antibody ratio, no aggregated form and higher cellular toxicity in comparison to SMCC bearing conjugate. Binding affinity and ADCC potential of conjugates was not affected upon the usage of hydrophilic linker. In conclusion, application of SM(PEG)2 for coupling of DM1 to trastuzumab enhance desirable characteristics of the resulting conjugate.  相似文献   

14.
Takei T  Sato M  Ijima H  Kawakami K 《Biomacromolecules》2010,11(12):3525-3530
The aim of this study was to develop in situ gellable hydrogels composed of periodate oxidized citrus pectin (OP) for localized anticancer drug delivery and evaluate the potential of OP to inhibit cancer metastasis. Doxorubicin (Dox) was coupled to OP by imine bonds. Adipic dihydrazide (ADH) was used for cross-linking of the Dox-OP conjugates. The Dox-OP conjugate solution gelled within 2 min after addition of ADH. The release rate of Dox from the hydrogels was controllable by an additive amount of ADH. The released Dox retained anticancer activity. OP was shown to have a potency to prevent homotypic cancer cell aggregation compared to unmodified citrus pectin, strongly suggesting that OP released from hydrogels in vivo will inhibit cancer metastasis. These results indicate that OP hydrogels have the potential to prevent progression of primary cancer by the released Dox and generation of metastatic cancer by the released OP.  相似文献   

15.
目的:化学全合成聚苹果酸(poly(β-malic acid),PMLA),将其作为高分子药物载体,制备聚苹果酸-羟喜树碱前药(PMLA-HCPT)。研究其体外释药特点和体外细胞毒性。方法:以L-天冬氨酸为原料,通过化学方法全合成PMLA,通过酰胺键键合羟基喜树碱(HCPT)。通过红外光谱、核磁共振光谱表征该前药的结构,利用体外动态透析的方法模拟体外释药特点,用高效液相色谱法测定不同pH值聚合物药物中前喜树碱的释药特性。采用人卵巢癌HO-8910细胞系研究该前药的体外毒性。结果:①经核磁共振表征PMLA-HCPT前药合成完成。②在pH 5.6、pH 6.8及pH 7.4的PBS缓冲体系16 h中,羟喜树碱药物累积释放率分别为76.8%,47.2%和18.1%,证实PMLA-HCPT中羟喜树碱的释放具有pH依赖性。③细胞实验证实PMLA-HCPT的细胞毒性和游离的HCPT相比没有降低。结论:PMLA是一种良好的药物载体材料,PMLA-HCPT有望成为具有pH敏感性的聚合物前药。  相似文献   

16.
Overexpression of gonadotropin‐releasing hormone (GnRH) receptor in many tumors but not in normal tissues makes it possible to use GnRH analogs as targeting peptides for selective delivery of cytotoxic agents, which may help to enhance the uptake of anticancer drugs by cancer cells and reduce toxicity to normal cells. The GnRH analogs [d ‐Cys6, desGly10, Pro9‐NH2]‐GnRH, [d ‐Cys6, desGly10, Pro9‐NHEt]‐GnRH, and [d ‐Cys6, α‐aza‐Gly10‐NH2]‐GnRH were conjugated with doxorubicin (Dox), respectively, through N‐succinimidyl‐3‐maleimidopropionate as a linker to afford three new GnRH‐Dox conjugates. The metabolic stability of these conjugates in human serum was determined by RP‐HPLC. The antiproliferative activity of the conjugates was examined in GnRH receptor‐positive MCF‐7 human breast cancer cell line by MTT assay. The three GnRH‐Dox conjugates showed improved metabolic stability in human serum in comparison with AN‐152. The antiproliferative effect of conjugate II ([d ‐Cys6, desGly10, Pro9‐NHEt]‐GnRH‐Dox) on MCF‐7 cells was higher than that of conjugate I ([d ‐Cys6, desGly10, Pro9‐NH2]‐GnRH‐Dox) and conjugate III ([d ‐Cys6, α‐aza‐Gly10‐NH2]‐GnRH‐Dox), and the cytotoxicity of conjugate II against GnRH receptor‐negative 3T3 mouse embryo fibroblast cells was decreased in comparison with free Dox. GnRH receptor inhibition test suggested that the antiproliferative activity of conjugate II might be due to the cellular uptake mediated by the targeting binding of [d ‐Cys6‐des‐Gly10‐Pro9‐NHEt]‐GnRH to GnRH receptors. Our study indicates that targeting delivery of conjugate II mediated by [d ‐Cys6‐des‐Gly10‐Pro9‐NHEt]‐GnRH is a promising strategy for chemotherapy of tumors that overexpress GnRH receptors.  相似文献   

17.
High molecular weight polymers (> 20 000 Da) have been widely used as soluble drug carriers to improve drug targeting and therapeutic efficacy. Dendritic polymers are exceptional candidates for the preparation of near monodisperse drug carriers due to their well-defined structure, multivalency, and flexibility for tailored functionalization. We evaluated various dendritic architectures composed of a polyester dendritic scaffold based on the monomer unit 2,2-bis(hydroxymethyl)propanoic acid for their suitability as drug carriers both in vitro and in vivo. These systems are both water soluble and nontoxic. In addition, the potent anticancer drug, doxorubicin, was covalently bound via a hydrazone linkage to a high molecular weight 3-arm poly(ethylene oxide)-dendrimer hybrid. Drug release was a function of pH, and the release rate was more rapid at pH < 6. The cytotoxicity of the DOX-polymer conjugate measured on multiple cancer lines in vitro was reduced but not eliminated, indicating that some active doxorubicin was released from the drug polymer conjugate under physiological conditions. Furthermore, biodistribution experiments show little accumulation of the DOX-polymer conjugate in vital organs, and the serum half-life of doxorubicin attached to an appropriate high molecular weight polymer has been significantly increased when compared to the free drug. Thus, this new macromolecular system exhibits promising characteristics for the development of new polymeric drug carriers.  相似文献   

18.
Tumor targeting peptides are promising vehicles for site-directed cancer therapy. Pep42, a cyclic 13-mer oligopeptide that specifically binds to glucose-regulated protein 78 (GRP78) and internalized into cancer cells, represents an excellent vehicle for tumor cell-specific chemotherapy. Here, we report the synthesis and evaluation of Pep42-prodrug conjugates that contain a cathepsin B-cleavable linker, resulting in the traceless release of drug inside the cancer cells.  相似文献   

19.
Chemotherapy is one of the standard strategies for treatment of breast cancer. Adriamycin (Dox) is a first‐line chemotherapy agent for breast cancer. However, the gastrointestinal reactions, myocardial toxicity and other side effects caused by Dox due to its un‐specific cytotoxicity limit the clinical treatment effect. To address this need, aptamer has been regarded as an ideal target molecular carrier. In the present study, we selected an aptamer 5TR1 that can specifically bind to the MUC1 protein which has been regarded as an important tumor biomarker, as well as a potential target in anticancer therapies. Dox was loaded on the modified 5TR1‐GC, which specifically targets breast cancer cell MDA‐MB‐231. Cell viability and apoptosis assays demonstrated that the 5TR1‐GC‐Dox exhibited target specificity of cytotoxicity in MDA‐MB‐231. Moreover, in vivo xenograft study also confirmed that 5TR1‐GC‐Dox had a more effective effect on tumor growth inhibition and induced the apoptosis of malignant tumor cells compared to Dox. We provided a novel experimental and theoretical basis for developing an aptamer targeted drug system, thus to promote the killing effect of drugs on breast cells and to reduce the damage to normal cells and tissues for breast cancer.  相似文献   

20.
Peptide display methods are a powerful tool for discovering new ligands of pharmacologically relevant targets. However, the selected ligands often suffer from low affinity. Using phage display, we identified a new bicyclic peptide binder of prostate-specific membrane antigen (PSMA), a metalloprotease frequently overexpressed in prostate cancer. We show that linking multiple copies of a selected low-affinity peptide to a biocompatible water-soluble N-(2-hydroxypropyl)methacrylamide copolymer carrier (iBody) improved binding of the conjugate by several orders of magnitude. Furthermore, using ELISA, enzyme kinetics, confocal microscopy, and other approaches, we demonstrate that the resulting iBody can distinguish between different conformations of the target protein. The possibility to develop stable, fully synthetic, conformation-selective antibody mimetics has potential applications for molecular recognition, diagnosis and treatment of many pathologies. This strategy could significantly contribute to more effective drug discovery and design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号