首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Jun Gao  Zhijun Li 《Biopolymers》2010,93(4):340-347
It is widely accepted that a protein's sequence determines its structure. The surprising finding that proteins of distant sequence can adopt similar 3D structures has raised interesting questions regarding underlying conserved properties that are essential for protein folding and stability. Uncovering the conserved properties may shed light on the folding mechanism of proteins and help with the development of computational tools for protein structure prediction. We compiled and analyzed a structure pair dataset of 66 high‐resolution and low sequence identity (16–38%) soluble proteins. Structure deviation for each pair was confirmed by calculating its Cα SiMax value and comparing its potential energy per residue. Analysis of favorable inter‐residue interactions for each structure pair indicated that the average number of inter‐residue interactions within each structure represents a conserved feature of homologous structures of distant sequence. Detailed comparison of individual types of interactions showed that the average number of either hydrophobic or hydrogen bonding interactions remains unchanged for each structure pair. These findings should be of help to improving the quality of homology models based on templates of low sequence identity, thus broadening the application of homology modeling techniques for protein studies. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 340–347, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
α‐Helical membrane proteins exist in an anisotropic environment which strongly influences their folding, stability, and architecture, which is far more complex than a simple bundle of transmembrane helices, notably due to helix deformations, prosthetic groups and extramembrane structures. However, the role and the distribution of such heterogeneity in the supra molecular organization of membrane proteins remains poorly investigated. Using a nonredundant subset of α‐helical membrane proteins, we have annotated and analyze the statistics of several types of new elements such as incomplete helices, intramembrane loops, helical extensions of helical transmembrane domains, extracellular loops, and helices lying parallel to the membrane surface. The relevance of the annotation scheme was studied using residue composition, statistics, physical chemistry, and symmetry of their distribution in relation to the immediate membrane environment. Calculation of hydrophobicity using different scales show that different structural elements appear to have affinities coherent with their position in the membrane. Examination of the annotation scheme suggests that there is considerable information content in the amino acid compositions of the different elements suggesting that it might be useful for structural prediction. More importantly, the proposed annotation will help to decipher the complex hierarchy of interactions involved in membrane protein architecture. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 815–829, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
With the decline in productivity of drug‐development efforts, novel approaches to rational drug design are being introduced and developed. Naturally occurring and synthetic peptides are emerging as novel promising compounds that can specifically and efficiently modulate signaling pathways in vitro and in vivo. We describe sequence‐based approaches that use peptides to mimic proteins in order to inhibit the interaction of the mimicked protein with its partners. We then discuss a structure‐based approach, in which protein‐peptide complex structures are used to rationally design and optimize peptidic inhibitors. We survey flexible peptide docking techniques and discuss current challenges and future directions in the rational design of peptidic inhibitors. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 505–513, 2009. This article was originally published online as an accepted preprint. The “Published Online”date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

4.
Metal ions in proteins are important not only for the formation of the proper structures but also for various biological activities. For biological functions such as hydrolysis and oxidation, metal ions often adopt unusual coordination structures. We constructed a stable scaffold for metal binding to create distorted metal coordination structures. A stable four stranded α‐helical coiled‐coil structure was used as the scaffold, and the metal binding site was in the cavity created at the center of the structure. Two His residues and one Asp or Glu residue were used to coordinate the metal ions, AM2D and AM2E, respectively. Cu2+ bound to AM2D with an equatorial planar coordination structure with two His, one Asp, and H2O as detected by electron spin resonance and UV spectral analyzes. On the other hand, Cu2+ had a slightly distorted square planar structure when it bound two His and Glu in AM2E, due to the longer side‐chain of the Glu residue as compared to the Asp residue. Computational analysis also supported the distorted coordination structure of Cu2+ in AM2E. This construct should be useful to create various coordinations of metal ions for catalytic functions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 907–916, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

5.
Gao J  Li Z 《Biopolymers》2008,89(12):1174-1178
Inter-residue interactions play an essential role in driving protein folding, and analysis of these interactions increases our understanding of protein folding and stability and facilitates the development of tools for protein structure and function prediction. In this work, we systematically characterized the change of inter-residue interactions at various sequence separation cutoffs using two protein datasets. The first set included 100 diverse, nonredundant and high-resolution soluble protein structures, covering all four major structural classes, all-alpha, alpha/beta, alpha+beta, and all-beta; and the second set included 20 diverse, nonredundant and high-resolution membrane protein structures, representing 19 unique superfamilies. It was shown that the average number of inter-residue interactions in structures of both datasets displays the power-law behavior. Fitting parameters of the power-law function are directly related to the structural classes analyzed. These findings provided further insight into the distribution of short-, medium-, and long-range inter-residue interactions in both soluble and membrane proteins and could be used for protein structure prediction.  相似文献   

6.
A 34‐residue α/β peptide [IG(28–61)], derived from the C‐terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, was studied using CD and NMR spectroscopy at various temperatures and by differential scanning calorimetry. It was found that the C‐terminal part (a 16‐residue‐long fragment) of this peptide, which corresponds to the sequence of the β‐hairpin in the native structure, forms structure similar to the β‐hairpin only at T = 313 K, and the structure is stabilized by non‐native long‐range hydrophobic interactions (Val47–Val59). On the other hand, the N‐terminal part of IG(28–61), which corresponds to the middle α‐helix in the native structure, is unstructured at low temperature (283 K) and forms an α‐helix‐like structure at 305 K, and only one helical turn is observed at 313 K. At all temperatures at which NMR experiments were performed (283, 305, and 313 K), we do not observe any long‐range connectivities which would have supported packing between the C‐terminal (β‐hairpin) and the N‐terminal (α‐helix) parts of the sequence. Such interactions are absent, in contrast to the folding pathway of the B domain of protein G, proposed recently by Kmiecik and Kolinski (Biophys J 2008, 94, 726–736), based on Monte‐Carlo dynamics studies. Alternative folding mechanisms are proposed and discussed. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 469–480, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

7.
Many studies have examined consensus sequences required for protein‐glycosaminoglycan interactions. Through the synthesis of helical heparin binding peptides, this study probes the relationship between spatial arrangement of positive charge and heparin binding affinity. Peptides with a linear distribution of positive charge along one face of the α‐helix had the highest affinity for heparin. Moving the basic residues away from a single face resulted in drastic changes in heparin binding affinity of up to three orders of magnitude. These findings demonstrate that amino acid sequences, different from the known heparin binding consensus sequences, will form high affinity protein‐heparin binding interactions when the charged residues are aligned linearly. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 290–298, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

8.
Amelogenin is a unique protein that self‐assembles into spherical aggregates called “nanospheres” and is believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin onto substrates is of great interest because protein‐surface interactions are critical to its function. We report studies of the adsorption of amelogenin onto self‐assembled monolayers containing COOH end group functionality as well as single crystal fluoroapatite, a biologically relevant surface. We found that although our solutions contained only nanospheres of narrow size distribution, smaller structures such as dimers or trimers were observed on the hydrophilic surfaces. This suggests that amelogenin can adsorb onto surfaces as small structures that “shed” or disassemble from the nanospheres that are present in solution. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 103–107, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

9.
In a seminal paper, Pakula and Sauer (Nature, 1990, 344, 363–364) demonstrated that the increase in side‐chain hydrophobicity has a reverse relationship with protein stability. We have addressed this problem with several examples of mutants that span at different locations in protein structure based on secondary structure and solvent accessibility. We confirmed that the stability change upon single coil mutation at exposed region is reversely correlated with hydrophobicity with a single exception. In addition, we found the existence of such relationship in partially buried coil mutants. The stability of exposed helical mutants is governed by conformational properties. In buried and partially buried helical and strand mutants properties reflecting hydrophobicity have direct relationship with stability, whereas an opposite relationship was obtained with entropy and flexibility. The structural analysis of partially buried/exposed mutants showed that the surrounding residues are important for the stability change upon mutation. These results provide insights to understand the general behavior for the stability of proteins upon amino acid substitutions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 591–599, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
Recent research has implicated the C‐terminus of G‐protein coupled receptors in key events such as receptor activation and subsequent intracellular sorting, yet obtaining structural information of the entire C‐tail has proven a formidable task. Here, a peptide corresponding to the full‐length C‐tail of the human CB1 receptor (residues 400–472) was expressed in E.coli and purified in a soluble form. Circular dichroism (CD) spectroscopy revealed that the peptide adopts an α‐helical conformation in negatively charged and zwitterionic detergents (48–51% and 36–38%, respectively), whereas it exhibited the CD signature of unordered structure at low concentration in aqueous solution. Interestingly, 27% helicity was displayed at high peptide concentration suggesting that self‐association induces helix formation in the absence of a membrane mimetic. NMR spectroscopy of the doubly labeled (15N‐ and 13C‐) C‐terminus in dodecylphosphocholine (DPC) identified two amphipathic α‐helical domains. The first domain, S401‐F412, corresponds to the helix 8 common to G protein‐coupled receptors while the second domain, A440‐M461, is a newly identified structural motif in the distal region of the carboxyl‐terminus of the receptor. Molecular modeling of the C‐tail in DPC indicates that both helices lie parallel to the plane of the membrane with their hydrophobic and hydrophilic faces poised for critical interactions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 565–573, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

11.
Haipeng Gong 《Proteins》2017,85(12):2162-2169
Helix‐helix interactions are crucial in the structure assembly, stability and function of helix‐rich proteins including many membrane proteins. In spite of remarkable progresses over the past decades, the accuracy of predicting protein structures from their amino acid sequences is still far from satisfaction. In this work, we focused on a simpler problem, the prediction of helix‐helix interactions, the results of which could facilitate practical protein structure prediction by constraining the sampling space. Specifically, we started from the noisy 2D residue contact maps derived from correlated residue mutations, and utilized ridge detection to identify the characteristic residue contact patterns for helix‐helix interactions. The ridge information as well as a few additional features were then fed into a machine learning model HHConPred to predict interactions between helix pairs. In an independent test, our method achieved an F‐measure of ~60% for predicting helix‐helix interactions. Moreover, although the model was trained mainly using soluble proteins, it could be extended to membrane proteins with at least comparable performance relatively to previous approaches that were generated purely using membrane proteins. All data and source codes are available at http://166.111.152.91/Downloads.html or https://github.com/dpxiong/HHConPred .  相似文献   

12.
Astringency is one of the major organoleptic properties of food and beverages that are made from plants, such as tea, chocolate, beer, or red wine. This sensation is thought to be due to interactions between tannins and salivary proline‐rich proteins, which are natively unfolded proteins. A human salivary proline‐rich protein, namely IB‐5, was produced by the recombinant method. Its interactions with a model tannin, epigallocatechin gallate (EGCG), the major flavan‐3‐ol in green tea, were studied here. Circular dichroism experiments showed that IB‐5 presents residual structures (PPII helices) when the ionic strength is close to that in saliva. In the presence of these residual structures, IB‐5 undergoes an increase in structural content upon binding to EGCG. NMR data corroborated the presence of preformed structural elements within the protein prior to binding and a partial assignment was proposed, showing partial structuration. TOCSY experiments showed that amino acids that are involved in PPII helices are more likely to interact with EGCG than those in random coil regions, as if they were anchorage points for the ligand. The signal from IB‐5 in the DOSY NMR spectrum revealed an increase in polydispersity upon addition of EGCG while the mean hydrodynamic radius remained unchanged. This strongly suggests the formation of IB‐5/EGCG aggregates. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 745–756, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

13.
Copolymers of sodium 4‐styrene sulfonate (SS) and hydroxyethyl methacrylate (HEMA) were investigated as sequestrants of α‐gliadin, a gluten protein, for the treatment of gluten intolerance. The interactions of α‐gliadin with poly(SS) and poly(HEMA‐co‐SS) with 9 and 26 mol% SS content were studied at gastric (1.2) and intestinal (6.8) pH using circular dichroism and measurements of turbidity, dynamic light scattering and zeta potential. The interactions and their influence on α‐gliadin secondary and aggregated structures depended mainly on the ratio of polymer negative and protein positive charges at pH 1.2, and on polymer SS content at polymer concentrations providing in excess of negative charges at either pH. Poly(SS) could not form complex particles with α‐gliadin in a sufficient excess of negative charges. Copolymerization with HEMA enhanced the formation of complex particles. Poly(HEMA‐co‐SS) with intermediate SS content was found to be the most effective sequestrant for α‐gliadin. This study provides insight into design considerations for polymer sequestrants used in the supportive treatment of celiac disease. © 2009 Wiley Periodicals, Inc. Biopolymers 93:418–428, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
We present the first all‐atom model for the structure of a T = 3 virus, pariacoto virus (PaV), which is a nonenveloped, icosahedral RNA virus and a member of the Nodaviridae family. The model is an extension of the crystal structure, which reveals about 88% of the protein structure but only about 35% of the RNA structure. New modeling methods, combining coarse‐grained and all‐atom approaches, were required for developing the model. Evaluation of alternative models confirms our earlier observation that the polycationic N‐ and C‐terminal tails of the capsid proteins must penetrate deeply into the core of the virus, where they stabilize the structure by neutralizing a substantial fraction of the RNA charge. This leads us to propose a model for the assembly of small icosahedral RNA viruses: nonspecific binding of the protein tails to the RNA leads to a collapse of the complex, in a fashion reminiscent of DNA condensation. The globular protein domains are excluded from the condensed phase but are tethered to it, so they accumulate in a shell around the condensed phase, where their concentration is high enough to trigger oligomerization and formation of the mature virus. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 530–538, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
Synthetic peptides corresponding to the sixth transmembrane segment (TMS6) of secondary‐active transporter MntH (Proton‐dependent Manganese Transporter) from Escherichia coli and its two mutations in the functionally important conserved histidine residue were used as a model for structure–function study of MntH. The secondary structure of the peptides was estimated in different environments using circular dichroism spectroscopy. These peptides interacted with and adopted helical conformations in lipid membranes. Electrophysiological experiments demonstrated that TMS6 was able to form multi‐state ion channels in model biological membranes. Electrophysiological properties of these weakly cation‐selective ion channels were strongly dependent on the surrounding pH. Manganese ion, as a physiological substrate of MntH, enhanced the conductivity of TMS6 channels, influenced the transition between closed and open states, and affected the peptide conformations. Moreover, functional properties of peptides carrying two different mutations of His211 were analogous to in vivo functional characteristics of Nramp/MntH proteins mutated at homologous residues. Hence, a single functionally important TMS can retain some of the functional properties of the full‐length protein. These findings could contribute to understanding the structure–function relationship at the molecular level. However it remains unclear to what extent the peptide‐specific channel activity represents a functional aspect of the full‐length membrane carrier protein. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 718–726, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

16.
A significant number of G‐quadruplex‐forming sequences have been revealed in human genome by bioinformatic searches, implying that G‐quadruplexes may be involved in important biological processes and may be new chemotherapeutic targets. Therefore, it is important to discover the potential interactions of G‐quadruplexes with other molecules or groups. Here we describe a class of G‐quadruplexes, which can bind to ethanolamine groups that widely exist in biomolecules and drug molecules. The specific interaction of these G‐quadruplexes with ethanolamine groups was identified by high performance affinity chromatography (HPAC) using immobilized ethanolamine and diethanolamine as stationary phase reagents. The circular dichroism (CD) spectra and native polyacrylamide gel electrophoresis (PAGE) show that these ethanolamine binding quadruplexes adopt an intramolecularly parallel structure. The relationship of ethanolamine binding and G‐quadruplexe structure provides new clues for the G‐quadruplex‐related studies as well as for the molecular designs of therapeutic reagents. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 874–883, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
Our understanding of the structural organization of ribosome assembly intermediates, in particular those intermediates that result from misfolding leading to their eventual degradation within the cell, is limited because of the lack of methods available to characterize assembly intermediate structures. Because conventional structural approaches, such as NMR, X‐ray crystallography, and cryo‐EM, are not ideally suited to characterize the structural organization of these flexible and sometimes heterogeneous assembly intermediates, we have set out to develop an approach combining limited proteolysis with matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) that might be applicable to ribonucleoprotein complexes as large as the ribosome. This study focuses on the limited proteolysis behavior of appropriately assembled ribosome subunits. Isolated subunits were analyzed using limited proteolysis and MALDI‐MS and the results were compared with previous data obtained from 70S ribosomes. Generally, ribosomal proteins were found to be more stable in 70S ribosomes than in their isolated subunits, consistent with a reduction in conformational flexibility on subunit assembly. This approach demonstrates that limited proteolysis combined with MALDI‐MS can reveal structural changes to ribosomes on subunit assembly or disassembly, and provides the appropriate benchmark data from 30S, 50S, and 70S proteins to enable studies of ribosome assembly intermediates. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 410–422, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

18.
Despite detailed knowledge of the overall structural changes and stoichiometries of surfactant binding, little is known about which protein regions constitute the preferred sites of attack for initial unfolding. Here we have exposed three proteins to limited proteolysis at anionic (SDS) and cationic (DTAC) surfactant concentrations corresponding to specific conformational transitions, using the surfactant‐robust broad‐specificity proteases Savinase and Alcalase. Cleavage sites are identified by SDS‐PAGE and N‐terminal sequencing. We observe well‐defined cleavage fragments, which suggest that flexibility is limited to certain regions of the protein. Cleavage sites for α‐lactalbumin and myoglobin correspond to regions identified in other studies as partially unfolded at low pH or in the presence of organic solvents. For Tnfn3, which does not form partially folded structures under other conditions, cleavage sites can be rationalized from the structure of the protein's folding transition state and the position of loops in the native state. Nevertheless, they are more sensitive to choice of surfactant and protease, probably reflecting a heterogeneous and fluctuating ensemble of partially unfolded structures. Thus, for proteins accumulating stable intermediates on the folding pathway, surfactants encourage the formation of these states, while the situation is more complex for proteins that do not form these intermediates. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 221–231, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

19.
Salmon calcitonin (sCT) was selected as a model protein drug for investigating its intrinsic thermal stability and conformational structure in the solid and liquid states by using a Fourier transform infrared (FT‐IR) microspectroscopy with or without utilizing thermal analyzer. The spectral correlation coefficient (r) analysis between two second‐derivative IR spectra was applied to quantitatively estimate the structural similarity of sCT in the solid state before and after different treatments. The thermal FT‐IR microspectroscopic data clearly evidenced that sCT in the solid state was not effected by temperature and had a thermal reversible property during heating–cooling process. Moreover, the high r value of 0.973 or 0.988 also evidenced the structural similarity of solid‐state sCT samples before and after treatments. However, sCT in H2O exhibited protein instability and thermal irreversibility after incubation at 40°C. The temperature‐induced conformational changes of sCT in H2O was occurred to transform the α‐helix/random coil structures to β‐sheet structure and also resulted in the formation of intramolecular and intermolecular β‐sheet structures. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 200–207, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号