首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accuracy of the vast amount of genotypic information generated by high-throughput genotyping technologies is crucial in haplotype analyses and linkage-disequilibrium mapping for complex diseases. To date, most automated programs lack quality measures for the allele calls; therefore, human interventions, which are both labor intensive and error prone, have to be performed. Here, we propose a novel genotype clustering algorithm, GeneScore, based on a bivariate t-mixture model, which assigns a set of probabilities for each data point belonging to the candidate genotype clusters. Furthermore, we describe an expectation-maximization (EM) algorithm for haplotype phasing, GenoSpectrum (GS)-EM, which can use probabilistic multilocus genotype matrices (called "GenoSpectrum") as inputs. Combining these two model-based algorithms, we can perform haplotype inference directly on raw readouts from a genotyping machine, such as the TaqMan assay. By using both simulated and real data sets, we demonstrate the advantages of our probabilistic approach over the current genotype scoring methods, in terms of both the accuracy of haplotype inference and the statistical power of haplotype-based association analyses.  相似文献   

2.
MOTIVATION: Killer immunoglobulin-like receptor (KIR) genes vary considerably in their presence or absence on a specific regional haplotype. Because presence or absence of these genes is largely detected using locus-specific genotyping technology, the distinction between homozygosity and hemizygosity is often ambiguous. The performance of methods for haplotype inference (e.g. PL-EM, PHASE) for KIR genes may be compromised due to the large portion of ambiguous data. At the same time, many haplotypes or partial haplotype patterns have been previously identified and can be incorporated to facilitate haplotype inference for unphased genotype data. To accommodate the increased ambiguity of present-absent genotyping of KIR genes, we developed a hybrid approach combining a greedy algorithm with the Expectation-Maximization (EM) method for haplotype inference based on previously identified haplotypes and haplotype patterns. RESULTS: We implemented this algorithm in a software package named HAPLO-IHP (Haplotype inference using identified haplotype patterns) and compared its performance with that of HAPLORE and PHASE on simulated KIR genotypes. We compared five measures in order to evaluate the reliability of haplotype assignments and the accuracy in estimating haplotype frequency. Our method outperformed the two existing techniques by all five measures when either 60% or 25% of previously identified haplotypes were incorporated into the analyses. AVAILABILITY: The HAPLO-IHP is available at http://www.soph.uab.edu/Statgenetics/People/KZhang/HAPLO-IHP/index.html. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

3.
Zou G  Zhao H 《Human heredity》2003,56(1-3):131-138
Several statistical methods have been proposed to estimate haplotype frequencies, either based on unrelated individuals or based on families. These estimates may yield insights on population genetics as well as associations between candidate regions and disease of interest. One limitation of the existing methods is that all these methods make the implicit assumption that there are no genotyping errors. However, genotyping errors are unavoidable in practice. Numerous methods have been developed to incorporate genotyping errors in genetic studies, but none to date have addressed the issues of haplotype inference in the presence of genotyping errors. In this article, we develop statistical methods for haplotype inference incorporating genotyping errors. We describe how our methods can be applied to analyze unrelated individuals as well as nuclear families. Our simulation results show that the proposed methods perform well in the presence of genotyping errors.  相似文献   

4.
Liu W  Zhao W  Chase GA 《Human heredity》2006,61(1):31-44
OBJECTIVE: Single nucleotide polymorphisms (SNPs) serve as effective markers for localizing disease susceptibility genes, but current genotyping technologies are inadequate for genotyping all available SNP markers in a typical linkage/association study. Much attention has recently been paid to methods for selecting the minimal informative subset of SNPs in identifying haplotypes, but there has been little investigation of the effect of missing or erroneous genotypes on the performance of these SNP selection algorithms and subsequent association tests using the selected tagging SNPs. The purpose of this study is to explore the effect of missing genotype or genotyping error on tagging SNP selection and subsequent single marker and haplotype association tests using the selected tagging SNPs. METHODS: Through two sets of simulations, we evaluated the performance of three tagging SNP selection programs in the presence of missing or erroneous genotypes: Clayton's diversity based program htstep, Carlson's linkage disequilibrium (LD) based program ldSelect, and Stram's coefficient of determination based program tagsnp.exe. RESULTS: When randomly selected known loci were relabeled as 'missing', we found that the average number of tagging SNPs selected by all three algorithms changed very little and the power of subsequent single marker and haplotype association tests using the selected tagging SNPs remained close to the power of these tests in the absence of missing genotype. When random genotyping errors were introduced, we found that the average number of tagging SNPs selected by all three algorithms increased. In data sets simulated according to the haplotype frequecies in the CYP19 region, Stram's program had larger increase than Carlson's and Clayton's programs. In data sets simulated under the coalescent model, Carlson's program had the largest increase and Clayton's program had the smallest increase. In both sets of simulations, with the presence of genotyping errors, the power of the haplotype tests from all three programs decreased quickly, but there was not much reduction in power of the single marker tests. CONCLUSIONS: Missing genotypes do not seem to have much impact on tagging SNP selection and subsequent single marker and haplotype association tests. In contrast, genotyping errors could have severe impact on tagging SNP selection and haplotype tests, but not on single marker tests.  相似文献   

5.
Estimating haplotype frequencies becomes increasingly important in the mapping of complex disease genes, as millions of single nucleotide polymorphisms (SNPs) are being identified and genotyped. When genotypes at multiple SNP loci are gathered from unrelated individuals, haplotype frequencies can be accurately estimated using expectation-maximization (EM) algorithms (Excoffier and Slatkin, 1995; Hawley and Kidd, 1995; Long et al., 1995), with standard errors estimated using bootstraps. However, because the number of possible haplotypes increases exponentially with the number of SNPs, handling data with a large number of SNPs poses a computational challenge for the EM methods and for other haplotype inference methods. To solve this problem, Niu and colleagues, in their Bayesian haplotype inference paper (Niu et al., 2002), introduced a computational algorithm called progressive ligation (PL). But their Bayesian method has a limitation on the number of subjects (no more than 100 subjects in the current implementation of the method). In this paper, we propose a new method in which we use the same likelihood formulation as in Excoffier and Slatkin's EM algorithm and apply the estimating equation idea and the PL computational algorithm with some modifications. Our proposed method can handle data sets with large number of SNPs as well as large numbers of subjects. Simultaneously, our method estimates standard errors efficiently, using the sandwich-estimate from the estimating equation, rather than the bootstrap method. Additionally, our method admits missing data and produces valid estimates of parameters and their standard errors under the assumption that the missing genotypes are missing at random in the sense defined by Rubin (1976).  相似文献   

6.
MOTIVATION: Missing data in genotyping single nucleotide polymorphism (SNP) spots are common. High-throughput genotyping methods usually have a high rate of missing data. For example, the published human chromosome 21 data by Patil et al. contains about 20% missing SNPs. Inferring missing SNPs using the haplotype block structure is promising but difficult because the haplotype block boundaries are not well defined. Here we propose a global algorithm to overcome this difficulty. RESULTS: First, we propose to use entropy as a measure of haplotype diversity. We show that the entropy measure combined with a dynamic programming algorithm produces better haplotype block partitions than other measures. Second, based on the entropy measure, we propose a two-step iterative partition-inference algorithm for the inference of missing SNPs. At the first step, we apply the dynamic programming algorithm to partition haplotypes into blocks. At the second step, we use an iterative process similar to the expectation-maximization algorithm to infer missing SNPs in each haplotype block so as to minimize the block entropy. The algorithm iterates these two steps until the total block entropy is minimized. We test our algorithm in several experimental data sets. The results show that the global approach significantly improves the accuracy of the inference. AVAILABILITY: Upon request.  相似文献   

7.
Estimating the genomic location and length of identical-by-descent (IBD) segments among individuals is a crucial step in many genetic analyses. However, the exponential growth in the size of biobank and direct-to-consumer genetic data sets makes accurate IBD inference a significant computational challenge. Here we present the templated positional Burrows–Wheeler transform (TPBWT) to make fast IBD estimates robust to genotype and phasing errors. Using haplotype data simulated over pedigrees with realistic genotyping and phasing errors, we show that the TPBWT outperforms other state-of-the-art IBD inference algorithms in terms of speed and accuracy. For each phase-aware method, we explore the false positive and false negative rates of inferring IBD by segment length and characterize the types of error commonly found. Our results highlight the fragility of most phased IBD inference methods; the accuracy of IBD estimates can be highly sensitive to the quality of haplotype phasing. Additionally, we compare the performance of the TPBWT against a widely used phase-free IBD inference approach that is robust to phasing errors. We introduce both in-sample and out-of-sample TPBWT-based IBD inference algorithms and demonstrate their computational efficiency on massive-scale data sets with millions of samples. Furthermore, we describe the binary file format for TPBWT-compressed haplotypes that results in fast and efficient out-of-sample IBD computes against very large cohort panels. Finally, we demonstrate the utility of the TPBWT in a brief empirical analysis, exploring geographic patterns of haplotype sharing within Mexico. Hierarchical clustering of IBD shared across regions within Mexico reveals geographically structured haplotype sharing and a strong signal of isolation by distance. Our software implementation of the TPBWT is freely available for noncommercial use in the code repository (https://github.com/23andMe/phasedibd, last accessed January 11, 2021).  相似文献   

8.
Genotyping errors occur when the genotype determined after molecular analysis does not correspond to the real genotype of the individual under consideration. Virtually every genetic data set includes some erroneous genotypes, but genotyping errors remain a taboo subject in population genetics, even though they might greatly bias the final conclusions, especially for studies based on individual identification. Here, we consider four case studies representing a large variety of population genetics investigations differing in their sampling strategies (noninvasive or traditional), in the type of organism studied (plant or animal) and the molecular markers used [microsatellites or amplified fragment length polymorphisms (AFLPs)]. In these data sets, the estimated genotyping error rate ranges from 0.8% for microsatellite loci from bear tissues to 2.6% for AFLP loci from dwarf birch leaves. Main sources of errors were allelic dropouts for microsatellites and differences in peak intensities for AFLPs, but in both cases human factors were non-negligible error generators. Therefore, tracking genotyping errors and identifying their causes are necessary to clean up the data sets and validate the final results according to the precision required. In addition, we propose the outline of a protocol designed to limit and quantify genotyping errors at each step of the genotyping process. In particular, we recommend (i) several efficient precautions to prevent contaminations and technical artefacts; (ii) systematic use of blind samples and automation; (iii) experience and rigor for laboratory work and scoring; and (iv) systematic reporting of the error rate in population genetics studies.  相似文献   

9.
MOTIVATION: Haplotype reconstruction is an essential step in genetic linkage and association studies. Although many methods have been developed to estimate haplotype frequencies and reconstruct haplotypes for a sample of unrelated individuals, haplotype reconstruction in large pedigrees with a large number of genetic markers remains a challenging problem. METHODS: We have developed an efficient computer program, HAPLORE (HAPLOtype REconstruction), to identify all haplotype sets that are compatible with the observed genotypes in a pedigree for tightly linked genetic markers. HAPLORE consists of three steps that can serve different needs in applications. In the first step, a set of logic rules is used to reduce the number of compatible haplotypes of each individual in the pedigree as much as possible. After this step, the haplotypes of all individuals in the pedigree can be completely or partially determined. These logic rules are applicable to completely linked markers and they can be used to impute missing data and check genotyping errors. In the second step, a haplotype-elimination algorithm similar to the genotype-elimination algorithms used in linkage analysis is applied to delete incompatible haplotypes derived from the first step. All superfluous haplotypes of the pedigree members will be excluded after this step. In the third step, the expectation-maximization (EM) algorithm combined with the partition and ligation technique is used to estimate haplotype frequencies based on the inferred haplotype configurations through the first two steps. Only compatible haplotype configurations with haplotypes having frequencies greater than a threshold are retained. RESULTS: We test the effectiveness and the efficiency of HAPLORE using both simulated and real datasets. Our results show that, the rule-based algorithm is very efficient for completely genotyped pedigree. In this case, almost all of the families have one unique haplotype configuration. In the presence of missing data, the number of compatible haplotypes can be substantially reduced by HAPLORE, and the program will provide all possible haplotype configurations of a pedigree under different circumstances, if such multiple configurations exist. These inferred haplotype configurations, as well as the haplotype frequencies estimated by the EM algorithm, can be used in genetic linkage and association studies. AVAILABILITY: The program can be downloaded from http://bioinformatics.med.yale.edu.  相似文献   

10.
A variety of statistical methods exist for detecting haplotype-disease association through use of genetic data from a case-control study. Since such data often consist of unphased genotypes (resulting in haplotype ambiguity), such statistical methods typically apply the expectation-maximization (EM) algorithm for inference. However, the majority of these methods fail to perform inference on the effect of particular haplotypes or haplotype features on disease risk. Since such inference is valuable, we develop a retrospective likelihood for estimating and testing the effects of specific features of single-nucleotide polymorphism (SNP)-based haplotypes on disease risk using unphased genotype data from a case-control study. Our proposed method has a flexible structure that allows, among other choices, modeling of multiplicative, dominant, and recessive effects of specific haplotype features on disease risk. In addition, our method relaxes the requirement of Hardy-Weinberg equilibrium of haplotype frequencies in case subjects, which is typically required of EM-based haplotype methods. Also, our method easily accommodates missing SNP information. Finally, our method allows for asymptotic, permutation-based, or bootstrap inference. We apply our method to case-control SNP genotype data from the Finland-United States Investigation of Non-Insulin-Dependent Diabetes Mellitus (FUSION) Genetics study and identify two haplotypes that appear to be significantly associated with type 2 diabetes. Using the FUSION data, we assess the accuracy of asymptotic P values by comparing them with P values obtained from a permutation procedure. We also assess the accuracy of asymptotic confidence intervals for relative-risk parameters for haplotype effects, by a simulation study based on the FUSION data.  相似文献   

11.
Ito T  Inoue E  Kamatani N 《Genetics》2004,168(4):2339-2348
Analysis of the association between haplotypes and phenotypes is becoming increasingly important. We have devised an expectation-maximization (EM)-based algorithm to test the association between a phenotype and a haplotype or a haplotype set and to estimate diplotype-based penetrance using individual genotype and phenotype data from cohort studies and clinical trials. The algorithm estimates, in addition to haplotype frequencies, penetrances for subjects with a given haplotype and those without it (dominant mode). Relative risk can thus also be estimated. In the dominant mode, the maximum likelihood under the assumption of no association between the phenotype and presence of the haplotype (L(0max)) and the maximum likelihood under the assumption of association (L(max)) were calculated. The statistic -2 log(L(0max)/L(max)) was used to test the association. The present algorithm along with the analyses in recessive and genotype modes was implemented in the computer program PENHAPLO. Results of analysis of simulated data indicated that the test had considerable power under certain conditions. Analyses of two real data sets from cohort studies, one concerning the MTHFR gene and the other the NAT2 gene, revealed significant associations between the presence of haplotypes and occurrence of side effects. Our algorithm may be especially useful for analyzing data concerning the association between genetic information and individual responses to drugs.  相似文献   

12.
Inferring the haplotypes of the members of a pedigree from their genotypes has been extensively studied. However, most studies do not consider genotyping errors and de novo mutations. In this paper, we study how to infer haplotypes from genotype data that may contain genotyping errors, de novo mutations, and missing alleles. We assume that there are no recombinants in the genotype data, which is usually true for tightly linked markers. We introduce a combinatorial optimization problem, called haplotype configuration with mutations and errors (HCME), which calls for haplotype configurations consistent with the given genotypes that incur no recombinants and require the minimum number of mutations and errors. HCME is NP-hard. To solve the problem, we propose a heuristic algorithm, the core of which is an integer linear program (ILP) using the system of linear equations over Galois field GF(2). Our algorithm can detect and locate genotyping errors that cannot be detected by simply checking the Mendelian law of inheritance. The algorithm also offers error correction in genotypes/haplotypes rather than just detecting inconsistencies and deleting the involved loci. Our experimental results show that the algorithm can infer haplotypes with a very high accuracy and recover 65%-94% of genotyping errors depending on the pedigree topology.  相似文献   

13.
Recent literature has suggested that haplotype inference through close relatives, especially from nuclear families can be an alternative strategy in determining the linkage phase. In this paper, haplotype reconstruction and estimation of haplotype frequencies via expectation maximization (EM) algorithm including nuclear families with only one parent available is proposed. Parent and his (her) child are treated as parent-child pair with one shared haplotype. This reduces the number of potential haplotype pairs for both parent and child separately, resulting in a higher accuracy of the estimation. In a series of simulations, the comparisons of PHASE, GENEHUNTER, EM-based approach for complete nuclear families and our approach are carried out. In all situations, EM-based approach for trio data is comparable but slightly worse error rate than PHASE, our approach is slightly better and much faster than PHASE for incomplete trios, the performance of GENEHUNTER is very bad in simple nuclear family settings and dramatically decreased with the number of markers being increased. On the other hand, the comparison result of different sampling designs demonstrates that sampling trios is the most efficient design to estimate haplotype frequencies in populations under same genotyping cost.  相似文献   

14.
Recently, Lake et al. [Human Heredity 2003;55:56-65] have proposed an approach based on the EM algorithm for maximum-likelihood inference of trait associations with haplotypes and environmental cofactors in generalized linear models. In this short report, we describe an extension to accommodate missing SNP genotype information. We also discuss differences in the calculation of standard errors between their implementation and our own. Finally, we present results indicating that inference is robust to low levels of dependence between haplotypes and nongenetic factors, but that biased inference can result when there is moderate to strong dependence. Overall, the method is found to perform well in the models we considered.  相似文献   

15.
MOTIVATION: The search for genetic variants that are linked to complex diseases such as cancer, Parkinson's;, or Alzheimer's; disease, may lead to better treatments. Since haplotypes can serve as proxies for hidden variants, one method of finding the linked variants is to look for case-control associations between the haplotypes and disease. Finding these associations requires a high-quality estimation of the haplotype frequencies in the population. To this end, we present, HaploPool, a method of estimating haplotype frequencies from blocks of consecutive SNPs. RESULTS: HaploPool leverages the efficiency of DNA pools and estimates the population haplotype frequencies from pools of disjoint sets, each containing two or three unrelated individuals. We study the trade-off between pooling efficiency and accuracy of haplotype frequency estimates. For a fixed genotyping budget, HaploPool performs favorably on pools of two individuals as compared with a state-of-the-art non-pooled phasing method, PHASE. Of independent interest, HaploPool can be used to phase non-pooled genotype data with an accuracy approaching that of PHASE. We compared our algorithm to three programs that estimate haplotype frequencies from pooled data. HaploPool is an order of magnitude more efficient (at least six times faster), and considerably more accurate than previous methods. In contrast to previous methods, HaploPool performs well with missing data, genotyping errors and long haplotype blocks (of between 5 and 25 SNPs).  相似文献   

16.
T. Druet  M. Gautier 《Molecular ecology》2017,26(20):5820-5841
Inbreeding results from the mating of related individuals and may be associated with reduced fitness because it brings together deleterious variants in one individual. In general, inbreeding is estimated with respect to an arbitrary base population consisting of ancestors that are assumed unrelated. We herein propose a model‐based approach to estimate and characterize individual inbreeding at both global and local genomic scales by assuming the individual genome is a mosaic of homozygous‐by‐descent (HBD) and non‐HBD segments. The HBD segments may originate from ancestors tracing back to different periods in the past defining distinct age‐related classes. The lengths of the HBD segments are exponentially distributed with class‐specific parameters reflecting that inbreeding of older origin generates on average shorter stretches of observed homozygous markers. The model is implemented in a hidden Markov model framework that uses marker allele frequencies, genetic distances, genotyping error rates and the sequences of observed genotypes. Note that genotyping errors, low‐fold sequencing or genotype‐by‐sequencing data are easily accommodated under this framework. Based on simulations under the inference model, we show that the genomewide inbreeding coefficients and the parameters of the model are accurately estimated. In addition, when several inbreeding classes are simulated, the model captures them if their ages are sufficiently different. Complementary analyses, either on data sets simulated under more realistic models or on human, dog and sheep real data, illustrate the range of applications of the approach and how it can reveal recent demographic histories among populations (e.g., very recent bottlenecks or founder effects). The method also allows to clearly identify individuals resulting from extreme consanguineous matings.  相似文献   

17.
Liu PY  Lu Y  Deng HW 《Genetics》2006,174(1):499-509
Sibships are commonly used in genetic dissection of complex diseases, particularly for late-onset diseases. Haplotype-based association studies have been advocated as powerful tools for fine mapping and positional cloning of complex disease genes. Existing methods for haplotype inference using data from relatives were originally developed for pedigree data. In this study, we proposed a new statistical method for haplotype inference for multiple tightly linked single-nucleotide polymorphisms (SNPs), which is tailored for extensively accumulated sibship data. This new method was implemented via an expectation-maximization (EM) algorithm without the usual assumption of linkage equilibrium among markers. Our EM algorithm does not incur extra computational burden for haplotype inference using sibship data when compared with using unrelated parental data. Furthermore, its computational efficiency is not affected by increasing sibship size. We examined the robustness and statistical performance of our new method in simulated data created from an empirical haplotype data set of human growth hormone gene 1. The utility of our method was illustrated with an application to the analyses of haplotypes of three candidate genes for osteoporosis.  相似文献   

18.
The distribution of feather mites (Astigmata) along the wing of passerine birds could change dramatically within minutes because of the rapid movement of mites between feathers. However, no rigorous study has answered how fine‐tuned is the pattern of distribution of feather mites at a given time. Here we present a multiscale study of the distribution of feather mites on the wing of non‐moulting blackcaps Sylvia atricapilla in a short time period and at a single locality. We found that the number and distribution of mites differed among birds, but it was extremely similar between the wings of each bird. Moreover, mites consistently avoided the first secondary feather, despite that it is placed at the centre of the feathers most used by them. Thus, our results suggest that feather mites do precise, feather‐level decisions on where to live, contradicting the current view that mites perform “mass”, or “blind” movements across wing feathers. Moreover, our findings indicate that “rare” distributions are not spurious data or sampling errors, but each distribution of mites on the wing of each bird is the outcome of the particular conditions operating on each ambient‐bird‐feather mite system at a given time. This study indicates that we need to focus on the distribution of feather mites at the level of the individual bird and at the feather level to improve our understanding of the spatial ecology of mites on the wings of birds.  相似文献   

19.
Restriction‐enzyme‐based sequencing methods enable the genotyping of thousands of single nucleotide polymorphism (SNP) loci in nonmodel organisms. However, in contrast to traditional genetic markers, genotyping error rates in SNPs derived from restriction‐enzyme‐based methods remain largely unknown. Here, we estimated genotyping error rates in SNPs genotyped with double digest RAD sequencing from Mendelian incompatibilities in known mother–offspring dyads of Hoffman's two‐toed sloth (Choloepus hoffmanni) across a range of coverage and sequence quality criteria, for both reference‐aligned and de novo‐assembled data sets. Genotyping error rates were more sensitive to coverage than sequence quality and low coverage yielded high error rates, particularly in de novo‐assembled data sets. For example, coverage ≥5 yielded median genotyping error rates of ≥0.03 and ≥0.11 in reference‐aligned and de novo‐assembled data sets, respectively. Genotyping error rates declined to ≤0.01 in reference‐aligned data sets with a coverage ≥30, but remained ≥0.04 in the de novo‐assembled data sets. We observed approximately 10‐ and 13‐fold declines in the number of loci sampled in the reference‐aligned and de novo‐assembled data sets when coverage was increased from ≥5 to ≥30 at quality score ≥30, respectively. Finally, we assessed the effects of genotyping coverage on a common population genetic application, parentage assignments, and showed that the proportion of incorrectly assigned maternities was relatively high at low coverage. Overall, our results suggest that the trade‐off between sample size and genotyping error rates be considered prior to building sequencing libraries, reporting genotyping error rates become standard practice, and that effects of genotyping errors on inference be evaluated in restriction‐enzyme‐based SNP studies.  相似文献   

20.
MOTIVATION: The technology to genotype single nucleotide polymorphisms (SNPs) at extremely high densities provides for hypothesis-free genome-wide scans for common polymorphisms associated with complex disease. However, we find that some errors introduced by commonly employed genotyping algorithms may lead to inflation of false associations between markers and phenotype. RESULTS: We have developed a novel SNP genotype calling program, SNiPer-High Density (SNiPer-HD), for highly accurate genotype calling across hundreds of thousands of SNPs. The program employs an expectation-maximization (EM) algorithm with parameters based on a training sample set. The algorithm choice allows for highly accurate genotyping for most SNPs. Also, we introduce a quality control metric for each assayed SNP, such that poor-behaving SNPs can be filtered using a metric correlating to genotype class separation in the calling algorithm. SNiPer-HD is superior to the standard dynamic modeling algorithm and is complementary and non-redundant to other algorithms, such as BRLMM. Implementing multiple algorithms together may provide highly accurate genotyping calls, without inflation of false positives due to systematically miss-called SNPs. A reliable and accurate set of SNP genotypes for increasingly dense panels will eliminate some false association signals and false negative signals, allowing for rapid identification of disease susceptibility loci for complex traits. AVAILABILITY: SNiPer-HD is available at TGen's website: http://www.tgen.org/neurogenomics/data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号