首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The responses of mouse embryo brain (MEB) cell cultures and of Madin-Darby canine kidney cells and chicken embryo fibroblasts to infection with A/PR/8/34 (PR8), A/WS/33 (WS), or the neurovirulent WSN variant were compared in terms of (i) single-cycle yields of hemagglutinating and associated neuraminidase (NA) activities and plaque-forming particles, the latter with or without trypsin activation [PFU(TR++) or PFU(TR--), respectively], and (ii) expression of nucleoprotein (NP), M1, and NS1 protein, determined for specific cell types by immunostaining, for whole culture lysates by Western blot analysis of NP and M1. Primary MEB cultures grown in serum-enriched medium were infected after 6 days (young), when none of the cells reacted specifically and exclusively with any of the nerve cell marker antibodies used, or after greater than or equal to 21 days (aged), when astrocytes (the predominant cell type), neurons, and oligodendrocytes were morphologically and immunologically mature. Secondary astrocyte-enriched cultures were used when they contained 90 to 99% of their cells as astrocytes at an early stage of differentiation. By all criteria, young MEB cultures were only marginally less permissive for each of the three viruses than were chicken embryo fibroblasts or Madin-Darby canine kidney cells. Aged MEB cultures, by comparison, produced undiminished NP, hemagglutinin, and neuraminidase, but yields of PFU(TR++) and expression of M1 protein (relative to NP) were reduced for all three viruses, most for PR8 and least for WSN; relative reduction of NS1 protein was demonstrable only in PR8-infected aged cultures. Immunostaining revealed low levels of M1 and NS1 expression only in astrocytes, not in oligodendrocytes and neurons. In PR8-infected mature astrocytes, NP accumulated in the nucleus; it persisted in some cells for at least 8 weeks after infection. The presence of NP did not seem to interfere with cell division. Secondary MEB cultures containing 90 to 99% immature astrocytes were less restricted than were aged primary cultures. Thus, it appears that reduced permissivity of nerve cell cultures, as measured in this study, is most closely correlated with advancing differentiation and maturity of astroglial cells. Assembled virions, including those that score as PFU(TR++) in restricted cultures (e.g., PR8-infected aged MEB), may be mainly products of mature oligodendrocytes and neurons.  相似文献   

2.
ABSTRACT: BACKGROUND: Although gene exchange is not likely to occur freely, reassortment between the H5N1 highlypathogenic avian influenza virus (HPAIV) and currently circulating human viruses is aserious concern. The PA polymerase subunit of H5N1 HPAIV was recently reported toactivate the influenza replicon activity. METHODS: The replicon activities of PR8 and WSN strains (H1N1) of influenza containing PA fromHPAIV A/Cambodia/P0322095/2005 (H5N1) and the activity of the chimeric RNApolymerase were analyzed. A reassortant WSN virus containing the H5N1 Cambodia PA (CPA)was then reconstituted and its growth in cells and pathogenicity in mice examined. Theinterferon promoter, TUNEL, and caspase 3, 8, and 9 activities of C-PA-infected cells werecompared with those of WSN-infected cells. RESULTS: The activity of the chimeric RNA polymerase was slightly higher than that of WSN, and CPAreplicated better than WSN in cells. However, the multi-step growth of C-PA and itspathogenicity in mice were lower than those of WSN. The interferon promoter, TUNEL, andcaspase 3, 8, and 9 activities were strongly induced in early infection in C-PA-infected cellsbut not in WSN-infected cells. CONCLUSIONS: Apoptosis and interferon were strongly induced early in C-PA infection, which protected theuninfected cells from expansion of viral infection. In this case, these classical host-virusinteractions contributed to the attenuation of this strongly replicating virus.  相似文献   

3.
Influenza virus exhibits two morphologies – spherical and filamentous. Strains that have been grown extensively in laboratory substrates are comprised predominantly of spherical virions while clinical or low passage isolates produce a mixture of spheres and filamentous virions of varying lengths. The filamentous morphology can be lost upon continued passage in embryonated chicken eggs, a common laboratory substrate for influenza viruses. The fact that the filamentous morphology is maintained in nature but lost in favor of a spherical morphology in ovo suggests that filaments confer a selective advantage within the infected host that is not necessary for growth in laboratory substrates. Indeed, we have recently shown that filament-producing variant viruses are selected upon passage of the spherical laboratory strain A/Puerto Rico/8/1934 (H1N1) [PR8] in guinea pigs. Toward determining the nature of the selective advantage conferred by filaments, we sought to identify functional differences between spherical and filamentous particles. We compared the wild-type PR8 virus to two previously characterized recombinant PR8 viruses in which single point mutations within M1 confer a filamentous morphology. Our results indicate that these filamentous PR8 mutants have higher neuraminidase activities than the spherical PR8 virus. Conversely, no differences were observed in HAU:PFU or HAU:RNA ratios, binding avidity, sensitivity to immune serum in hemagglutination inhibition assays, or virion stability at elevated temperatures. Based on these results, we propose that the pleomorphic nature of influenza virus particles is important for the optimization of neuraminidase functions in vivo.  相似文献   

4.
The complete structure of the neuraminidase gene from the A/RI/5-/57 strain of influenza virus has been determined. It is 1467 nucleotides long and codes for a protein of 469 amino acid residues. Comparison with the gene sequence for the N1 strains A/WSN/33 and A/PR/8/34, the N2 strain A/Udorn/72 and the protein sequence for the N2 strain A/Tokyo/3/67 shows the amino acid sequence changes that have occurred during antigenic shift (60%) and drift (7-9%).  相似文献   

5.
The complete nucleotide sequence of the neuraminidase (NA) gene of WSN/33 (H1N1) virus was determined. The entire sequence was derived from the insert of cDNA clones, except the last 20 nucleotides, which were determined by primer extension. The WSN NA gene contained 1,409 nucleotides beginning at the 5' end (sense strand), with an untranslated region of 19 nucleotides followed by 1,359 nucleotides coding for 453 amino acids and finally ending with a 31-nucleotide sequence of untranslated region at the 3' termini. The amino acid sequence of WSN NA, as deduced from the DNA sequence, showed the presence of a stretch of 29 amino acids (7 to 35) enriched in hydrophobic amino acids, which may anchor the protein into the viral or cellular membrane. When compared with the PR8 NA sequence, WSN NA appeared to possess a similar structure, including the identical location of all cysteine and proline residues. However, WSN NA contained only three of the five potential glycosylation sites present in PR8 NA. Additionally, WSN NA contained a substitution of a five-amino acid sequence for a six-amino acid sequence in PR8 NA. The possible significance of these sequence changes in the primary structure of WSN NA in the unique role of WSN NA as a virulence factor in mouse brain and MDBK cells is discussed.  相似文献   

6.
Influenza virus strains are often pleiomorphic, a characteristic that is largely attributed to specific residues in matrix protein 1 (M1). Although the mechanism by which M1 controls virion morphology has not yet been defined, it is suggested that the M1 interaction with other viral proteins plays an important role. In this study, we rescued recombinant virus WSN-AichiM1 containing the spherical A/WSN/33 (WSN) backbone and the M1 protein from A/Aichi/2/68 (Aichi). Aichi M1 differs from WSN M1 by 7 amino acids but includes those identified to be responsible for filamentous virion formation. Interestingly, Aichi virus produced spherical virions, while WSN-AichiM1 exhibited a long filamentous morphology, as detected by immunofluorescence and electron microscopy. Additional incorporation of Aichi nucleoprotein (NP) but not the hemagglutinin (HA), neuraminidase (NA), or M2 gene to WSN-AichiM1 abrogated filamentous virion formation, suggesting that specific M1-NP interactions affect virion morphology. Further characterization of viruses containing WSN/Aichi chimeric NPs identified residues 214, 217, and 253 of Aichi NP as necessary and sufficient for the formation of spherical virions. NP residues 214 and 217 localize at the minor groove between the two opposite-polarity NP helical strands of viral ribonucleocapsids, and residue 253 also localizes near the surface of the groove. These findings indicate that NP plays a critical role in influenza virus morphology, possibly through its interaction with the M1 layer during virus budding.  相似文献   

7.
Two surface glycoproteins of influenza virus, haemagglutinin (HA) and neuraminidase (NA), play opposite roles in terms of their interaction with host sialic acid receptors. HA attaches to sialic acid on host cell surface receptors to initiate virus infection while NA removes these sialic acids to facilitate release of progeny virions. This functional opposition requires a balance. To explore what might happen when NA of an influenza virus was replaced by one from another isolate or subtype, in this study, we generated three recombinant influenza A viruses in the background of A/PR/8/34 (PR8) (H1N1) and with NA genes obtained respectively from the 2009 pandemic H1N1 virus, a highly pathogenic avian H5N1 virus, and a lowly pathogenic avian H9N2 virus. These recombinant viruses, rPR8-H1N1NA, rPR8-H5N1NA, and rPR8-H9N2NA, were shown to have similar growth kinetics in cells and pathogenicity in mice. However, much more rPR8-H5N1NA and PR8-wt virions were released from chicken erythrocytes than virions of rPR8-H1N1NA and rPR8-H9N2NA after 1 h. In addition, in MDCK cells, rPR8-H5N1NA and rPR8-H9N2NA infected a higher percentage of cells, and induced cell-cell fusion faster and more extensively than PR8-wt and rPR8-H1N1NA did in the early phase of infection. In conclusion, NA replacement in this study did not affect virus replication kinetics but had different effects on infection initiation, virus release and fusion of infected cells. These phenomena might be partially due to NA proteins’ different specificity to α2-3/2-6-sialylated carbohydrate chains, but the exact mechanism remains to be explored.  相似文献   

8.
The nucleotide sequence of the NS gene of the human influenza virus A/PR/8/34 was determined and found to be the same length (890 nucleotides) as the NS gene of another human influenza virus A/Udorn/72 and of the avian isolate A/FPV/Rostock/34. Comparison of the sequences of the NS genes of the two human influenza viruses shows an 8.9% difference whereas the NS gene of the avian isolate differs by only 8% from that of the human strain A/PR/8/34. The extensive sequence similarity among these three genes does not support the notion of species specific homology groups among NS genes of avian and human influenza virus strains. The primary sequence of the A/PR/8/34 NS gene is consistent with the findings that the influenza virus NS gene may code for two overlapping polypeptides. In addition, an open reading frame potentially coding for a polypeptide 167 amino acids in length was found in the negative strand RNA of the A/PR/8/34 virus NS gene.  相似文献   

9.
10.
The genetic basis for the distinctive capacity of influenza A/WSN/33 (H0N1) virus (WSN virus) to produce plaques on bovine kidney (MDBK) cells was found to be related to virus neuraminidase. Recombinant viruses that derived only the neuraminidase of WSN virus were capable of producing plaques, whereas recombinant viruses identical to WSN except for neuraminidase did not produce plaques. With viruses that do not contain WSN neuraminidase, infectivity of virus yields from MDBK cells was increased approximately 1,000-fold after in vitro treatment with trypsin. In contrast, no significant increase in infectivity was observed after trypsin treatment of viruses containing WSN neuraminidase. In addition, polyacrylamide gel analysis of proteins of WSN virus obtained after infection of MDBK cells demonstrated that hemagglutinin was present in the cleaved form (HA1 + HA2), whereas only uncleaved hemagglutinin was obtained with a recombinant virus that derived all of its genes from WSN virus except its neuraminidase. These data are in accord with the hypothesis that neuraminidase may facilitate production of infectious particles by removing sialic acid residues and exposing appropriate cleavage sites on hemagglutinin.  相似文献   

11.
Developmentally aged chicken embryo cells which hyperproduce interferon (IFN) when induced were used to quantify IFN production and its suppression by eight strains of type A influenza viruses (AIV). Over 90% of the IFN-inducing or IFN induction-suppressing activity of AIV populations resided in noninfectious particles. The IFN-inducer moiety of AIV appears to preexist in, or be generated by, virions termed IFN-inducing particles (IFP) and was detectable under conditions in which a single molecule of double-stranded RNA introduced into a cell via endocytosis induced IFN, whereas single-stranded RNA did not. Some AIV strains suppressed IFN production, an activity that resided in a noninfectious virion termed an IFN induction-suppressing particle (ISP). The ISP phenotype was dominant over the IFP phenotype. Strains of AIV varied 100-fold in their capacity to induce IFN. AIV genetically compromised in NS1 expression induced about 20 times more IFN than NS1-competent parental strains. UV irradiation further enhanced the IFN-inducing capacity of AIV up to 100-fold, converting ISP into IFP and IFP into more efficient IFP. AIV is known to prevent IFN induction and/or production by expressing NS1 from a small UV target (gene NS). Evidence is presented for an additional downregulator of IFN production, identified as a large UV target postulated to consist of AIV polymerase genes PB1 + PB2 + PA, through the ensuing action of their cap-snatching endonuclease on pre-IFN-mRNA. The products of both the small and large UV targets act in concert to regulate IFN induction and/or production. Knowledge of the IFP/ISP phenotype may be useful in the development of attenuated AIV strains that maximally induce cytokines favorable to the immune response.  相似文献   

12.
NS1蛋白是流感病毒编码的一种小分子多功能蛋白,可在病毒的复制过程中抑制宿主细胞的抗病毒免疫应答。为研究不同亚型流感病毒的NS1蛋白在细胞内的定位差异,分别用H1N1亚型WSN、PR8和CA04毒株,H9N2亚型SD毒株及H7N9亚型AH01毒株感染A549、MDCK细胞系以及构建的可表达不同亚型流感病毒NS1蛋白的p CMV-Myc-NS1质粒转染293T细胞,用激光共聚焦显微镜观察发现不同亚型流感病毒在不同细胞系和时间点的定位差异,感染后24 h时WSN和PR8毒株的NS1主要定位于细胞质中,而CA04和SD毒株主要定位于细胞核内。另外,观察过表达的WSN、SD和AH01毒株NS1的细胞定位,转染后24 h时WSN毒株NS1定位于细胞质中,而SD和AH01毒株主要定位于细胞核中。经氨基酸序列比对,对WSN毒株NS1蛋白进行关键氨基酸点突变,结果显示单一位点的改变未导致NS1蛋白细胞定位的改变,其细胞定位的差异不是由单一位点决定的。综上所述,分析不同亚型中的NS1的定位差异,这对进一步了解NS1蛋白同宿主细胞不同区域的蛋白的相互作用、流感病毒的调节机制以及病毒感染细胞中天然免疫反应具有一定的指导意义。  相似文献   

13.
目的:应用重组杆状病毒表达系统制备由HA、NA、M1和M2蛋白组成的H5N1高致病性禽流感病毒样颗粒,为研究H5N1高致病性禽流感疫苗奠定基础。方法:构建能共表达A/chicken/Jilin/2003(H5N1)禽流感病毒血凝素(HA)和神经氨酸酶(NA)、A/PR/8/34(H1N1)流感病毒基质蛋白(M1)和离子通道蛋白(M2)的2个二元重组杆状病毒,共同感染HighFive细胞,同时表达HA、NA、M1和M2蛋白,使这4种蛋白在感染的细胞内自主组装成病毒样颗粒。经差速离心和蔗糖密度梯度超速离心收获病毒样颗粒,通过Western印迹鉴定病毒样颗粒的组成,透射电镜观察病毒样颗粒形态,血凝试验测定病毒样颗粒的活性。结果:HA、NA、M1、M2蛋白在昆虫细胞中共表达,并组装成病毒样颗粒;电镜观察到病毒样颗粒的形态与流感病毒一致,直径约80 nm;血凝试验显示该病毒样颗粒具有凝集鸡红细胞的活性。结论:应用该方法可以制备流感病毒样颗粒,为H5N1流感疫苗研究提供了可行方案。  相似文献   

14.
Recurrent outbreaks of highly pathogenic avian influenza virus pose the threat of pandemic spread of lethal disease and make it a priority to develop safe and effective vaccines. Influenza virus-like particles (VLPs) have been suggested to be a promising vaccine approach. However, VLP-induced immune responses, and their roles in inducing memory immune responses and cross-protective immunity have not been investigated. In this study, we developed VLPs containing influenza virus A/PR8/34 (H1N1) hemagglutinin (HA) and matrix (M1) proteins and investigated their immunogenicity, long-term cross-protective efficacy, and effects on lung proinflammatory cytokines in mice. Intranasal immunization with VLPs containing HA induced high serum and mucosal antibody titers and neutralizing activity against PR8 and A/WSN/33 (H1N1) viruses. Mice immunized with VLPs containing HA showed little or no proinflammatory lung cytokines and were protected from a lethal challenge with mouse-adapted PR8 or WSN viruses even 5 months postimmunization. Influenza VLPs induced mucosal immunoglobulin G and cellular immune responses, which were reactivated rapidly upon virus challenge. Long-lived antibody-secreting cells were detected in the bone marrow of immunized mice. Immune sera administered intranasally were able to confer 100% protection from a lethal challenge with PR8 or WSN, which provides further evidence that anti-HA antibodies are primarily responsible for preventing infection. Taken together, these results indicate that nonreplicating influenza VLPs represent a promising strategy for the development of a safe and effective vaccine to control the spread of lethal influenza viruses.  相似文献   

15.
A trypsin inhibitor, 6-amidino-2-naphthyl p-guanidinobenzoate (FUTHAN) reduced both the number and size of plaques of influenza virus A/WSN/33 (H1N1) that can grow without trypsin treatment in MDCK cells. The resulting virus particles with uncleaved hemagglutinin (HA) in the presence of FUTHAN was activated to produce infectious virions by trypsin treatment. Uncleaved HA of WSN virus grown in the presence of FUTHAN was found to be accumulated by protein analysis of WSN virus labeled biosynthetically with [35S]-methionine. It was strongly suggested that FUTHAN inhibited viral replication by preventing proteolytic cleavage of HA.  相似文献   

16.
We generated influenza A viruses expressing mutant NS1 proteins unable to activate phosphoinositide 3-kinase (PI3K) in two mouse-lethal strains. The recombinant A/Puerto Rico/8/34 (rPR8) mutant virus strain was attenuated and caused reduced morbidity/mortality. For the recombinant A/WSN/33 (rWSN) virus strain, the inability to stimulate PI3K had minimal impact on replication or morbidity/mortality. Cell-based assays revealed subtly distinct intracellular sites of NS1 localization and PI3K activation between the strains. We hypothesize that specific spatially regulated NS1-activated PI3K signaling, rather than simply the total level of active PI3K, is important for virus replication and virulence.  相似文献   

17.
In this study, we investigated the role of the conserved neuraminidase (NA) cytoplasmic tail residues in influenza virus replication. Mutants of influenza A virus (A/WSN/33 [H1N1]) with deletions of the NA cytoplasmic tail region were generated by reverse genetics. The resulting viruses, designated NOTAIL, contain only the initiating methionine of the conserved six amino-terminal residues. The mutant viruses grew much less readily and produced smaller plaques than did the wild-type virus. Despite similar levels of NA cell surface expression by the NOTAIL mutants and wild-type virus, incorporation of mutant NA molecules into virions was decreased by 86%. This reduction resulted in less NA activity per virion, leading to the formation of large aggregates of progeny mutant virions on the surface of infected cells. A NOTAIL virus containing an additional mutation (Ser-12 to Pro) in the transmembrane domain incorporated three times more NA molecules into virions than did the NOTAIL parent but approximately half of the amount incorporated by the wild-type virus. However, aggregation of the progeny virions still occurred at the cell surface. All NOTAIL viruses were attenuated in mice. We conclude that the cytoplasmic tail of NA is not absolutely essential for virus replication but exerts important effects on the incorporation of NA into virions and thus on the aggregation and virulence of progeny virus. In addition, the relative abundance of long filamentous particles formed by the NOTAIL mutants, compared with the largely spherical wild-type particles, indicates a role for the NA cytoplasmic tail in virion morphogenesis.  相似文献   

18.
Differences in RNA patterns of influenza A viruses.   总被引:44,自引:24,他引:20       下载免费PDF全文
Analysis of the segmented RNAs of influenza A viruses by electrophoresis on polyacrylamide urea slab gels has provided a method for sharper resolution of the number and migration rates of different segments than previously has been possible. Using this system, the RNA genome of influenza A/WSN (HON1) virus can be separated into seven to nine separate bands, depending on whether virus is obtained after high or low multiplicity of infection, and the genome of influenza A/PR/8 (HON1) virus can be resolved into eight bands, six of which migrate differently from comparable RNA bands of WSN virus. Comparision of the RNA patterns produced by influenza A/PR/8 (HON1) and A/England/42/72 (H8n2) virus also reveals major differences in migration speeds of different bands, and analysis of the RNAs of the RNAs of an HON2 recombinant virus derived from these two strains permits the identification of RNA segments which have been derived from one particular parent. By extension of these techniques, it may be possible to define which RNA segment codes for each viral protein and to analyze recombinant strains to identify which genes have been derived from each of its parents.  相似文献   

19.
The envelopes of HVJ (Sendai virus) virions were solubilized with alkali-Emasol treatment. The solubilized envelope subunit(s) associated with hemagglutination-inhibiting antibody blocking, neuraminidase, and low hemagglutinating (HA) activities had a sedimentation coefficient of 8.8S. Envelope fragment-like structures were assembled from the solubilized subunits after Emasol was removed by gel filtration. These reassembled envelope particles with HA activity had cell-fusion activity as well as hemolytic activity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the reassembled particles revealed that they mainly consisted of two kinds of polypeptides.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号