首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although originally cloned from rat brain, the P2X7 receptor has only recently been localized in neurones, and functional responses mediated by these neuronal P2X7 receptors (P2X7 R) are largely unknown. Here we studied the effect of P2X7 R activation on the release of neurotransmitters from superfused rat hippocampal slices. ATP (1-30 mm) and other ATP analogues elicited concentration-dependent [3 H]GABA outflow, with the following rank order of potency: benzoylbenzoylATP (BzATP) > ATP > ADP. PPADS, the non-selective P2-receptor antagonist (3-30 microm), Brilliant blue G (1-100 nm) the P2X7 -selective antagonist and Zn2+ (0.1-30 microm) inhibited, whereas lack of Mg2+ potentiated the response by ATP. In situ hybridization revealed that P2X7 R mRNA is expressed in the neurones of the cell body layers in the hippocampus. P2X7 R immunoreactivity was found in excitatory synaptic terminals in CA1 and CA3 region targeting the dendrites of pyramidal cells and parvalbumin labelled structures. ATP (3-30 microm) and BzATP (0.6-6 microm) elicited concentration-dependent [14 C]glutamate efflux, and blockade of the kainate receptor-mediated transmission by CNQX (10-100 microm) and gadolinium (100 microm), decreased ATP evoked [3 H]GABA efflux. The Na+ channel blocker TTX (1 microm), low temperature (12 degrees C), and the GABA uptake blocker nipecotic acid (1 mm) prevented ATP-induced [3 H]GABA efflux. Brilliant blue G and PPADS also reduced electrical field stimulation-induced [3 H]GABA efflux. In conclusion, P2X7 Rs are localized to the excitatory terminals in the hippocampus, and their activation regulates the release of glutamate and GABA from themselves and from their target cells.  相似文献   

2.
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.  相似文献   

3.
There are at least three subtypes of cloned metabotropic P2 receptors linked to intracellular Ca(2+) rises in rat brain cells, namely, P2Y(1), P2Y(2) and P2Y(4). In this study we explore the subtypes of the metabotropic P2 receptors seen in freshly isolated astrocytes (FIAs) from P8-P25 rats. We found by single cell RT-PCR that in process-bearing FIAs from hippocampi of P8-P12 rats, 31% of the glial fibrillary acidic protein (GFAP) mRNA (+) cells expressed P2Y(1) mRNA while only 5% of the cells tested expressed P2Y(2) mRNA. The expression of P2Y(1) receptor mRNA was not changed in FIAs from the hippocampi of P18-P25 rats, but 38% of the GFAP mRNA (+) cells in the P18-P25 age group then showed P2Y(2) mRNA. We also studied whether the mRNA was expressing functional receptor protein by measuring Ca(2+) responses to specific agonists for P2Y(1) and P2Y(2). We found that similar proportions of GFAP mRNA (+) FIAs responded to ATP or UTP as showed mRNAs for P2Y (1) and P2Y(2,) respectively. Total tissue RNA from P9 and P24 rat hippocampus showed a 2.8-fold increase in P2Y(2) mRNA levels from P9 to P24 with a decrease in P2Y(1) mRNA. Thus, this study shows a marked up-regulation of mRNA for P2Y(2) from 9 to 24 days in rat hippocampus, and some of this increase is likely due to the protoplasmic astrocytes which is being translated into functional receptor protein in these cells.  相似文献   

4.
This review article presents a collection of tool compounds that selectively block and are recommended for studying P2Y and P2X receptor subtypes, investigating their roles in physiology and validating them as future drug targets. Moreover, drug candidates and approved drugs for P2 receptors will be discussed.  相似文献   

5.
In the present work, we investigated the role of pre- and post-synaptic neuropeptide Y1 (NPY1) and Y2 receptors on the calcium responses and on glutamate release in the rat hippocampus. In cultured hippocampal neurones, we observed that only NPY1 receptors are involved in the modulation of intracellular free calcium concentration ([Ca(2+)](i)). In 88% of the neurones analysed, the increase in the [Ca(2+)](i), in response to depolarization with 50 mM KCl, was inhibited by 1 microM [Leu31,Pro34]NPY, whereas 300 nM NPY13-36 was without effect. However, studies with hippocampal synaptosomes showed that both NPY1 and Y2 receptors can modulate the [Ca(2+)](i) and glutamate release. The pharmacological characterization of the NPY-induced inhibition of glutamate release indicated that Y2 receptors play a predominant role, both in the modulation of Ca(2+)-dependent and -independent glutamate release. However, we could distinguish between Y1 and Y2 receptors by using [Leu31,Pro34]NPY and NPY13-36. Active pre-synaptic Y1 receptors are present in the dentate gyrus (DG) as well as in the CA3 subregion, but its activity was not revealed by using the endogenous agonist, NPY. Concerning the Y2 receptors, they are present in the three subregions (CA1, CA3 and DG) and were activated by either NPY13-36 or NPY. The present data support a predominant role for NPY2 receptors in mediating NPY-induced inhibition of glutamate release in the hippocampus, but the physiological relevance of the presently described DG and CA3 pre-synaptic NPY1 receptors remains to be clarified.  相似文献   

6.
Membrane currents and changes in the intracellular Ca2+ concentration ([Ca2+]i) were measured in HEK293 cells transfected with the human P2X3 receptor (HEK293-hP2X3). RT-PCR and immunocytochemistry indicated the additional presence of endogenous P2Y1 and to some extent P2Y4 receptors. P2 receptor agonists induced inward currents in HEK293-hP2X3 cells with the rank order of potency alpha,beta-meATP approximately ATP > ADP-beta-S > UTP. A comparable rise in [Ca2+]i was observed after the slow superfusion of ATP, ADP-beta-S and UTP; alpha,beta-meATP was ineffective. These data, in conjunction with results obtained by using the P2 receptor antagonists TNP-ATP, PPADS and MRS2179 indicate that the current response to alpha,beta-meATP is due to P2X3 receptor activation, while the ATP-induced rise in [Ca2+]i is evoked by P2Y1 and P2Y4 receptor activation. TCE depressed the alpha,beta-meATP current in a manner compatible with a non-competitive antagonism. The ATP-induced increase of [Ca2+]i was much less sensitive to the inhibitory effect of TCE than the current response to alpha,beta-meATP. The present study indicates that in HEK293-hP2X3 cells, TCE, but not ethanol, potently inhibits ligand-gated P2X3 receptors and, in addition, moderately interferes with G protein-coupled P2Y1 and P2Y4 receptors. Such an effect may be relevant for the interruption of pain transmission in dorsal root ganglion neurons following ingestion of chloral hydrate or trichloroethylene.  相似文献   

7.
P2 receptors have been implicated in the release of neurotransmitter and proinflammatory cytokines by the response to neuroexcitatory substances in astrocytes. In the present study, we examined the mechanisms of ADP and adenosine 5'-O-2-thiodiphosphate (ADPbetaS, ADP analogue) on glutamate release from cultured dorsal spinal cord astrocytes by using confocal laser scanning microscopy and HPLC. Immunofluorescence activity showed that P2Y1 receptor protein is expressed in cultured astrocytes. ADP and ADPbetaS-induced [Ca2+]i increase and glutamate release are mediated by P2Y1 receptor. Ca2+ release from IP3-sensitive calcium stores and protein kinase C (PKC) activation is important for glutamate release from astrocytes. Furthermore, P2Y1 receptor-evoked glutamate release is regulated by volume-sensitive Cl channels and anion co-transporter, which open up the possibility that P2Y1 receptor activation causes the increase of cell volume. Release of glutamate by ADPbetaS was abolished by 5-nitro-2 (3-phenyl propy lamino)–benzoate plus furosemide but was unaffected by botulinum toxin A. These observations indicate that P2Y1 receptor-evoked glutamate may be mediated via volume-sensitive Cl channel but not via exocytosis of glutamate containing vesicles. We speculate that P2Y1 receptors-evoked glutamate efflux, occurring under pathological condition, may modulate the activity of synapses in spinal cord.  相似文献   

8.
Extracellular nucleotides act as paracrine regulators of cellular signaling and metabolic pathways. Adenosine polyphosphate (adenosine triphosphate (ATP) and adenosine diphosphate (ADP)) release and metabolism by human hepatic carcinoma cells was therefore evaluated. Hepatic cells maintain static nanomolar concentrations of extracellular ATP and ADP levels until stress or nutrient deprivation stimulates a rapid burst of nucleotide release. Reducing the levels of media serum or glucose has no effect on ATP levels, but stimulates ADP release by up to 10-fold. Extracellular ADP is then metabolized or degraded and media ADP levels fall to basal levels within 2–4 h. Nucleotide release from hepatic cells is stimulated by the Ca2+ ionophore, ionomycin, and by the P2 receptor agonist, 2′3′-O-(4-benzoyl-benzoyl)-adenosine 5′-triphosphate (BzATP). Ionomycin (10 μM) has a minimal effect on ATP release, but doubles media ADP levels at 5 min. In contrast, BzATP (10–100 μM) increases both ATP and ADP levels by over 100-fold at 5 min. Ion channel purinergic receptor P2X7 and P2X4 gene silencing with small interference RNA (siRNA) and treatment with the P2X inhibitor, A438079 (100 μM), decrease ADP release from hepatic cells, but have no effect on ATP. P2X inhibitors and siRNA have no effect on BzATP-stimulated nucleotide release. ADP release from human hepatic carcinoma cells is therefore regulated by P2X receptors and intracellular Ca2+ levels. Extracellular ADP levels increase as a consequence of a cellular stress response resulting from serum or glucose deprivation.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9419-2) contains supplementary material, which is available to authorized users.  相似文献   

9.
The basic research indicated that microglial P2Y12 receptors (P2Y12Rs) are involved in the pathophysiology of epilepsy through regulated microglial-neuronal interactions, aberrant neurogenesis, or immature neuronal projections. However, whether the clinic case of epilepsy would be associated with P2Y12 receptor gene polymorphisms is presented with few data. In our study, a total of 176 patients with epilepsy and 50 healthy controls were enrolled. Two single-nucleotide polymorphisms, namely rs1491974 and rs6798347, were selected for analysis. The results revealed that carriers of the G allele of rs1491974 G>A or rs6798347 G>A may be associated with an increased risk of epilepsy (OR = 0.576, 95% CI = 0.368–0.901, p = 0.015; OR = 0.603, 95% CI = 0.367–0.988, p = 0.043). Interestingly, we found that the rs1491974 G>A genotype and allele frequencies have only a significant difference in female instead of male case (p = 0.004 for genotype; p = 0.001 for allele). The subgroup analysis demonstrated that individuals with the rs1491974 G>A genotype might have more frequent seizure (OR = 0.476, 95% CI = 0.255–0.890; p = 0.019). These data implied that both rs1491974 and rs6798347 polymorphisms of P2Y12R would be able to play import roles in epilepsy susceptibility, whereas the rs1491974 polymorphism may be specifically related to seizure frequency.  相似文献   

10.
A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes.  相似文献   

11.

The synaptic event called the inhibitory junction potential (IJP) was arguably one of the more important discoveries made by Burnstock and arguably one of his finer legacies. The discovery of the IJP fundamentally changed how electromechanical coupling was visualised in gastrointestinal smooth muscle. Its discovery also set in motion the search for novel inhibitory neurotransmitters in the enteric nervous system, eventually leading to proposal that ATP or a related nucleotide was a major inhibitory transmitter. The subsequent development of purinergic signalling gave impetus to expanding the classification of surface receptors for extracellular ATP, not only in the GI tract but beyond, and then led to successive phases of medicinal chemistry as the P2 receptor field developed. Ultimately, the discovery of the IJP led to the successful cloning of the first P2Y receptor (chick P2Y1) and expansion of mammalian ATP receptors into two classes: metabotropic P2Y receptors (encompassing P2Y1, P2Y2, P2Y4, P2Y6, P2Y11–14 receptors) and ionotropic P2X receptors (encompassing homomeric P2X1–P2X7 receptors). Here, the causal relationship between the IJP and P2Y1 is explored, setting out the milestones reached and achievements made by Burnstock and his colleagues.

  相似文献   

12.
高云  洪炎国 《生命科学》2009,(4):531-535
神经肽Y(neuropeptide Y,NPY)是一种由36个氨基酸残基组成的肽类激素,属胰多肽家族,广泛分布于中枢及外周神经组织的神经元中。NPY主要参与摄食行为、心血管活动、垂体分泌等生理功能的调节。NPY还参与了痛觉调制。NPY受体有Y1、Y2、Y3、Y4、Y5和Y6六种亚型。目前对Y1受体和Y2受体的研究较多,显示Y1受体和Y2受体参与痛觉调制。但现在对NPY在痛觉中的具体作用机制还不清楚。该文对NPY及其Y1受体、Y2受体在痛觉调制中的作用作一概述。  相似文献   

13.
The purinergic receptor P2Y, G protein coupled, 14 (P2Y14) receptor for UDP-glucose and other UDP-sugars has been implicated in the regulation of the stem cell compartment as well as neuroimmune function. However, the role of P2Y14 in osteoclast formation is completely unknown. We found that RANKL selectively induced P2Y14 among seven mammalian P2Y receptors when analysed at both the mRNA and protein level, but inhibitors of the mitogenactivated protein (MAP) kinase pathway suppressed induction of P2Y14 proteins. Extracellular addition of UDP-sugars such as UDP-glucose, UDP-galactose, UDP-glucuronic acid, and UDP-N-acetyl glucosamine promoted RANKL-induced osteoclastogenesis, while P2Y14 downregulation by RNA interference inhibited osteoclast formation. Taken together, these results suggest that P2Y14 may act as the receptor for UDP-sugars in osteoclast precusors and may regulate RANKL-induced osteoclastogenesis.  相似文献   

14.
This study was designed to explore the effect of P2X7 receptor (P2X7R) activation on the expression of p38 MAP kinase (p38 MAPK) enzyme in hippocampal slices of wild-type (WT) and P2X7R−/− mice using the Western blot technique and to clarify its role in P2X7 receptor mediated [3H]glutamate release. ATP (1 mM) and the P2X7R agonist BzATP (100 μM) significantly increased p38 MAPK phosphorylation in WT mice, and these effects were absent in the hippocampal slices of P2X7R−/− mice. Both ATP- and BzATP-induced p38 MAPK phosphorylations were sensitive to the p38 MAP kinase inhibitor, SB203580 (1 μM). ATP elicited [3H]glutamate release from hippocampal slices, which was significantly attenuated by SB203580 (1 μM) but not by the extracellular signal-regulated kinase (ERK1/2) inhibitor, PD098095 (10 μM). Consequently, we suggest that P2X7Rs and p38 MAPK are involved in the stimulatory effect of ATP on glutamate release in the hippocampal slices of WT mice.  相似文献   

15.
16.
Nucleotides are released not only from neurons, but also from various other types of cells including fibroblasts, epithelial, endothelial and glial cells. While ATP release from non-neural cells is frequently Ca2+ independent and mostly non-vesicular, neuronal ATP release is generally believed to occur via exocytosis. To evaluate whether nucleotide release from neuroendocrine cells might involve a non-vesicular component, the autocrine/paracrine activation of P2Y12 receptors was used as a biosensor for nucleotide release from PC12 cells. Expression of a plasmid coding for the botulinum toxin C1 light chain led to a decrease in syntaxin 1 detected in immunoblots of PC12 membranes. In parallel, spontaneous as well as depolarization-evoked release of previously incorporated [3H]noradrenaline from transfected cells was significantly reduced in comparison with the release from untransfected cells, thus indicating that exocytosis was impaired. In PC12 cells expressing the botulinum toxin C1 light chain, ADP reduced cyclic AMP synthesis to the same extent as in non-transfected cells. Likewise, the enhancement of cyclic AMP synthesis either due to the blockade of P2Y12 receptors or due to the degradation of extracellular neucleotides by apyrase was not different between non-transfected and botulinum toxin C1 light chain expressing cells. However, the inhibition of cyclic AMP synthesis caused by depolarization-evoked release of endogenous nucleotides was either abolished or greatly reduced in cells expressing the botulinum toxin C1 light chain. Together, these results show that spontaneous nucleotide release from neuroendocrine cells may occur independently of vesicle exocytosis, whereas depolarization-evoked nucleotide release relies predominantly on exocytotic mechanisms.  相似文献   

17.
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). P2Y2 receptors are widely expressed and play important roles in multiple functionalities. Diquafosol tetrasodium, known as INS365, which was the first P2Y2 receptor agonists that had been approved in April 2010 and launched in Japan by Santen Pharmaceuticals. Besides, a series of similar agonists for the P2Y2 receptor are undergoing development to cure different diseases related to the P2Y2 receptor. This article illustrated the structure and functions of the P2Y2 receptor and focused on several kinds of agonists about their molecular structures, research progress and chemical synthesis methods. Last but not the least, we summarized the structures-activity relationship (SAR) of agonists for the P2Y2 receptor and expected more efficient agonists for the P2Y2 receptor.  相似文献   

18.
Kainate-induced epilepsy has been shown to be associated with increased levels of neuropeptide Y (NPY) in the rat hippocampus. However, there is no information on how increased levels of this peptide might modulate excitation in kainate-induced epilepsy. In this work, we investigated the modulation of glutamate release by NPY receptors in hippocampal synaptosomes isolated from epileptic rats. In the acute phase of epilepsy, a transient decrease in the efficiency of NPY and selective NPY receptor agonists in inhibiting glutamate release was observed. Moreover, in the chronic epileptic hippocampus, a decrease in the efficiency of NPY and the Y(2) receptor agonist, NPY13-36, was also found. Simultaneously, we observed that the epileptic hippocampus expresses higher levels of NPY, which may account for an increased basal inhibition of glutamate release. Consistently, the blockade of Y(2) receptors increased KCl-evoked glutamate release, and there was an increase in Y(2) receptor mRNA levels 30 days after kainic acid injection, suggesting a basal effect of NPY through Y(2) receptors. Taken together, these results indicate that an increased function of the NPY modulatory system in the epileptic hippocampus may contribute to basal inhibition of glutamate release and control hyperexcitability.  相似文献   

19.
20.
The P2Y11 nucleotide receptor detects high extracellular ATP concentrations. Mutations of the human P2RY11 gene can play a role in brain autoimmune responses, and the P2Y11 receptor alanine‐87‐threonine (A87T) polymorphism has been suggested to affect immune‐system functions. We investigated receptor functionality of the P2Y11A87T mutant using HEK293 and 1321N1 astrocytoma cells. In HEK293 cells, the P2Y11 receptor agonist 3′‐O‐(4‐benzoylbenzoyl)adenosine 5′‐triphosphate (BzATP) was completely inactive in evoking intracellular calcium release while the potency of ATP was reduced. ATP was also less potent in triggering cAMP generation. However, 1321N1 astrocytoma cells, which lack any endogenous P2Y1 receptors, did not display a reduction. Only when 1321N1 cells were co‐transfected with P2Y11A87T and P2Y1 receptors, the calcium responses to the P2Y11 receptor‐specific agonist BzATP were reduced. It is already known that P2Y1 and P2Y11 receptors interact. We thus conclude that the physiological impact of A87T mutation of the P2Y11 receptor derives from detrimental effects on P2Y1–P2Y11 receptor interaction. We additionally investigated alanine‐87‐serine and alanine‐87‐tyrosine P2Y11 receptor mutants. Both mutations rescue the response to BzATP in HEK293 cells, thus ruling out polarity of amino acid‐87 to be the molecular basis for altered receptor characteristics. We further found that the P2Y11A87T receptor shows complete loss of nucleotide‐induced internalization in HEK293 cells. Thus, we demonstrate impaired signaling of the P2Y11 A87T‐mutated receptors when co‐operating with P2Y1 receptors.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号