首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid-sensing ion channels (ASICs) have been reported to play a role in the neuronal dopamine pathway, but the exact role in neurotransmitter release remains elusive. Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line, which can release monoamine neurotransmitters. In this study, the expression of ASICs was identified in SH-SY5Y cells to further explore the role of ASICs in vesicular release stimulated by acid. We gathered evidence that ASICs could be detected in SH-SY5Y cells. In whole cell patch-clamp recording, a rapid decrease in extracellular pH evoked inward currents, which were reversibly inhibited by 100 μM amiloride. The currents were pH dependent, with a pH of half-maximal activation (pH(0.5)) of 6.01 ± 0.04. Furthermore, in calcium imaging and FM 1-43 dye labeling, it was shown that extracellular protons increased intracellular calcium levels and vesicular release in SH-SY5Y cells, which was attenuated by PcTx1 and amiloride. Interestingly, N-type calcium channel blockers inhibited the vesicular release induced by acidification. In conclusion, ASICs are functionally expressed in SH-SY5Y cells and involved in vesicular release stimulated by acidification. N-type calcium channels may be involved in the increase in vesicular release induced by acid. Our results provide a preliminary study on ASICs in SH-SY5Y cells and neurotransmitter release, which helps to further investigate the relationship between ASICs and dopaminergic neurons.  相似文献   

2.
The intracellular signaling pathways mediating the neurotrophic actions of pituitary adenylate cyclase-activating polypeptide (PACAP) were investigated in human neuroblastoma SH-SY5Y cells. Previously, we showed that SH-SY5Y cells express the PAC(1) and VIP/PACAP receptor type 2 (VPAC(2)) receptors, and that the robust cAMP production in response to PACAP and vasoactive intestinal peptide (VIP) was mediated by PAC(1) receptors (Lutz et al. 2006). Here, we investigated the ability of PACAP-38 to differentiate SH-SY5Y cells by measuring morphological changes and the expression of neuronal markers. PACAP-38 caused a concentration-dependent increase in the number of neurite-bearing cells and an up-regulation in the expression of the neuronal proteins Bcl-2, growth-associated protein-43 (GAP-43) and choline acetyltransferase: VIP was less effective than PACAP-38 and the VPAC(2) receptor-specific agonist, Ro 25-1553, had no effect. The effects of PACAP-38 and VIP were blocked by the PAC(1) receptor antagonist, PACAP6-38. As observed with PACAP-38, the adenylyl cyclase activator, forskolin, also induced an increase in the number of neurite-bearing cells and an up-regulation in the expression of Bcl-2 and GAP-43. PACAP-induced differentiation was prevented by the adenylyl cyclase inhibitor, 2',5'-dideoxyadenosine (DDA), but not the protein kinase A (PKA) inhibitor, H89, or by siRNA-mediated knock-down of the PKA catalytic subunit. PACAP-38 and forskolin stimulated the activation of extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAP; p38 MAP kinase) and c-Jun N-terminal kinase (JNK). PACAP-induced neuritogenesis was blocked by the MEK1 inhibitor PD98059 and partially by the p38 MAP kinase inhibitor SB203580. Activation of exchange protein directly activated by cAMP (Epac) partially mimicked the effects of PACAP-38, and led to the phosphorylation of ERK but not p38 MAP kinase. These results provide evidence that the neurotrophic effects of PACAP-38 on human SH-SY5Y neuroblastoma cells are mediated by the PAC(1) receptor through a cAMP-dependent but PKA-independent mechanism, and furthermore suggest that this involves Epac-dependent activation of ERK as well as activation of the p38 MAP kinase signaling pathway.  相似文献   

3.
4.
To facilitate the characterization of compounds that have positive growth factor mimetic effects on neuritogenesis, we have implemented a high-throughput functional assay which measures, in a multiparametric manner, the proliferation and differentiation characteristics of cells in a microtiter plate. Conditions were established using chronic incubation of SH-SY5Y human neuroblastoma cells with retinoic acid (RA) and/or nerve growth factor (NGF) in which discernible alterations in proliferation, growth, and differentiation of cells were induced. SH-SY5Y cells were fixed and labeled by immunocytochemistry, and an automated image acquisition and analysis package on Cellomics ArrayScanII was utilized to quantify the effects of these treatments on cell characteristics. NGF and retinoic acid were found to increase multiple parameters of SH-SY5Y differentiation, including an increased proportion of cells having neurites and increased extent of branching. However, marked differences in the effects of these compounds on SH-SY5Y growth and differentiation were also detected: whereas NGF increased cell number, RA treatment decreased cell number, and RA but not NGF caused significant elongation of neurites. This study quantifies and characterizes the effects of differentiating and proliferating agents on a human-derived neuroblastoma cell line. The high-content, rapid-throughput nature of this assay makes it ideal for functional identification and characterization of compounds regulating cell behavior.  相似文献   

5.
Protein kinase C (PKC) activation induces neuronal differentiation of SH-SY5Y neuroblastoma cells. This study examines the role of PKCbeta isoforms in this process. The PKCbeta-specific inhibitor LY379196 had no effect on 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced neurite outgrowth from SH-SY5Y neuroblastoma cells. On the other hand, PKCbeta inhibition suppressed the TPA-stimulated increase in neuropeptide Y mRNA, activation of neuropeptide Y gene promoter elements, and phosphorylation of Erk1/2. The TPA-induced increase in neuropeptide Y expression was also inhibited by the MEK inhibitor PD98059. These data indicate that activation of a PKCbeta isoform, through a pathway involving Erk1/2, leads to increased expression of neuronal differentiation genes in neuroblastoma cells.  相似文献   

6.
Manganese as environmental factor is considered to cause parkinsonism and induce endoplasmic reticulum stress-mediated dopaminergic cell death. We examined the effects of manganese on parkin, identified as the gene responsible for familial Parkinson's disease, and the role of parkin in manganese-induced neuronal cell death. Manganese dose-dependently induced cell death of dopaminergic SH-SY5Y and CATH.a cells and cholinergic Neuro-2a cells, and that the former two cell types were more sensitive to manganese toxicity than Neuro-2a cells. Moreover, manganese increased the expression of endoplasmic reticulum stress-associated genes, including parkin, in SH-SY5Y cells and CATH.a cells, but not in Neuro-2a cells. Treatment with manganese resulted in accumulation of parkin protein in SH-SY5Y cells and its redistribution to the perinuclear region, especially aggregated Golgi complex, while in Neuro-2a cells neither expression nor redistribution of parkin was noted. Manganese showed no changes in proteasome activities in either cell. Transient transfection of parkin gene inhibited manganese- or manganese plus dopamine-induced cell death of SH-SY5Y cells, but not of Neuro-2a cells. Our results suggest that the attenuating effects of parkin against manganese- or manganese plus dopamine-induced cell death are dopaminergic cell-specific compensatory reactions associated with its accumulation and redistribution to perinuclear regions but not with proteasome system.  相似文献   

7.
Age-related declines in motor function may be due, in part, to an increase in oxidative stress in the aging brain leading to dopamine (DA) neuronal cell death. In this study, we examined the neuroprotective effects of natural antioxidants resveratrol and pinostilbene against age-related DAergic cell death and motor dysfunction using SH-SY5Y neuroblastoma cells and young, middle-aged, and old male C57BL/6 mice. Resveratrol and pinostilbene protected SH-SY5Y cells from a DA-induced decrease in cell viability. Dietary supplementation with resveratrol and pinostilbene inhibited the decline of motor function observed with age. While DA and its metabolites (DOPAC and HVA), dopamine transporter, and tyrosine hydroxylase levels remain unchanged during aging or treatment, resveratrol and pinostilbene increased ERK1/2 activation in vitro and in vivo in an age-dependent manner. Inhibition of ERK1/2 in SH-SY5Y cells decreased the protective effects of both compounds. These data suggest that resveratrol and pinostilbene alleviate age-related motor decline via the promotion of DA neuronal survival and activation of the ERK1/2 pathways.  相似文献   

8.
The therapeutic efficacy of lithium in the treatment of mood disorders is delayed and only observed after chronic administration, a temporal profile that suggests alterations at the genomic level. Lithium has been demonstrated to modulate AP-1 DNA binding activity as well as the expression of genes regulated by AP-1, but the mechanisms underlying these effects have not been fully elucidated. In the present study, we found that the lithium-induced increases in AP-1 DNA binding activity were accompanied by increases in p-cJun and cJun levels in SH-SY5Y cells. Lithium also increased cJun-mediated reporter gene expression in a dose-dependent manner, with significant effects observed at therapeutically relevant concentrations. Lithium's effects on cJun-mediated reporter gene expression in SH-SY5Y cells were more pronounced in the absence of myo-inositol and were blocked by protein kinase C (PKC) inhibitors and by cotransfection with a PKCalpha dominant-negative mutant. Chronic in vivo lithium administration increased AP-1 DNA binding activity in frontal cortex and hippocampus and also increased the levels of the phosphorylated, active forms of c-Jun NH2-terminal kinases (JNKs) in both brain regions. These results demonstrate that lithium activates the JNK signaling pathway in rat brain during chronic in vivo administration and in human cells of neuronal origin in vitro; in view of the role of JNKs in regulating various aspects of neuronal function and their well-documented role in regulating gene expression, these effects may play a major role in lithium's long-term therapeutic effects.  相似文献   

9.
10.
Despite their sympathetic neuroblast origin, highly malignant neuroblastoma tumors and derived cell lines have no or low expression of the neurotrophin receptor genes, trkA and trkC. Expression of exogenous trkA in neuroblastoma cells restores their ability to differentiate in response to nerve growth factor (NGF). Here we show that stable expression of trkC in SH-SY5Y neuroblastoma cells resulted in morphological and biochemical differentiation upon treatment with neurotrophin-3 (NT-3). To some extent, trkA- and trkC-transfected SH-SY5Y (SH-SY5Y/trkA and SH-SY5Y/trkC) cells resembled one another in terms of early signaling events and neuronal marker gene expression, but important differences were observed. Although induced Erk 1/2 and Akt/PKB phosphorylation was stronger in NT-3-stimulated SH-Y5Y/trkC cells, activation of the immediate-early genes tested was more prominent in NGF-treated SH-SY5Y/ trkA cells. In particular, c-fos was not induced in the SH-SY5Y/trkC cells. There were also phenotypic differences. The concentrations of norepinephrine, the major sympathetic neurotransmitter, and growth cone-located synaptophysin, a neurosecretory granule protein, were increased in NGF-treated SH-SY5Y/trkA but not in NT-3-treated SH-SY5Y/trkC cells. Our data suggest that NT-3/p145trkC and NGF/p140trkA signaling differ in some aspects in neuroblasoma cells, and that this may explain the phenotypic differences seen in the long-term neurotrophin-treated cells.  相似文献   

11.
12.
To examine the role of protein kinase A (EC 2.7.1.37) isozymes in the retinoic acid-induced growth inhibition and neuronal differentiation, we investigated the changes of protein kinase A isozyme patterns in retinoic acid-treated SH-SY5Y human neuroblastoma cells. Retinoic acid induced growth inhibition and neuronal differentiation of SH-SY5Y cells in a dose- and time-dependent manner. Neuronal differentiation was evidenced by extensive neurite outgrowth, decrease of N-Myc oncoprotein, and increase of GAP-43 mRNA. Type II protein kinase A activity increased by 1.5-fold in differentiated SH-SY5Y cells by retinoic acid treatment. The increase of type II protein kinase A was due to the increase of RIIbeta and Calpha subunits. Since type II protein kinase A and RIIbeta have been known to play important role(s) in the growth inhibition and differentiation of cancer cells, we further investigated the role of the increased type II protein kinase A by overexpressing RIIbeta in SH-SY5Y cells. The growth of RIIbeta-overexpressing cells was slower than that of parental cells, being comparable to that of retinoic acid-treated cells. Retinoic acid treatment further increased the RIIbeta level and further inhibited the growth of RIIbeta-overexpressing cells, showing strong correlation between the level of RIIbeta and growth inhibition. However, RIIbeta-overexpressing cells did not show any sign of neuronal differentiation and responded to retinoic acid in the same way as parental cells. These data suggest that protein kinase A participates in the retinoic acid-induced growth inhibition through the up-regulation of RIIbeta/type II protein kinase A.  相似文献   

13.
14.
Tianma (Rhizoma gastrodiae) is the dried rhizome of the plant Gastrodia elata Blume (Orchidaceae family). As a medicinal herb in traditional Chinese medicine (TCM) its functions are to control convulsions, pain, headache, dizziness, vertigo, seizure, epilepsy and others. In addition, tianma is frequently used for the treatment of neurodegenerative disorders though the mechanism of action is widely unknown. Accordingly, this study was designed to examine the effects of tianma on the proteome metabolism in differentiated human neuronal SH-SY5Y cells to explore its specific effects on neuronal signaling pathways. Using an iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomics research approach, we identified 2390 modulated proteins, out of which 406 were found to be altered by tianma in differentiated human neuronal SH-SY5Y cells. Based on the observed data, we hypothesize that tianma promotes neuro-regenerative signaling cascades by controlling chaperone/proteasomal degradation pathways (e.g. CALR, FKBP3/4, HSP70/90) and mobilizing neuro-protective genes (such as AIP5) as well as modulating other proteins (RTN1/4, NCAM, PACSIN2, and PDLIM1/5) with various regenerative modalities and capacities related to neuro-synaptic plasticity.  相似文献   

15.
In chronic alcoholism, brain shrinkage and cognitive defects because of neuronal death are well established, although the sequence of molecular events has not been fully explored yet. We explored the role of microRNAs (miRNAs) in ethanol-induced apoptosis of neuronal cells. Ethanol-sensitive miRNAs in SH-SY5Y, a human neuroblastoma cell line, were identified using real-time PCR-based TaqMan low-density arrays. Long-term exposure to ethanol (0.5% v/v for 72 h) produced a maximum increase in expression of miR-497 (474-fold) and miR-302b (322-fold). Similar to SH-SY5Y, long-term exposure to ethanol induced miR-497 and miR-302b in IMR-32, another human neuroblastoma cell line. Using in silico approaches, BCL2 and cyclin D2 (CCND2) were identified as probable target genes of these miRNAs. Cotransfection studies with 3'-UTR of these genes and miRNA mimics have demonstrated that BCL2 is a direct target of miR-497 and that CCND2 is regulated negatively by either miR-302b or miR-497. Overexpression of either miR-497 or miR-302b reduced expression of their identified target genes and increased caspase 3-mediated apoptosis of SH-SY5Y cells. However, overexpression of only miR-497 increased reactive oxygen species formation, disrupted mitochondrial membrane potential, and induced cytochrome c release (mitochondria-related events of apoptosis). Moreover, ethanol induced changes in miRNAs, and their target genes were substantially prevented by pre-exposure to GSK-3B inhibitors. In conclusion, our studies have shown that ethanol-induced neuronal apoptosis follows both the mitochondria-mediated (miR-497- and BCL2-mediated) and non-mitochondria-mediated (miR-302b- and CCND2-mediated) pathway.  相似文献   

16.
Previous studies have shown that platelet-derived growth factor (PDGF) and PDGF receptors are expressed in the mammalian central nervous system and that primary cultured neuroblasts from rat hindbrain have functional PDGF beta-receptors. Here, it is shown that cultured human neuroblastoma cells express PDGF alpha- and beta-receptors, but not PDGF-A and PDGF-B chain mRNA. In contrast to alpha-receptor expression, beta-receptor expression appears to be associated with a mature neuronal phenotype. Under serum-free growth conditions, PDGF-AA and -BB induce a trophic and weak mitogenic response in SH-SY5Y neuroblastoma cells, showing that the PDGF receptors in these cells are functional. In combination with 12-O-tetradecanoylphorbol-13-acetate, all three PDGF isoforms induce sympathetic neuronal differentiation of the SH-SY5Y cells, as shown by morphology and by increased expression of the genes coding for growth-associated protein 43 and neuropeptide tyrosine, respectively. This indicates a potential role for PDGF in the development of sympathetic neurons in particular and of the nervous system in general.  相似文献   

17.
The proto-oncogene product pp60c-src is a tyrosine-specific kinase with a still unresolved cellular function. High levels of pp60c-src in neurons and the existence of a neuronal pp60c-src variant, pp60c-srcN, suggest participation in the progress or maintenance of the differentiated phenotype of neurons. We have previously reported that phorbol esters, e.g., 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulate human SH-SY5Y neuroblastoma cells to neuronal differentiation, as monitored by morphological, biochemical, and functional differentiation markers. In this report, we describe activation of the pp60src (pp60c-src and pp60c-srcN) kinase activity observed at 6 h after induction of SH-SY5Y cells with TPA. This phenomenon coincides in time with neurite outgrowth, formation of growth cone-like structures, and an increase of GAP43 mRNA expression, which are the earliest indications of neuronal differentiation in these cells. The highest specific src kinase activity (a three- to fourfold increase 4 days after induction) was noted in cells treated with 16 nM TPA; this concentration is optimal for development of the TPA-induced neuronal phenotype. During differentiation, there was no alteration in the 1:1 ratio of pp60c-src to pp60c-srcN found in untreated SH-SY5Y cells. V8 protease and trypsin phosphopeptide mapping of pp60src from in vivo 32P-labeled cells showed that the overall phosphorylation of pp60src was higher in differentiated than in untreated cells, mainly because of an intense serine 12 phosphorylation. Tyrosine 416 phosphorylation was not detectable in either cell type, and no change during differentiation in tyrosine 527 phosphorylation was observed.  相似文献   

18.
Insulin-like growth factor I (IGF-I) and the type I IGF receptor are widely distributed in developing and adult mammalian nervous systems. In vitro, IGF-I is a mitogen for primary neurons and also for cells from the SH-SY5Y human neuroblastoma cell line, a well-characterized model system of neuronal growth. In the current study, we examined the effects of osmotic stress on SH-SY5Y cell viability and the mechanism by which IGF-I serves as a neuronal osmoprotectant. Within 24 hr, exposure of SH-SY5Y cells to hyperosmotic serum-free media decreased (1) the number of viable cells, (2) the rate of 3H-thymidine incorporation, and (3) cell cycle progression. The inclusion of 10 nM IGF-I with hyperosmotic media prevented the loss of cell viability. The osmoprotective effects of IGF-I were inhibited by α-IRJ, a blocking antibody of the type I IGF receptor. The observed loss of SH-SY5Y cell viability following hyperosmotic shock was due to an induction of programmed cell death as determined by flow cytometry and gel electrophoresis. Our results suggest that IGF-I can protect SH-SY5Y cells from hyperosmotic induced programmed cell death. © 1996 Wiley-Liss, Inc.  相似文献   

19.
Cisplatin is the most effective and neurotoxic platinum chemotherapeutic agent. It induces a peripheral neuropathy characterized by distal axonal degeneration that might progress to degeneration of cell bodies and apoptosis. Most symptoms occur nearby distal axonal branches and axonal degeneration might induce peripheral neuropathy regardless neuronal apoptosis. The toxic mechanism of cisplatin has been mainly associated with DNA damage, but cisplatin might also affect neurite outgrowth. Nevertheless, the neurotoxic mechanism of cisplatin remains unclear. We investigated the early effects of cisplatin on axonal plasticity by using non-cytotoxic concentrations of cisplatin and PC12 cells as a model of neurite outgrowth and differentiation. PC12 cells express NGF-receptors (trkA) and respond to NGF by forming neurites, branches and synaptic vesicles. For comparison, we used a neuronal model (SH-SY5Y cells) that does not express trkA nor responds to NGF. Cisplatin did not change NGF expression in PC12 cells and decreased neurite outgrowth in both models, suggesting a NGF/trkA independent mechanism. It also reduced axonal growth (GAP-43) and synaptic (synapsin I and synaptophysin) proteins in PC12 cells, without inducing mitochondrial damage or apoptosis. Therefore, cisplatin might affect axonal plasticity before DNA damage, NGF/trkA down-regulation, mitochondrial damage or neuronal apoptosis. This is the first study to show that neuroplasticity-related proteins might be early targets of the neurotoxic action of cisplatin and their role on cisplatin-induced peripheral neuropathy should be investigated in vivo.  相似文献   

20.

Recently neuronal insulin resistance was suggested playing a role in Alzheimer’s disease. Streptozotocin (STZ) is commonly used to induce impairment in insulin metabolism. In our previous work on undifferentiated SH-SY5Y cells the compound exerted cytotoxicity without altering insulin sensitivity. Nevertheless, differentiation of the cells to a more mature neuron-like phenotype may considerably affect the significance of insulin signaling and its sensitivity to STZ. We aimed at studying the influence of STZ treatment on insulin signaling in SH-SY5Y cells differentiated by retinoic acid (RA). Cytotoxicity of STZ or low serum (LS) condition and protective effect of insulin were compared in RA differentiated SH-SY5Y cells. The effect of insulin and an incretin analogue, exendin-4 on insulin signaling was also examined by assessing glycogen synthase kinase-3 (GSK-3) phosphorylation. STZ was found less cytotoxic in the differentiated cells compared to our previous results in undifferentiated SH-SY5Y cells. The cytoprotective concentration of insulin was similar in the STZ and LS groups. However, the right-shifted concentration–response curve of insulin induced GSK-3 phosphorylation in STZ-treated differentiated cells is suggestive of the development of insulin resistance that was further confirmed by the insulin potentiating effect of exendin-4. Differentiation reduced the sensitivity of SH-SY5Y cells for the non-specific cytotoxicity of STZ and enhanced the relative significance of development of insulin resistance. The differentiated cells thus serve as a better model for studying the role of insulin signaling in neuronal survival. However, direct cytotoxicity of STZ also contributes to the cell death.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号