首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A leading hypothesis to explain the dramatic decline of Steller sea lions (Eumetopias jubatus) in western Alaska during the latter part of the 20th century is a change in prey availability due to commercial fisheries. We tested this hypothesis by exploring the relationships between sea lion population trends, fishery catches, and the prey biomass accessible to sea lions around 33 rookeries between 2000 and 2008. We focused on three commercially important species that have dominated the sea lion diet during the population decline: walleye pollock, Pacific cod and Atka mackerel. We estimated available prey biomass by removing fishery catches from predicted prey biomass distributions in the Aleutian Islands, Bering Sea and Gulf of Alaska; and modelled the likelihood of sea lions foraging at different distances from rookeries (accessibility) using satellite telemetry locations of tracked animals. We combined this accessibility model with the prey distributions to estimate the prey biomass accessible to sea lions by rookery. For each rookery, we compared sea lion population change to accessible prey biomass. Of 304 comparisons, we found 3 statistically significant relationships, all suggesting that sea lion populations increased with increasing prey accessibility. Given that the majority of comparisons showed no significant effect, it seems unlikely that the availability of pollock, cod or Atka mackerel was limiting sea lion populations in the 2000s.  相似文献   

2.
Aim We used a novel approach to infer foraging areas of a central‐place forager, the Steller sea lion (Eumetopias jubatus), by assessing changes in the temporal and spatial distribution patterns of sea lions at terrestrial sites. Specifically, our objectives were (1) to classify seasonal distribution patterns of Steller sea lions and (2) to determine to what extent the seasonal distribution of Steller sea lions is explained by seasonal concentrations of prey. Location Southeast Alaska, USA. Methods Steller sea lions of all age classes were counted monthly (2001–04) by aerial surveys at 28 terrestrial sites. Hierarchical cluster analysis and principal components analysis were used to classify seasonal distribution patterns of Steller sea lions at these terrestrial sites. We estimated the proportion of sea lions in the study area that were associated with each seasonal distribution pattern. Results Multivariate ordination techniques revealed four distinct seasonal distributional patterns. During December, 55% of the sea lions in the study area were found at Type 1 sites, located near over‐wintering herring aggregations. During May, 56% of sea lions were found at Type 2 sites, near aggregations of spring‐spawning forage fish. In July, 78% of sea lions were found at Type 3 sites, near summer migratory corridors of salmon. During September, 44% of sea lions were found at Type 4 sites, near autumn migratory corridors of salmon. Main conclusions Seasonal attendance patterns of sea lions were commonly associated with the seasonal availability of prey species near terrestrial sites and reflected seasonal foraging patterns of Steller sea lions in Southeast Alaska. A reasonable annual foraging strategy for Steller sea lions is to forage on herring (Clupea pallasii) aggregations in winter, spawning aggregations of forage fish in spring, salmon (Oncorhynchus spp.) in summer and autumn, and pollock (Theragra chalcogramma) and Pacific hake (Merluccius productus) throughout the year. The seasonal use of haulouts by sea lions and ultimately haulout‐specific foraging patterns of Steller sea lions depend in part upon seasonally available prey species in each region.  相似文献   

3.
Optimal foraging theory predicts less diverse predator diets with a greater availability of preferred prey. This narrow diet niche should then be dominated by preferred prey, with implications for predator–prey dynamics and prey population ecology. We investigated lion (Panthera leo) diets in Hluhluwe–iMfolozi Park (HiP), South Africa, to assess whether lions in a site with a high density of preferred prey (prey species weighing 92–632 kg as estimated from a published meta-analysis) have a narrow diet, consisting primarily of preferred prey. HiP is a useful study site to investigate this prediction because it is a productive landscape (with a high density of prey) where lion-preferred prey constitutes up to 33% of the prey available to lions. Furthermore, to investigate whether lions in HiP exhibit sex-specific diets as documented in other southern African populations, we estimated male and female lion diets separately. We were specifically interested in testing whether traditional approaches of estimating lion diets at the population level mask sex-specific predation patterns, with possible implications for management of lions in small to medium-sized fenced reserves. Lions in HiP preferred larger prey species (63–684 kg) and had diets with a larger proportion of preferred prey than reported in an African-wide meta-analysis. However, despite the high density of preferred prey species, 36% of lion diets still consisted of typically non-preferred species such as nyala (Tragelaphus angasii). This finding suggests that lions in HiP maintain a degree of opportunism even when preferred prey are abundant. Therefore, abundant, non-preferred prey are likely to be an important resource for lion populations. Sex-specific differences in lion diets were evident in HiP, suggesting that estimation of lion resource use and carrying capacity should consider opportunistic hunting and sex-specific differences in lion diets.  相似文献   

4.
Prey species must adapt their behavior to avoid predation. Asa key prey item for lions (Panthera leo), plains zebras (Equusburchelli) were expected to respond to immediate threats posedby lions in their area. In addition, zebras were predicted toexhibit behavior tuned to reduce the potential for encounterswith lions, by modifying their movement patterns in the timesof day and habitats of greatest lion danger. We studied a populationof approximately 600 plains zebra living in Ol Pejeta Conservancy,Kenya. We found that zebra abundance on or near a grasslandpatch was lower if lions had also been observed on that patchduring the same day. Predation danger was highest in grasslandhabitat during the night, when lions were more active. Zebrasightings and global positioning system radio collar data indicatedthat zebras also reduced their use of grassland at night, insteadusing more woodland habitat. Zebras moved faster and took sharperturns in grassland at night. It is hypothesized that these moreerratic movements assist zebras in avoiding detection or captureby lions.  相似文献   

5.
The behavioral and predatory patterns of Gulf of Alaska (GOA) transient killer whales ( Orcinus orca ) were studied between 2000 and 2005 using remote video and vessel-based observations near the Chiswell Island Steller sea lion ( Eumetopias jubatus ) rookery and in the broader Kenai Fjords (KF) region of the northern GOA. GOA transient killer whales were observed on 118 d over the 6-yr period; the median group size was two (range: 1–9). Nine predation events were observed from vessels and an additional sixteen were inferred from remote video studies; all involved Steller sea lions. Estimates from field observations suggest that fifty-nine sea lions were consumed over the summer seasons of 2002–2005; whereas estimates based on published caloric requirements of transient killer whales would suggest a loss of 103 sea lions over the same time period. GOA transients spent a large proportion (43%) of their time resting which may be a strategy for conserving energy. Predation on sea lion pups at the Chiswell Island rookery was greatest during years when a single killer whale was foraging alone and when a 1.5-yr-old calf was evidently being trained to handle prey. Predation on pups was low during years when killer whales were foraging in groups and were observed and presumed to be taking mostly juvenile sea lions. Our study suggests that GOA transients are having a minor effect on the recovery of Steller sea lions in the GOA.  相似文献   

6.
Intraspecific variability in foraging behavior has been documented across a range of taxonomic groups, yet the energetic consequences of this variation are not well understood for many species. Understanding the effect of behavioral variation on energy expenditure and acquisition is particularly crucial for mammalian carnivores because they have high energy requirements that place considerable pressure on prey populations. To determine the influence of behavior on energy expenditure and balance, we combined simultaneous measurements of at‐sea field metabolic rate (FMR) and foraging behavior in a marine carnivore that exhibits intraspecific behavioral variation, the California sea lion (Zalophus californianus). Sea lions exhibited variability in at‐sea FMR, with some individuals expending energy at a maximum of twice the rate of others. This variation was in part attributable to differences in diving behavior that may have been reflective of diet; however, this was only true for sea lions using a foraging strategy consisting of epipelagic (<200 m within the water column) and benthic dives. In contrast, sea lions that used a deep‐diving foraging strategy all had similar values of at‐sea FMR that were unrelated to diving behavior. Energy intake did not differ between foraging strategies and was unrelated to energy expenditure. Our findings suggest that energy expenditure in California sea lions may be influenced by interactions between diet and oxygen conservation strategies. There were no apparent energetic trade‐offs between foraging strategies, although there was preliminary evidence that foraging strategies may differ in their variability in energy balance. The energetic consequences of behavioral variation may influence the reproductive success of female sea lions and result in differential impacts of individuals on prey populations. These findings highlight the importance of quantifying the relationships between energy expenditure and foraging behavior in other carnivores for studies addressing fundamental and applied physiological and ecological questions.  相似文献   

7.
Living under predation risk may alter both behaviour and physiology of potential prey. In extreme cases, such alterations may have serious demographic consequences, and recent studies support that non‐lethal effects of predation may have broad ecological consequences. However, behavioural and physiological responses to predation risk may be related to trade‐offs associated with resource acquisition and direct predation risk. We validated an enzyme‐linked immunoassay (EIA) for non‐invasive monitoring of stress in plains zebras (Equus quagga) from faecal material. We used this assay in combination with behavioural data to assess if plains zebras living with and without lions (Panthera leo) in a mountain savannah in southern Africa differed in behaviour and physiology, and if such differences were influenced by seasons with contrasting resource availability. Zebra group sizes did not differ between areas with and without lions, but zebra groups had more juveniles in an area with lions than groups in an area without lions, but only during the wet season. Similarly, we observed differences in individual vigilance, foraging behaviour and stress hormone concentrations, but all these differences were influenced by seasons. Despite these seasonal influences, our study did not suggest that zebras in an area with lions spent a higher proportion of time being vigilant, a lower proportion of time foraging, or had higher stress hormone levels. Our results instead suggest that zebras' responses to lion presence were highly context dependent and the result of complex interactions between resource abundance and cues about predation risk. Because of the obvious ecological and evolutionary ramifications of such findings, we argue that further research is needed to define the spatial and temporal scales over which predators impose indirect effects on their prey.  相似文献   

8.
To be successful, marine predators must alter their foraging behavior in response to changes in their environment. To understand the impact and severity of environmental change on a population it is necessary to first describe typical foraging patterns and identify the underlying variability that exists in foraging behavior. Therefore, we characterized the at‐sea behavior of adult female California sea lions (n = 32) over three years (2003, 2004, and 2005) using satellite transmitters and time‐depth recorders and examined how foraging behavior varied among years. In all years, sea lions traveled on average 84.7 ± 11.1 km from the rookery during foraging trips that were 3.2 ± 0.3 d. Sea lions spent 42.7% ± 1.9% of their time at sea diving and displayed short (2.2 ± 0.2 min), shallow dives (58.5 ± 8.5 m). Among individuals, there was significant variation in both dive behavior and movement patterns, which was found in all years. Among years, differences were found in trip durations, distances traveled, and some dive variables (e.g., dive duration and bottom time) as sea lions faced moderate variability in their foraging habitat (increased sea‐surface temperatures, decreased upwelling, and potential decreased prey abundance). The flexibility we found in the foraging behavior of California sea lions may be a mechanism to cope with environmental variability among years and could be linked to the continuing growth of sea lion populations.  相似文献   

9.
Charnov's (1976) marginal value theorem, MVT, addresses howlong a forager should stay in a patch of prey to maximize itsgain. Information-sharing models of group foraging suggest thatindividuals should join groups to improve their patch-findingrate. This is achievable if group members share informationabout the location of food patches. The determinants of theMVT are searching time and cumulative gain against time in apatch, those of the group foraging models are searching time,group size, and individual differences in ability to monopolizethe prey found. After combining the MVT and information-sharingmodels we explore the consequences of unequal competitors (good,G, and poor, P) foraging in groups. Under this domain G andP differ in their accumulated harvest against time in a patch.When the gain function of P is obtained by mere scaling of thatof G, optimal patch residence times for individuals of the twophenotypes do not differ. However, if the gain functions ofG and P cannot be derived from each other by a constant scalingmultiplier, the optimal patch times for G and P are not necessarilythe same. Under these conditions the model suggests that foraginggroups should become assorted by foraging ability.  相似文献   

10.
The Cape lion was a population of lions that probably inhabited the western part of the Cape Province of South Africa until their extermination by man in the mid-19th century. Only a few skeletal remains are known, making every specimen valuable. In this paper, I report on a possible new male specimen CN1570 from the Zoological Museum in Copenhagen. A multivariate discriminant analysis on 27 craniodental variables provided clear separation between four of the five lion subspecies (Panthera leo krugeri, nubica, persica, senegalensis) that were included, whereas P. l. bleyenberghi showed some overlap with P. l. senegalensis and P. l. krugeri. The only two undisputed Cape lion males grouped separately from all other lions. CN1570 also grouped separately from other lions, and towards the two Cape lions. The external morphology of the Cape lion is often cited as having been different from other sub-Saharan lions, but phenotypic plasticity argues for caution in placing emphasis on mane morphology as a distinguishing character among lion subspecies. Skull morphology, however, appears to clearly distinguish male Cape lions from other African lions.  相似文献   

11.
Individual foraging specialization occurs when organisms use a small subset of the resources available to a population. This plays an important role in population dynamics since individuals may have different ecological functions within an ecosystem related to habitat use and prey preferences. The foraging habitat fidelity and degree of specialization of California sea lions (Zalophus californianus) were evaluated by analyzing the stable isotopes values of carbon and nitrogen in vibrissae collected from 16 adult females from the reproductive colony on Santa Margarita Island, Magdalena Bay, Mexico, in 2012 and 2013. Based on the degree of individual specialization in δ15N, 62.5% of the females assessed can be considered specialist consumers focusing on the same prey or different prey from the same trophic level. The degree of individual specialization in δ13C indicated that 100% of the individuals showed fidelity to their foraging habitat as some fed in the lagoon, others foraged along the coast, and a third group preferred prey from the pelagic environment during both the breeding and nonbreeding seasons, suggesting diversification of foraging areas. Foraging area fidelity persisted despite the 2°C increase in the sea surface temperature over the course of the study period.  相似文献   

12.
The prey species composition and feeding rate of the pit-making ant lion larva,Myrmeleon bore Tjeder, which inhabits open sandy areas, were examined. Not less than 30 prey species, most of which were ants, were collected during a research period of 1.5 years. First instar larvae most often (81.1%) captured ants. Although 3rd instar larvae captured larger-sized prey than individuals of any other instar, they also captured small prey. The feeding rate of 3rd instar larvae was estimated by using the frequency of observed predation (FOP; (no. of ant lions handling a prey)/(total no. of pits observed)), the prey-handling time and the rhythm of daily foraging activity. FOP ofM. bore larvae was constant on the whole from spring to autumn. It was estimated that each captured 1.25 prey per day on average during this period. This estimate, however, was the feeding rate for days on which there was no rain. Assuming that the larvae cannot capture prey due to pit destruction when there is more than 10 mm of rainfall per day, the figure was reduced to 1.03 prey/day. The estimated feeding rate was evaluated with reference to larval foraging behavior.  相似文献   

13.
Large carnivores inhabiting ecosystems with heterogeneously distributed environmental resources with strong seasonal variations frequently employ opportunistic foraging strategies, often typified by seasonal switches in diet. In semi-arid ecosystems, herbivore distribution is generally more homogeneous in the wet season, when surface water is abundant, than in the dry season when only permanent sources remain. Here, we investigate the seasonal contribution of the different herbivore species, prey preference and distribution of kills (i.e. feeding locations) of African lions in Hwange National Park, Zimbabwe, a semi-arid African savanna structured by artificial waterholes. We used data from 245 kills and 74 faecal samples. Buffalo consistently emerged as the most frequently utilised prey in all seasons by both male (56%) and female (33%) lions, contributing the most to lion dietary biomass. Jacobs’ index also revealed that buffalo was the most intensively selected species throughout the year. For female lions, kudu and to a lesser extent the group “medium Bovidae” are the most important secondary prey. This study revealed seasonal patterns in secondary prey consumption by female lions partly based on prey ecology with browsers, such as giraffe and kudu, mainly consumed in the early dry season, and grazers, such as zebra and suids, contributing more to female diet in the late dry season. Further, it revealed the opportunistic hunting behaviour of lions for prey as diverse as elephants and mice, with elephants taken mostly as juveniles at the end of the dry season during droughts. Jacobs’ index finally revealed a very strong preference for kills within 2 km from a waterhole for all prey species, except small antelopes, in all seasons. This suggested that surface-water resources form passive traps and contribute to the structuring of lion foraging behaviour.  相似文献   

14.
Conditions experienced during the nonbreeding period have profound long‐term effects on individual fitness and survival. Therefore, knowledge of habitat use during the nonbreeding period can provide insights into processes that regulate populations. At the Falkland Islands, the habitat use of South American sea lions (Otaria flavescens) during the nonbreeding period is of particular interest because the population is yet to recover from a catastrophic decline between the mid‐1930s and 1965, and nonbreeding movements are poorly understood. Here, we assessed the habitat use of adult male (n = 13) and juvenile male (n = 6) South American sea lions at the Falkland Islands using satellite tags and stable isotope analysis of vibrissae. Male South American sea lions behaved like central place foragers. Foraging trips were restricted to the Patagonian Shelf and were typically short in distance and duration (127 ± 66 km and 4.1 ± 2.0 days, respectively). Individual male foraging trips were also typically characterized by a high degree of foraging site fidelity. However, the isotopic niche of adult males was smaller than juvenile males, which suggested that adult males were more consistent in their use of foraging habitats and prey over time. Our findings differ from male South American sea lions in Chile and Argentina, which undertake extended movements during the nonbreeding period. Hence, throughout their breeding range, male South American sea lions have diverse movement patterns during the nonbreeding period that intuitively reflects differences in the predictability or accessibility of preferred prey. Our findings challenge the long‐standing notion that South American sea lions undertake a winter migration away from the Falkland Islands. Therefore, impediments to South American sea lion population recovery likely originate locally and conservation measures at a national level are likely to be effective in addressing the decline and the failure of the population to recover.  相似文献   

15.
Research on coursing predators has revealed that actions throughout the predatory behavioral sequence (using encounter rate, hunting rate, and kill rate as proxy measures of decisions) drive observed prey preferences. We tested whether similar actions drive the observed prey preferences of a stalking predator, the African lion Panthera leo. We conducted two 96 hour, continuous follows of lions in Addo Elephant National Park seasonally from December 2003 until November 2005 (16 follows), and compared prey encounter rate with prey abundance, hunt rate with prey encounter rate, and kill rate with prey hunt rate for the major prey species in Addo using Jacobs' electivity index. We found that lions encountered preferred prey species far more frequently than expected based on their abundance, and they hunted these species more frequently than expected based on this higher encounter rate. Lions responded variably to non-preferred and avoided prey species throughout the predatory sequence, although they hunted avoided prey far less frequently than expected based on the number of encounters of them. We conclude that actions of lions throughout the predatory behavioural sequence, but particularly early on, drive the prey preferences that have been documented for this species. Once a hunt is initiated, evolutionary adaptations to the predator-prey interactions drive hunting success.  相似文献   

16.
Impact of changing diet regimes on Steller sea lion body condition   总被引:1,自引:0,他引:1  
A leading theory for the cause of the decline of Steller sea lions is nutritional stress, which led to chronic high juvenile mortality and possibly episodic adult mortality. Nutritional stress may have resulted from either poor quality or low abundance of prey. The objective of this study was to determine whether we could predict shifts in body condition (i.e., body mass or body fat content) over different seasons associated with a change in diet (i.e., toward lower quality prey). Captive Steller sea lions (n= 3) were fed three different diet regimes, where Diet 1 approximated the diet in the Kodiak area in the 1970s prior to the documented decline in that area, Diet 2 approximated the species composition in the Kodiak area after the decline had begun, and Diet 3 approximated the diet in southeast Alaska where the Steller sea lion population has been increasing for over 25 yr. All the animals used in this study were still growing and gained mass regardless of diet. Body fat (%) varied between 13% and 28%, but was not consistently high or low for any diet regime or season. Mean intake (in kg) of Diet 2 was significantly greater for all sea lions during all seasons. All animals did, however, tend to gain less body mass on Diets 2 and 3, as well as during the breeding and postbreeding seasons. They also tended to gain more mass during the winter and on Diet 1, though these differences were not statistically significant. Thus, changing seasonal physiology of Steller sea lions appears to have more impact on body condition than quality of prey, provided sufficient quantity of prey is available. Steller sea lions are opportunistic predators and are evidently able to thrive on a variety of prey. Our results indicate that Steller sea lions are capable of compensating for prey of low quality.  相似文献   

17.
Blooms of the toxin‐producing diatom Pseudo‐nitzschia commonly occur in Monterey Bay, California, resulting in sea lion mortality events. The links between strandings of California sea lions suffering from domoic acid (DA) toxicity, toxic cell numbers, and their associated DA concentration in Monterey Bay and in sea lion feces were examined from 2004 to 2007. While Pseudo‐nitzschia toxic cells and DA concentrations were detectable in the water column most of the time, they were often at low levels. A total of 82 California sea lions were found stranded in the Bay between 2004 and 2007 with acute or chronic signs associated with DA poisoning. The highest number with detectable DA in feces occurred in April 2007 and corresponded with the presence of a highly toxic bloom in the Bay. Higher DA levels occurred in feces from sea lions stranding with acute toxicosis and lower concentrations in feces of sea lions exhibiting signs of chronic DA poisoning or not exhibiting any neurologic signs. Results indicated that sea lions are likely exposed to varying levels of DA through their prey throughout the year, often at sublethal doses that may contribute to a continued increase in the development of chronic neurologic sequelae.  相似文献   

18.
19.
Between 2011 and 2012, the carnivore guild in Majete Wildlife Reserve (MWR), Malawi, was restored following the reintroduction of lion (Panthera leo) and leopard (Panthera pardus). The aim of this study was to describe and compare the diet of lion, leopard and resident spotted hyaena (Crocuta crocuta) using scat analysis. Lions and spotted hyaenas displayed the greatest dietary overlap (Oab = 0.88) and selected mainly medium- to large-bodied prey species. Lions had a mean preferred prey weight of 120.33 ± 42.14 kg (SE), with warthog (Phacochoerus africanus) and waterbuck (Kobus ellipsiprymnus) making up 60.64% of relative biomass consumed. Spotted hyaenas had a mean preferred prey weight of 102.40 ± 41.69 kg and had a more generalised diet (Ba = 0.46) compared to lions (Ba = 0.36). In contrast, leopards occupied a dietary niche substantially lower than that of lions and spotted hyaenas, selecting relatively smaller prey with a mean preferred prey weight of 27.50 ± 6.74 kg. Our results suggest that coexistence between the resident hyaena and reintroduced lion and leopard in MWR is facilitated by dietary partitioning. We advise long-term monitoring of reintroduced carnivores in small, enclosed reserves to assess their impacts on predator and prey populations.  相似文献   

20.
  1. Globally, large terrestrial carnivores (Carnivora) have suffered precipitous declines in population and range. Today, they must persist in increasingly isolated natural habitat patches within a human-dominated matrix. Effective conservation aimed at supporting carnivores in such landscapes requires species-specific understanding of habitat requirements.
  2. We present results from a review of the published literature to assess the current state of knowledge regarding habitat preferences of the African lion Panthera leo, with the aim of identifying common drivers of habitat use across contexts.
  3. Using the Web of Science, we identified 154 usable articles and extracted information relating to study topic, location, habitats described, land-use type, and any documented habitat preferences.
  4. Only 31 studies documented evidence of habitat use, and collectively, they suggested that preferences for specific habitat types were varied and context-specific. The importance of prey abundance and proximity to water was highlighted in multiple studies. Anthropogenic factors interfered with expected patterns of habitat use. There was evident bias in study locations: 83% of the habitat-use studies were based in only three countries, and 70% were focussed on protected or managed areas.
  5. Our synthesis suggests that lions demonstrate behavioural plasticity in habitat use in response to anthropogenic pressures. To understand the limits of this plasticity and to manage Africa’s changing landscapes effectively for roaming lions, future research should be focussed on analysis of habitat use outside protected areas, taking into account gradients of distance to water, prey abundance, and anthropogenic risk.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号